ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Cite this: Chem. Commun., 2014, 50, 1067

Received 21st October 2013, Accepted 15th November 2013

DOI: 10.1039/c3cc48078j

www.rsc.org/chemcomm

One-pot synthesis of D-glucosamine and chitobiosyl building blocks catalyzed by triflic acid on molecular sieves[†]

Guillaume Despras,^a Dominique Urban,^a Boris Vauzeilles^{ab} and Jean-Marie Beau*^{ab}

Combining triflic acid-catalyzed acetalation, benzylation, reductive ring opening of benzylidene acetal and glycosylation in one-pot transformations leads to a wide range of D-glucosamine building blocks for assembling oligomers.

The construction of complex carbohydrate oligomers is a challenging task as it often requires high degrees of functionalization.¹ Synthesis of both glycosyl donors and acceptors may be readily achieved by means of one-pot processes, decreasing the number of synthetic and purification steps.² One-pot Lewis acid catalyzed reactions were developed by our group³ (Cu(OTf)₂, FeCl₃·6H₂O) and by Hung and coworkers⁴ (TMSOTf). These protocols have been successfully applied to persilylated monosaccharides (glucose, mannose, galactose),^{3,5} disaccharides (trehalose, maltose),^{3,6} and unprotected glucosides.⁶

Glucosamine containing oligosaccharides are in high demand because of their wide biological properties.⁷ The above procedures, promoted by TMSOTf, are however presently limited.⁸ Our preliminary attempts using Cu(OTf)₂ or FeCl₃·6H₂O as a catalyst on various *N*-protected substrates were either heterogeneous, depending on the *N*-protecting group [Cu(OTf)₂],^{3c} or inefficient (FeCl₃·6H₂O).^{3b} The major problem associated with these substrates is that the catalysts are sequestrated by some of the *N*-containing functionalities on carbohydrates, making the catalysts, we report here a solution using trifluoromethanesulfonic acid as a catalyst, associated with molecular sieves (Scheme 1).

Electrophilic activation of organic substrates by protic acids, including triflic acid (TfOH), has been extensively studied.⁹

In carbohydrate chemistry, TfOH was notably used in glycosylations¹⁰ or with alkylsilanes to promote 4,6-*O*-benzylidene reductive ring opening to the C-4 alcohol.^{10b,11}

Our study started with thiophenylglycosides, attractive building blocks as both glycosyl donors or acceptors,¹² with the participating amino protecting halogen acetamides 1 and 2 and carbamates 3^{13} and 4 (Fig. 1).

It was completed by the *N*-protected β -thioarylglycosides **5–9** prepared from odorless 2-methyl-5-*tert*-butylthiophenol,^{14,15} as well as by α -methyl glycoside **10**¹⁶ and β -O-silyl compounds **11** and **12**. The O-silylated substrates **1a–12a** were obtained in high yield (89–97%) from the triols **1–12** by treatment with hexamethyldisilazane (HMDS, 2 equiv.) and TMSOTf (10 mol%) in CH₂Cl₂ at rt.^{8b}

The acetalation–etherification procedure, initially examined on *O*-silylated trichloroacetamide **6a** with benzaldehyde (3 equiv.) and triethylsilane (1.1 equiv.) in the presence of 1 mol% of Cu(OTf)₂ under the previously optimized solvent conditions (CH₂Cl₂: CH₃CN, ratio of 4:1),^{3a} afforded the expected 3-*O*-benzyl-4,6-*O*-benzylidene **6b** (66%) together with the 4,6-*O*-benzylidene **6c** (33%, entry 1, Table 1). This result is representative of the limitation observed with these *N*-protected derivatives of glucosamine. The same loading of TfOH (1 mol%) in CH₂Cl₂ provided similar results (entry 2). Increasing the amount of TfOH to 5 mol% (entry 3) enhanced significantly the

Scheme 1 Selective one-pot transformations of glucosamine derivatives catalyzed by triflic acid.

 ^a Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, F-91405 Orsay, France.
 E-mail: jean-marie.beau@u-psud.fr; Fax: +33 1 69 85 37 15;
 Tel: +33 1 69 15 79 60

^b Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France

[†] Electronic supplementary information (ESI) available: Experimental procedures, characterization data and copies of ¹H and ¹³C-NMR spectra of new compounds. See DOI: 10.1039/c3cc48078j

Fig. 1 Starting sugars for the one-pot regioselective protection of the *N*-protected glycosides.

