

S0031-9422(96)00118-5

β-AMYRIN ACETATE EPOXIDE FROM CANARINA CANARIENSIS

EMILE M. GAYDOU,* ROBERT FAURE and ECKHARD WOLLENWEBER†

Laboratoire de Phytochimie de Marseille and URA 1411, Faculté des Sciences et Techniques de Saint-Jérôme, Avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex 20, France; †Institut für Botanik der TH Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany

(Received in revised form 2 January 1996)

Key Word Index—*Canarina canariensis*; Campanulaceae; leaf wax; β -Amyrin acetate epoxide; 3β -acetoxyoleanan-12-one; taraxerone; isomultiflorenol acetate; 2D NMR.

Abstract—Among the triterpenoids isolated from the leaf wax of *Canarina canariensis*, a new oleanane derivative, 3β -acetoxy- 12α , 13α -epoxyoleanane, has been identified. When deuterochloroform is used as NMR solvent, the compound isomerizes to 3β -acetoxyoleanan-12-one. The structural formulae of these compounds were established from one- and two-dimensional NMR data.

INTRODUCTION

Canarina canariensis is a plant endemic to the Canary Islands Tenerife, Gran Canaria, La Palma and Gomera that produces beautiful bell-shaped red flowers. It occurs in laurel forests and with *Erica arborea* shrubs between 100 and 300 m above sea level. Its leaves and stems exhibit a thin waxy coating. We have now analysed this lipophilic material and have identified its major components.

RESULTS AND DISCUSSION

From the leaf and stem wax, a new oleanane derivative, 3β -acetoxy- 12α - 13α -epoxyoleanane 1 (Fig. 1) was isolated and identified. This compound has now been characterized for the first time as a natural product

but was previously synthesized from β -amyrin acetate using *p*-nitroperbenzoic acid by Boar *et al.* [1]. Moreover, compound 1 rearranged in CDCl₃ to give 3β acetoxyoleanan-12-one 2 (Fig. 1). Therefore, to avoid a mixture which precludes the use of a two-dimensional NMR approach, 1 was studied in C₆D₆ solution. Finally, it should be noted that similar isomerization has also been observed in the case of sclareol epoxide [2].

The ¹³C NMR spectrum of 1 consists of 32 resolved signals. Beyond confirming the presence of an acetate function, the multiplicities of the individual signals determined using the DEPT pulse sequence [3] indicated a trisubstituted epoxide function, six quaternary carbons, eight methyl groups, and three methine and eleven methylene resonances. Close inspection of the 400 MHz ¹H NMR spectrum {C₆D₆; δ 4.66 (1H, dd,

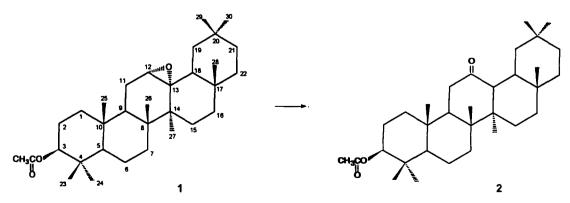


Fig. 1. β -Amyrin acetate epoxide 1 and its CDCl₃ isomerization product 3β -acetoxyoleanan-12-one 2.

^{*}Author to whom correspondence should be addressed.

J = 12.0, 4.7 Hz, CHO), 2.59 (1H, dbr, J = 4.0 Hz, CHO), 1.74 (3H, s, CH₃CO), 1.29 (6H, s), 1.10 (3H, s), 0.94 (3H, s), 0.88 (3H, s), 0.87 (3H, s), 0.79 (3H, s), 0.78 (3H, s) showed a hydrogen α to an acetate function, a tertiary epoxide ring and eight methyls linked to aliphatic quaternary carbons. The presence of two gem-dimethyl groups was further supported by the number of sp³-hybridized quaternary carbons. From the above results, a proposed molecular formula was established as $C_{32}H_{52}O_3$, which was verified by the $[M]^+$ in the mass spectrum at m/z 484. The structure of β -amyrin acetate epoxide 1 and, therefore, its ¹H and ¹³C NMR spectral parameters, were deduced from the concerted application of homonuclear and both direct and long-range heteronuclear chemical shift correlation techniques. One-bond proton-carbon chemical shift correlations were established using a 'H-detected onebond (C, H) heteronuclear multiple quantum coherence (HMQC) experiment [4], providing the identities of the direct responses as shown in Table 1.

