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a b s t r a c t

The preparation, characterization and photophysical properties of heterobinuclear complexes
{Pt(C^N^N)(C„Cbpy)}Ln(hfac)3 (C^N^N = 2-(6-(naphthalen-3-yl)-4-phenylpyridin-2-yl)pyridine; HC„

Cbpy = 5-ethynyl-2,20-bipyridine; Ln = Nd, Eu, Yb; hfac = hexafluoroacetylacetonate) are described. With
excitation at 390 6 kex 6 500 nm which is the MLCT/LLCT absorption region of the Pt(C^N^N)(C„Cbpy)
chromophore, lanthanide luminescence is successfully attained by Pt ? Ln energy transfer from the plat-
inum(II) antenna chromophore to the lanthanide center across the bridging C„Cbpy ligand.

� 2009 Elsevier B.V. All rights reserved.
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Lanthanide luminescence is currently attracting considerable
interests in many fields due to their extensive applications [1–3].
In order to overcome the weak intensities of the f–f electronic tran-
sitions for the lanthanide(III) complexes, energy transfer from tran-
sition metal based 3MLCT excited states of the light-harvesting
antenna chromophores to f–f levels of the lanthanide ions have
been widely applied to achieve long-lived lanthanide emission
[4–8]. Current efforts are focused to further optimize the energy
transfer process in d–f bimetallic complexes and extend the excita-
tion wavelength throughout the visible and even into the NIR re-
gion [9–12].

Utilizing bpyC„CH (5-ethynyl-2,20-bipyridine) as a conjugated
bridging ligand, a family of Pt–Ln multicomponent and heteronu-
clear complexes have been described, where platinum(II) ion is
bound to the acetylide via r-coordination whereas lanthanide sub-
unit is chelated by the 2,20-bipyridyl [8]. Because of the excellent
p-conjugation and strong r-donor character, tridentate C^N^N
[C^N^N = 2-(6-(naphthalen-3-yl)-4-phenylpyridin-2-yl)pyridine]
ligand shows a strong preference for a planar geometry upon com-
plexation with the platinum(II) ion. The neutral Pt(C^N^N)(C„

Cbpy) complex (1) exhibits intense luminescence in visible to NIR
spectral region, making it as a promising organometallic sensitizer
for achieving efficient lanthanide (NIR) luminescence. We report
herein the use of 1 as a precursor for construction of neutral Pt–Ln
heterobinuclear complexes {Pt(C^N^N)(C„Cbpy)}Ln(hfac)3 (Ln =
ll rights reserved.
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Nd 2, Eu 3, Yb 4; hfac = hexafluoroacetylacetonate), achieving suc-
cessfully sensitization of long-lived NIR lanthanide luminescence.

Synthetic routes to 1–4 are summarized in Scheme 1.
(C^N^N)PtCl was prepared by refluxing K2PtCl4 and C^N^N ligand
in glacial acetic acid, and the product washed with water, acetone
and ether. Compound 1 was synthesized by reaction of an excess of
bpyC„CSiMe3 with (C^N^N)PtCl, catalyzed by cuprous iodide via
fluoride-promoted desilylation in the presence of potassium fluo-
ride. Purification by silica gel column chromatography using
dichloromethane-methanol (v/v = 100:2) as eluent gave the pure
product 1. The Pt–Ln heterobinuclear complexes were isolated as
orange microcrystals by mixing 1 and Ln(hfac)3(H2O)2 in CH2Cl2,
followed by recrystallization in CH2Cl2/n-C6H6. These complexes
N N O
O O

1

O
= F3CC(O)CHC(O)CF3

Ln = Nd 2, Eu 3, Yb 4

Scheme 1.
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Fig. 2. UV–vis is absorption spectra of 1 (solid), and 4 (dot) in dichloromethane
solutions.
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were all characterized by elemental analyses, IR spectra, and ESI-
MS spectrometry, and by X-ray crystallography for 3.

A view of 3 is depicted in the Fig. 1. The platinum(II) center
exhibits a distorted square-planar environment built by a r-coor-
dinated C donor from the acetylide and CN2 donors from the tri-
dentate C^N^N ligand. The Pt atom and C2N2 donors are almost
coplanar with a torsion angle of ca. 12.8� between the phenyl ring
and this plane. The Pt–N and Pt–C distances (2.0–2.1 Å) are compa-
rable to those of analogous platinum(II) complexes in the literature
[13]. The Pt–C„C–C array is quasi-linear with C37–C38–
Pt = 177.64� and C37–C38–C35 = 178.76�. The EuIII center is
eight-coordinated with six oxygen atoms from three hfac and
two N atoms from bpy. The Pt� � �Eu separation through the bridging
C„Cbpy is ca. 8.5 Å [8].

UV–vis absorption spectrum of 1 in dichloromethane solution
(Fig. 2) displays intense bands at 290–370 nm, assignable to the
intraligand transitions since similar absorptions are found in the
free RC^N^NH ligand [13]. The low-energy absorption at 390–
500 nm arises most likely from Pt-based MLCT transitions, mixed
probably with some character from p(C„Cbpy) ? p*(C^N^N) LLCT
(ligand-to-ligand charge-transfer) state [13]. Upon formation of
the Pt–Ln complexes, apart form the occurrence of a new absorp-
tion band at ca 300 nm from hfac [14,15], the low-energy band
due to MLCT/LLCT states showed ca. 10 nm blue shift. Titration of
1 with Yb(hfac)3(H2O)2 in dichloromethane solution induced the
MLCT/LLCT maximum shift from ca. 453 nm to 445 nm when
1 equiv of Yb(hfac)3(H2O)2 was added (fig. s1, Supplementary
material).