 Table 1
 Copper triflate versus triflic acid-catalyzed transformation of

 O-silylated trichloroacetamide
 6a

	TMSO TMSO NHCOCC 6a	PhCHO, 3 equiv Ph- p Et ₃ SiH, 1.1 equiv catalyst, rt	6b, R 6c, R	O NHCOC = Bn = H	op Cl ₃
Entry	Catalyst	Solvent	Time	6b ^{<i>a</i>} (%)	6c ^{<i>a</i>} (%)
	$Cu(OTf)_2^b$, 1 mol%	$CH_2Cl_2: CH_3CN, 4:1$	16 h	66	33
2	TfOH, 1 mol%	CH ₂ Cl ₂	16 h	62	30
3	TfOH, 5 mol%	CH_2Cl_2	15 min	76	23
l ^c	TfOH, 5 mol%	CH_2Cl_2	10 min	98	—

^{*a*} Yields were determined by NMR spectroscopy with 4-nitrobenzaldehyde as standard. ^{*b*} Catalyst was added in solution in acetonitrile. ^{*c*} With 3 Å molecular sieves. Mbp = 2-methyl-5-*tert*-butylphenyl.

conversion rate into **6b** (15 min *versus* 16 h) but with a similar **6b/6c** ratio. Adding powdered 3 Å molecular sieves (3 Å MS, 1 g per g of substrate) induced a remarkable improvement with the quick formation (10 min) of only **6b** (98%, entry 4).

This drastic change in the reaction course could be understood as the *in situ* formation of an active solid-like catalyst.¹⁷ This was confirmed by the ¹H- and ¹⁹F-NMR spectra of a TfOH solution in CD_2Cl_2 at the catalyst concentration (10 mM). The ¹H-signal at 10.58 ppm and the ¹⁹F-signal at -79.9 ppm completely disappeared after adding 3 Å MS to the NMR tube (see ESI†).¹⁸ This qualitatively demonstrated that TfOH has been adsorbed at the surface of the solid to provide an apparently better performing solid acid catalyst.

The transformation of the *O*-silylated substrates **1a–12a** under these optimized conditions proceeded fast and cleanly to the target products (Table 2, entries 1–12).¹⁹ The silyl anomeric substituents in **11b** (92%) and **12b** (72%) were notably stable (entries 4 and 5), showing the mildness of the reaction conditions.‡

Finally, persilylated α -methyl glucose^{3*a*} subjected to this procedure (20 min at 0 °C) provided the 3-O-benzyl-4,6-O-benzylidene product^{3*a*} in good yield (76%). This result underlines the ability of the triflic acid-molecular sieves system to catalyze the one-pot transformation, which could be applied to other carbohydrate series or polyol compounds.

We next examined a subsequent one-pot reductive ring opening of the 4,6-O-benzylidene acetal. The triflic acid–triethylsilane system

Table 2 Triflic acid-catalyzed one-pot regioselective protection of O-silylated **1a-12a**

	TMSO TMSO RHN 1a-12a	PhCHO, 3 equiv t_3 SiH, 1.2 equiv TfOH, 5 mol% 3Å MS, CH ₂ Cl ₂ 10-30 min	BNO RHN 1b-12b
Entry	Substrate, R, X	Т	Product, yield ^a (%)
1	1a , TFA, β-SPh	rt	1b , 92
2	5a, TFA, β-SMbp	0 °C	5b , 85
3	10a , TFA, α-OMe	0 °C	10b , 80
4	11a , TFA, β -OTBI	DMS 0 °C	11b , 92^{b}
5	12a , TFA, β -OTBI	DPS rt	12b , 72
6	2a, TCA, β-SPh	0 °C	2b , 78
7	6a, TCA, β-SMbp	rt	6b , 83
8	3a , Troc, β -SPh	rt	3b , 85
9	7a , Troc, β-SMbp	rt rt	7 b , 90
10	4a, Alloc, β-SPh	rt	4b , 83
11	8a, Alloc, β-SMb	o rt	8b , 93
12	9a , CO ₂ Me, β -SM	lbp rt	9b , 79

^{*a*} **11a** and **11b** were isolated after silica gel chromatography; other products were isolated by precipitation in hexanes. ^{*b*} The reaction was carried out at a gram scale. Mbp = 2-methyl-5-*tert*-butylphenyl.

is well known for achieving this reaction,^{10b,11} with, however, no example reporting catalytic amounts of the acid. The above "heterogeneous" acid catalysis was not favorable to effect this transformation as seen with the silylated substrate **10a**. Treatment with the above procedure (entry **1**, Table 3), followed by further addition in the same pot of Et_3SiH (5 equiv.) and TfOH (10 mol%), induced only partial opening of the 4,6-O-benzylidene, giving a mixture of **10b** (28%) and C4-alcohol **10d** (24%) (entry **1**, Table 3).