slowly to give a new product **2**. Its ¹³C NMR spectrum showed the presence of a carbonyl group at δ 215.1 and an acetate function at δ 171.0. Examination of the 400 MHz ¹H NMR data was indicative of eight quaternary methyl groups, a methine proton linked to an oxygen-bearing carbon and a resonance of a deshielded methylene adjacent to a ketone function {CDCl₃; δ 4.49 (1H, dd, J = 10.5, 5.5 Hz, CHO, 2.29 (1H, dd, J =16.1, 6.0 Hz, CH₂CO), 2.10 (1H, dd, J = 16.1, 12.3 Hz, CH₂CO), 2.03 (3H, s, CH₃CO), 1.18 (3H, s), 0.97 (3H, s), 0.96 (3H, s), 0.84 (3H, s)}. The molecular framework, and the complete ¹H and ¹³C chemical shift assignments (Table 2) of **2**, were deduced as for **1**, on the basis of concerted application of two-dimensional experiments.

Among the other compounds characterized, taraxerone, first isolated from the bark of *Pieris japonica* [5], was identified on the basis of the general similarity of its ¹H and ¹³C NMR chemical shifts with those of previously reported data [6]. Another triterpene derivative, isomultiflorenol acetate was also identified. This

When dissolved in deuterochloroform, 1 isomerizes

	CDCl ₃		C ₆ D ₆				
Atoms	δ ¹³ C*	Group†	Atoms	δ ¹³ C*	Group†	$\delta^1 H^*$	
C-1	37.82	CH ₂	C-1	37.81	CH ₂	1.23 and 0.71	
C-2	23.58	CH ₂	C-2	23.87	CH ₂	1.69 and 1.53	
C-3	80.92	CH	C-3	80.50	CH	4.66	
C-4	37.82	С	C-4	37.90	С	—	
C-5	55.61	CH	C-5	55.81	СН	0.63	
C-6	17.75	CH ₂	C-6	17.97	CH ₂	1.35	
C-7	34.19	CH ₂	C-7	34.45	CH ₂	1.26 and 1.08	
C-8	40.44	С	C-8	40.61	c		
C-9	46.51	CH	C-9	46.72	СН	1.22	
C-10	37.25	С	C-10	37.33	С		
C-11	21.73	CH,	C-11	22.02	CH ₂	1.79 and 1.45	
C-12	54.80	CH	C-12	54.49	CH	2.59	
C-13	67.46	С	C-13	66.87	С		
C-14	41.31	С	C-14	41.55	С		
C-15	24.50	CH ₂	C-15	24.87	CH,	2.05 and 0.99	
C-16	27.93	CH ₂	C-16	28.28	CH,	1.97 and 0.97	
C-17	33.54	С	C-17	33.78	СĨ		
C-18	48.41	CH	C-18	48.62	CH	1.10	
C-19	41.31	CH_2	C-19	41.65	CH,	1.73 and 1.13	
C-20	30.93	С	C-20	30.94	Ċ		
C-21	34.72	CH,	C-21	34.96	CH,	1.33 and 1.12	
C-22	37.10	СH,	C-22	37.48	CH,	1.49 and 1.22	
C-23	16.57	CH,	C-23	16.79	CH ₃	0.88	
C-24	28.06	CH,	C-24	28.11	CH,	0.87	
C-25	15.20	CH,	C-25	15.26	CH,	0.78	
C-26	20.42	CH,	C-26	20.70	CH,	1.29	
C-27	22.08	CH,	C-27	22.20	CH,	1.10	
C-28	28.47	CH,	C-28	28.85	CH,	1.29	
C-29	33.37	CH,	C-29	33.44	CH,	0.94	
C-30	23.53	CH,	C-30	23.55	CH,	0.79	
CO	171.10	C	СО	169.96	Ċ		
COCH,	21.39	CH3	COCH ₃	20.82	CH,	1.74	

Table 1. ¹H and ¹³C NMR chemical shifts of β -amyrin acetate epoxide (1)

*In ppm with respect to TMS.

†Determined from DEPT spectra.