Photophysical data of 1–4 are summarized in Table 1. The emis-
sive quantum yield in degassed dichloromethane at 298 K is 0.17
for 1. Upon excitation at 390–500 nm, which is the absorption re-
gion of Pt-based antenna chromophore, the Pt–Ln (2–4) complexes
exhibit characteristic line-like emission from the corresponding
LnIII ions in both solid states and dichloromethane solutions
(Fig. 3), demonstrating unambiguously that sensitized lanthanide
luminescence is indeed achieved by Pt ? Ln energy transfer from
the Pt-based 3MLCT excited triplet state. As the precursor Ln(haf-
c)3(H2O)2 is non-emissive at excitation kex > 350 nm [15], the lan-
thanide emission in Pt–Ln complexes should be sensitized by
energy transfer from PtII-based light-harvesting chromophores
with near-UV irradiation at 390 nm < kex < 500 nm. On the other
hand, the Pt-based emission from 3[MLCT] triplet state is mostly
Fig. 1. ORTEP drawing of 3 with atom labeling scheme showing 30% therma
quenched, but does not vanish completely. This was further veri-
fied by titration of 1 with Yb(hfac)3(H2O)2 in dichloromethane,
where rapid attenuation of the Pt-based emission was detected
when 1 equiv. of Yb(hfac)3(H2O)2 was added (fig. s3, Supplemen-
tary material).

For Pt–Nd species 2, the residual PtII chromophore-based emis-
sion is too weak so that the lifetime could not be detected (<10 ns),
suggesting that Pt ? Nd energy transfer rates is very fast
(>108 s�1). For Pt–Eu species 3, severely spectral overlapping
(Fig. 3) between unquenched Pt-based 3MLCT emission and Eu-
centered emission excluded the possibility to estimate the radia-
tive lifetime sr, the Eu-centered luminescence quantum yield UEu,
and the efficiency and rate of the Pt ? Eu energy transfer. For
Pt–Yb complex 4, the Pt ? Yb energy transfer rates kET from the
Pt(C^N^N)(acetylide) chromophore to the YbIII centers can be esti-
mated by the equation kET = 1/s�1/s0, where s (47 ns) is the life-
time of residual Pt-based emission, and s0 (251 ns) is the lifetime
in the reference Pt–Gd complex which lacks energy transfer from
the PtII-based antenna triplet states. The energy transfer rates
(kET) can thus be calculated as kET = 1/sPtYb�1/sPtGd = 1.7 � 107 s�1

for PtYb (4) species.
As the NdIII complex displays transitions at 880 and 1055 nm, it

has three ff levels lying within 15,400–20,000 cm�1 (650–500 nm)
l ellipsoids. The F atoms on the trifluoromethyl are omitted for clarity.



Table 1
Luminescence data for compounds 1–4 at 298 K.

Compound Medium kabs/nm (e/M�1 cm�1) kem/nm (sem/ls)a at 298 K

1 Solid 746 (0.34)
CH2Cl2 282 (8200), 305 (8700), 388 (2400), 453 (1600) 584 (0.28)

2 Solid 1061 (weak)
CH2Cl2 298 (23,600), 370 (9000), 382 (8300), 445 (5200) 1061 (weak)

3 Solid 613 (449.9)
CH2Cl2 298 (23,600), 370 (8700), 382 (8300), 445 (5000) 613 (172.7)

4 Solid 980 (12.4)
CH2Cl2 295 (26,500), 370 (10,000), 382 (9600), 445 (5800) 980 (13)

a In degassed dichloromethane at 298 K.
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Fig. 3. Emission spectra of 1 (short dot), 2 (dash dot), 3 (short dash) and 4 (solid)
with kex = 400 nm in dichloromethane solutions at 298 K.
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which tend to be convoluted with the MLCT emissions to a signif-
icant degree, causing better spectroscopic overlapping with the Pt-
based 3MLCT emission band (584 nm). For YbIII ion, a single f–f
absorption at ca. 980 nm (10,240 cm�1) can only overlap with
the very weak low-energy tail of the PtII-based emission. Undoubt-
edly, energy matching degree for Pt ? Ln energy transfer is Pt–Nd
(2) > Pt–Yb (4) [15d,16], resulting in a faster transfer rate for the
former than the latter.

In summary, designed preparation of three Pt–Ln heterobinu-
clear complexes have been carried out using C^N^N tridentate
cyclometalated ligand. Sensitization of NIR lanthanide lumines-
cence by the d(Pt) ? p*(C^N^N)[MLCT] excited triplet state is suc-
cessfully achieved through efficient Pt ? Ln energy transfer from
the Pt-based chromophore to the lanthanide center. It is demon-
strated that Pt ? Ln energy transfer in Pt–Nd complex 2 is more ra-
pid than that in Pt–Yb species 4 because of the more favorable
energy match for the former.
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Appendix A. Supplementary material

CCDC 729706 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif. Supplementary data associated with this article
can be found, in the online version, at doi:10.1016/
j.inoche.2009.06.004.
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