Clear improvement occurred by adding CH_3CN as a co-solvent and using acid washed molecular sieves AW300.²⁰ Under these conditions, the reductive ring opening to **10d** (67% yield, entry 2)

 Table 3
 Regioselective one-pot transformations to 4-alcohol glucosamine derivatives

		Procedure ^a	110 - 50	Bn	
	TMSO RHN T	nen Et₃SiH (5 eo TfOH (x equiv	quiv) BnO () RH	N X	
	5a-12a	5a-12a CH ₃ CN 8		d-12d	
Entry	Substrate, R, X	Added TfOI (mol%)	H Time	Product, yield ^b (%)	
1	10a , TFA, α-OMe	10	4 h 30 min ^c	10d , 24 ^d	
2	10a , TFA, α-OMe	5	2 h ^e	10d, 67	
3	5a, TFA, β-SMbp	10	$2 h^e$	5d, 72	
4	6a, TCA, β-SMbp	10	2 h 30 min ^e	6d, 72	
5	7a, Troc, β -SMbp	10	4 h 30 min ^f	7d, 67	
6	8a, Alloc, β-SMbp	15	3 h 30 min ^g	8d, 60	
7	9a, CO ₂ Me, β-SMbp	15	5 h ^g	9d, 49	
8	12a, TFA, β -OTBDPS	5 10	1 h 45 min ^g	12d, 21	
9	12a, TFA, β -OTBDPS	5 —	1 h 10 min ^{<i>h,i</i>}	12d, 56	
10	12a , TFA, β -OTBDPS	S —	0.8 h ^{i,j}	12d, 68	

^{*a*} Procedure: PhCHO (3 equiv.), Et₃SiH (1.2 equiv.), TfOH (5 mol%), AW300 molecular sieves, CH₂Cl₂, 20 min. After completion of the acetalation–etherification, CH₃CN was added to give a final CH₂Cl₂/CH₃CN solvent ratio of 4/1. ^{*b*} Yields obtained after silica gel chromatography. ^{*c*} Conditions: PhCHO (3 equiv.), Et₃SiH (1.2 equiv.), TfOH (5 mol%), 3 Å molecular sieves, CH₂Cl₂, 4 h 30 min at 0 °C to rt. ^{*d*} 28% of the benzylidene **10b** was also isolated. ^{*e*} At 0 °C. ^{*f*} At rt. ^{*g*} At 0 °C to rt. ^{*h*} The reaction was performed with 2.2 equiv. of benzaldehyde. ^{*i*} Without CH₃CN at 0 °C. ^{*j*} Reductive ring opening was carried out with 2 equiv. of CF₃CO₂H.

 $\mbox{Scheme 2}$ $\mbox{One-pot synthesis of chitobiosyl building blocks 13 and 14 catalyzed by triflic acid.$

was complete. As seen with 3 Å MS, the ¹H- and ¹⁹F-signals of TfOH in solution in CD_2Cl_2 also disappeared in the presence of AW300 MS.¹⁸ These conditions, applied to the silylated 2-methyl-5-*tert*butylphenyl thioglycosides **5a-8a**, gave good results but not with the methyl carbamate **9a** (entries 3–7).²¹ The anomeric *O*-TBDPS product **12d** was isolated in poor yield (21%, entry 8) due to the competing cleavage of the anomeric silyl ether. However, without additional TfOH, this conversion of **12a** to **12d** was increased to a 56% yield (entry 9) or by replacing TfOH by an excess of $CF_3CO_2H^{22}$ (68% yield, entry 10).

In a further step, this could be combined, in a modular approach, with an acid catalyzed glycosylation step, to prepare *N*-differentiated chitobiosyl building blocks. Thus, silylated **6a** and **7a** were transformed to donors **6b** and **7b** under the optimized conditions (Table 2) in CH₂Cl₂ at rt, after which acceptor **12d** (Table 3, 0.8 equiv.) and promoter *N*-iodosuccinimide (1.5 equiv.) were added to the reaction mixture (Scheme 2). This gave the disaccharides **13** and **14** (70–73% yield) with, as expected, only the β -linkage due to the *N*-neighboring group participants.