Atoms	$\delta^{13}C^*$	Group†	δ 'H*
C-1	38.68	CH ₂	1.60 and 1.10
C-2	23.58	CH ₂	1.66 and 1.61
C-3	80.61	CH	4.49
C-4	37.82	С	—
C-5	55.57	CH	0.85
C-6	18.08	CH ₂	1.54 and 1.37
C-7	34.76	CH ₂	1.23 and 1.18
C-8	43.79‡	C	_
C-9	49.11	СН	1.74
C-10	37.48	С	
C-11	38.50	CH ₂	2.29 and 2.10
C-12	215.10	C	_
C-13	59.96	CH	1.90
C-14	41.96‡	С	—
C-15	27.02	CH,	1.84 and 1.01
C-16	30.31	CH,	1.62 and 0.93
C-17	31.66	C	_
C-18	34.33	СН	2.30
C-19	43.62	CH ₂	1.45 and 1.04
C-20	30.91	С	_
C-21	34.92	CH ₂	1.66 and 1.40
C-22	35.99	CH ₂	1.35
C-23	16.97	CH ₃	0.87
C-24	28.25	CH,	0.85
C-25	16.30	CH,	0.96
C-26	19.34	CH,	0.97
C-27	28.25	CH,	1.18
C-28	28.25	CH ₃	0.89
C-29	31.91§	CH,	0.90
C-30	27.87§	CH,	0.845
CO	171.03	C	
COCH,	21.36	CH,	2.03

Table 2. ¹H and ¹³C NMR chemical shifts of 3β -acetoxyoleanan-12-one (2)

*In ppm with respect to TMS.

†Determined from DEPT spectra.

‡§These assignments may be reversed.

compound was first isolated from the wax gourd *Benincasa cerifera* [7] and our NMR results are in agreement with previously published values [8].

EXPERIMENTAL

General. All 1D and 2D NMR spectra were recorded on a Bruker AMX-400 spectrometer in CDCl_3 or C_6D_6 solns (¹H at 400 MHz; ¹³C at 100.61 MHz; TMS as standard in both measurements). Standard Bruker pulse sequences were used for homonuclear and heteronuclear correlation experiments (COSY, HMQC and HMBC). The high crowding of methylene resonances precludes the accurate determination of ¹H chemical shifts and proton–proton couplings from one-dimensional measurements. These proton resonances, therefore, were assigned from the slices of the chemical shift heteronuclear correlation (HMQC) diagrams. For other experimental details see refs [8, 9]. MS were recorded at 70 eV, direct inlet, EI mode.

Isolation procedures. Canarina canariensis (L.) Vatke was cultivated in a greenhouse at the Botanischer Garten der TH Darmstadt. Fresh leaves and stems were very briefly rinsed with CHCl₃: to dissolve the waxy coating. The solvent was evapd in vacuo and the remainder was chromatographed over silica gel, eluting with toluene and increasing quantities of MeCOEt ketone and MeOH. TLC on silica gel (100-140°) (petrol-toluene-MeCOEt 18:1:1) revealed several spots showing triterpenoid reactions after being sprayed with MnCl₂ reagent [10]. Three compounds were isolated in reasonable amounts and in a sufficiently pure state for spectroscopic analyses. Two of them were unambiguously identified as the known compounds, taraxerone, mp 234°, recrystallized from EtOH, and isomultiflorenol acetate, mp 222°, recrystallized from toluene-Me₂CO. A third one (compound 1, mp 220°, recrystallized from EtOH) required more detailed analysis.

Acknowledgements—E. W. wishes to thank Mr Helmut Groh from the Botanischer Garten der TH Darmstadt for kindly providing the plant material and Mrs Marion Dörr for technical assistance.

REFERENCES

- 1. Boar, R. B., Joukhadar, L., de Luque M. and McGhie J. F. (1977), J. Chem. Soc. Perkin I, 2104.
- 2. Hanson, J. R., Hitchcock, P. B., Nasir, H. and Truneh, A. (1994) *Phytochemistry* **36**, 903.
- Doddrell, D. M., Pegg, D. T. and Bendall, M. R. (1982) J. Magn. Reson. 48, 323.
- 4. Bax, A. and Subramanian S. (1983) J. Magn. Reson. 67, 565.
- 5. Katai, M. and Meguri H. (1983), Yukagaku 32, 311.

- 6. Katai, M., Terai, T. and Meguri, H. (1983) Chem. Pharm. Bull. 31, 1567.
- 7. Wollenweber, E., Faure, R. and Gaydou, E. M. (1991) Indian Drugs 28, 458.
- 8. Faure, R. Gaydou, E. M. and Wollenweber, E. (1991) J. Nat. Products 54, 1564.
- Raharivelomanana, P., Bianchini, J. P., Cambon, A., Azzaro, M. and Faure, R. (1995) Magn. Reson. Chem. 33, 233.
- Jork, H., Funk, W., Fischer W. and Wimmer, H. (1989), Dünnschichtchromatographie, Vol. 1a, Verlag Chemie, Weinheim.