In summary, it has been demonstrated that different transformations, combined in one-pot procedures catalyzed by triflic acid on molecular sieves,²³ furnish various glucosamine building blocks useful in oligosaccharide synthesis. This includes the one-pot synthesis of *N*-differentiated chito-disaccharides and the methodology can be further extended to other oligomers of interest. Triflic acid in catalytic amounts combines with molecular sieves providing *in situ* a valuable "solid" acid catalyst. It is to be expected that, in large scale preparation, this procedure can be amenable to the design of a continuous flow process.

We thank the French Agency for Research (grant no. ANR-10-CD2I-0008) and the Institut Universitaire de France (IUF) for the financial support of this study. The CHARM3AT program is also acknowledged for its support.

Notes and references

 \ddagger Representative procedure (synthesis of compound **11b**): to a 0.2 M solution of **11a** (1.0 g, 1.65 mmol) in dry CH₂Cl₂, under an inert atmosphere, benzaldehyde (500 µL, 4.97 mmol, 3 equiv.) and freshly activated 3 Å molecular sieves (1 g per g of substrate) were added. The mixture was stirred at rt for 15 min, then TfOH (7.5 µL, 0.083 mmol, 5 mol%) and Et₃SiH (315 µL, 1.96 mmol, 1.2 equiv.) were added. After stirring for 10 min, the solution was neutralized with triethylamine (1 mL), filtered through a celite pad and concentrated. The residue was purified by flash chromatography (cyclohexane/AcOEt 9:1 to 4:1) to afford **11b** (0.866 g, 92%) as a white foam.

- 1 (a) H. Paulsen, Angew. Chem., Int. Ed., 1982, 21, 155; (b) T. K. Linhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley -VCH, Weinheim, 2nd edn, 2003; (c) T. J. Boltje, T. Buskas and G.-J. Boons, Nat. Chem., 2009, 1, 611; (d) X. Zhu and R. R. Schmidt, Angew. Chem., Int. Ed., 2009, 48, 1900.
- 2 (a) C.-H. Hsu, S.-C. Hung, C.-Y. Wu and C.-H. Wong, *Angew. Chem., Int. Ed.*, 2011, **50**, 11872; (b) M. Filice, J. M. Guisan, M. Terreni and

J. M. Palomo, *Nat. Protocols*, 2012, 7, 1783; (c) D. Lee and M. S. Taylor, *Synthesis*, 2012, 3421M. Emmadi and S. S. Kulkarni, *Nat. Protocols*, 2013, **8**, 1870.

- 3 (a) A. Français, D. Urban and J.-M. Beau, Angew. Chem., Int. Ed., 2007, 46, 8662; (b) Y. Bourdreux, A. Lemetais, D. Urban and J.-M. Beau, Chem. Commun., 2011, 47, 2146; (c) G. San Jose, PhD thesis, University of Paris Sud, Orsay, France, 2009.
- 4 C.-C. Wang, J.-C. Lee, S.-Y. Luo, S. S. Kulkarni, Y.-W. Huang, C.-C. Lee, K.-L. Chang and S.-C. Hung, *Nature*, 2007, **446**, 896.
- S. Serna, B. Kardak, N.-C. Reichardt and M. Martin-Lomas, *Tetrahedron: Asymmetry*, 2009, 20, 851; (b) E. Kaji, T. Komori, M. Yokoyama, T. Kato, T. Nishino and T. Shirahata, *Tetrahedron*, 2010, 66, 4089; (c) B. C. Milgram, B. B. Liau and M. D. Shair, *Org. Lett.*, 2011, 13, 6436.
- 6 A.-T. Tran, R. A. Jones, J. Pastor, J. Boisson, N. Smith and M. C. Galan, Adv. Synth. Catal., 2011, 353, 2593.
- 7 (a) A. F. G. Bongat and A. V. Demchenko, *Carbohydr. Res.*, 2007, 342, 374; (b) S. H. El Ashry and M. R. E. Aly, *Pure Appl. Chem.*, 2007, 79, 2229; (c) J.-M. Beau, *Chimia*, 2011, 65, 45.
- 8 (a) R. Enugala, L. C. R. Carvalho and M. M. B. Marques, Synlett, 2010, 2711; (b) A. A. Joseph, V. P. Verma, X.-Y. Liu, C.-H. Wu, V. M. Dhurandhare and C.-C. Wang, *Eur. J. Org. Chem.*, 2012, 744.
- 9 (a) Superacids, ed. G. A. Olah, G. K. S. Prakash and J. Sommer, J. Wiley and Sons, New York, 1985; (b) T. Akiyama, Chem. Rev., 2007, 107, 5744.
- Trichloroacetimidates: (a) R. R. Schmidt and J. Michel, J. Carbohydr. Chem., 1985, 4, 141. Glycosylations combined with reductive opening: (b) Y. Vohra, M. Vasan, A. Venot and G. J. Boons, Org. Lett., 2008, 10, 3247. Acetates: (c) K. Sasaki, S. Matsumura and K. Toshima, Tetrahedron Lett., 2006, 47, 9039. Thioglycosides: (d) G. H. Veeneman, S. H. van Leeuwen and J. H. van Boom, Tetrahedron Lett., 1990, 31, 1331; (e) P. Konradsson, U. E. Udodong and B. Fraser-Reid, Tetrahedron Lett., 1990, 31, 4313.
- (a) M. Sakagami and H. Hamana, *Tetrahedron Lett.*, 2000, **41**, 5547;
 (b) K.-F. Mo, X. Li, H. Li, L. Y. Low, C. P. Quinn and G.-J. Boons, *J. Am. Chem. Soc.*, 2012, **134**, 15556.
- 12 J. D. C. Codée, R. E. J. N. Litjens, L. J. van den Bos, H. S. Overkleeft and G. A. van der Marel, *Chem. Soc. Rev.*, 2005, **34**, 769.
- (a) F. Yan, S. Mehta, E. Eichler, W. W. Wakarchuk, M. Gilbert,
 M. J. Schur and D. M. Whitfield, *J. Org. Chem.*, 2003, 68, 2426;
 (b) K. Miyajima and K. Achiwa, *Chem. Pharm. Bull.*, 1997, 45, 312.
- 14 (a) H. Weiss and C. Unverzagt, Angew. Chem., Int. Ed., 2003, 42, 4261;
 (b) M. Collot, J. Savreux and J.-M. Mallet, Tetrahedron, 2008, 64, 1523;
 (c) G. Despras, R. Robert, B. Sendid, E. Machez, D. Poulain and J.-M. Mallet, Bioorg. Med. Chem., 2012, 20, 1817.
- 15 Thioarylglycosides **5–8** were prepared from α–β mixtures of the corresponding peracetylated derivatives (2-methyl-5-*tert*-butylthiophenol (1.2–1.5 equiv.), TMSOTf (1.2 equiv.), CH₂Cl₂, 0 °C to rt; 52–85%; NaOMe, MeOH, rt for **5**, **6**, **8** or NaOMe, MeOH/ CH₂Cl₂, 0 °C for **7**, 87–98%). Alternatively, thioarylglycoside **9** was prepared from the acetylated, Troc-protected precursor of **7** (NaOMe, MeOH, rt, 95%).
- 16 B. Nilsson and S. Svensson, Carbohydr. Res., 1978, 62, 377.
- 17 For triflic acid supported on silica, see: (a) S. Yan, N. Ding, W. Zhang, P. Wang, Y. Li and M. Li, *Carbohydr. Res.*, 2012, 354, 6; (b) P. N. Liu, F. Xia, Q. W. Wang, Y. J. Ren and J. Q. Chen, *Green Chem.*, 2010, 12, 1049; (c) A. de Angelis, C. Flego, P. Ingallina, L. Montanari, M. G. Clerici, C. Carati and C. Perego, *Catal. Today*, 2001, 65, 363.
- 18 ¹H and ¹⁹F NMR spectra were recorded for 10 mM TfOH in CD_2Cl_2 without and with the molecular sieves; C_6F_6 was used as standard for the calibration of the ¹⁹F experiment (see ESI[†]).
- 19 Most of the products were conveniently isolated by precipitation in hexanes in good to excellent yields (78 to 93%) with no contamination with benzaldehyde or benzyl alcohol.
- 20 Use of acid washed sieves AW300 in glycosylations: (a) M. Wilstermann and G. Magnusson, *Carbohydr. Res.*, 1995, 272, 1; (b) M. Adinolfi, G. Barone, A. Iadonisi and M. Schiattarella, *Tetrahedron Lett.*, 2002, 43, 5573; (c) M. Adinolfi, G. Barone, A. Iadonisi and M. Schiattarella, *Org. Lett.*, 2003, 5, 987.
- 21 These conditions were not suitable for the phenyl thioglycosides because of their poor solubility in the solvent mixture.
- 22 M. P. DeNinno, J. B. Etienne and K. C. Duplantier, *Tetrahedron Lett.*, 1995, **36**, 669.
- 23 We prefer this expression to "adsorbed" or "supported" because we have no evidence that TfOH forms a stable solid acid catalyst with molecular sieves as shown previously with amorphous silica¹⁷.