Alkyl, Alkylidene, and Alkylidyne Complexes of Rhenium

Anne M. LaPointe and Richard R. Schrock*

Room 6-331, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received December 13, 1994[®]

The reaction of $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)_2$ with triflic acid, pentafluorophenol, $HBF_4 \cdot OEt_2$, or $[H(OEt_2)_2]^+[BAr^F_4]^ (Ar^F = 3,5 \cdot C_6H_3(CF_3)_2)$ yields complexes of the general formula $\operatorname{Re}(C-t-\operatorname{Bu})(CH_2-t-\operatorname{Bu})_3X$ (X = OTf, OC_6F_5 , BF₄, BAr^F₄) in 60-80% yield. Re(C-t-Bu)(CH₂-t-Bu)₃X reacts with coordinating ligands L (L = py, CH₃CN, CD₃OD, THF) to form neopentane and $\text{Re}(\text{C-}t\text{-Bu})(\text{CH-}t\text{-Bu})(\text{CH}_2\text{-}t\text{-Bu})(\text{L})_n X$ (n = 1-3). The reaction of $\text{Re}(\text{C-}t\text{-}t\text{-Bu})(\text{L})_n X$ (n = 1-3). Bu(CH-t-Bu)(CH₂-t-Bu)(py)₂(OTf) with NaC_5H_5 , NaL_{OEt} ($L_{OEt} = [CpCo(PO(OEt)_2)_3]$, or NaHBpz₃ in THF yields Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(η^{5} -C₅H₅), Re(C-t-Bu)(CH-t-Bu)(CH₂-t $t-Bu)(L_{OEt})$, or $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(HBpz_3)$, respectively, while the reaction between $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(py)_2(OTf)$ and 1,4,7-trithiacyclononane produces colorless [Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(η^3 -S₃C₆H₁₂)]⁺[OTf]⁻ in 96% yield. Re(C-t-Bu)(CH-t-Bu)($t-Bu(CH_2-t-Bu)(L)$ (L = Cp, L_{OEt}) and [Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(\eta^3-S_3C_6H_{12})]^+[OTf]^react with triflic acid to form Re(C-t-Bu)(CH-t-Bu)(L)(OTf) or [Re(C-t-Bu)(CH-t-Bu)(OTf)- $(\eta^3$ -S₃C₆H₁₂)]⁺[OTf]⁻, respectively. A similar reaction between Re(C-t-Bu)(CH-t-Bu)(CH₂-t- $Bu)(L_{OEt}) and [H(OEt_2)_2]^+ [BAr^F_4]^- in ether produces [Re(C-t-Bu)(CH-t-Bu)(OEt_2)(L_{OEt})]^+ [BAr^F_4]^-.$ $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(py)_2(OTf)$ reacts with $H_2C=CHR$ ($R = OCH_2CH_3$, C_6H_5) to yield neohexene and Re(C-t-Bu)(CHR)(CH2-t-Bu)(py)2(OTf) complexes. Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)(py)₂(OTf) reacts with ethylene to form the unstable methylidene complex, Re(Ct-Bu (CH₂)(CH₂-t-Bu)(py)₂(OTf), which can be trapped upon addition of bpy to yield red Re(Ct-Bu)(CH₂)(CH₂-t-Bu)(bpy)(OTf). Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(OTf) reacts with excess ethylene to form colorless $\operatorname{Re}(C-t-\operatorname{Bu})[(CH_2)_3-t-\operatorname{Bu}](C_2H_4)(py)_2(OTf)$ in 85% yield. $\operatorname{Re}(C-t-t)$ Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)(OTf) metathesizes 100 equiv of cis-2-pentene in less than 5 min, but the catalyst is not long-lived.

Introduction

Rhenium is one of three metals (along with molybdenum and tungsten) that are active in classical olefin metathesis systems.¹ In the early 1980s, evidence began to accumulate in favor of the proposition that the metal is in its highest possible oxidation state in classical olefin metathesis systems involving these metals (if the alkylidene ligand is viewed as a dianion).² A variety of four-coordinate d⁰ alkylidene complexes of molybdenum,^{3,4} tungsten,⁵ and rhenium⁶⁻⁸ were prepared and employed for the metathesis of acyclic and cyclic olefins. The most successful and best understood single-component olefin metathesis catalysts are the pseudotetrahedral species shown below.

The rates of metathesis of olefins by Re(C-t-Bu)(CH-t-t-bu) $Bu)[OCMe(CF_3)_2]_2$ and its variations are estimated to

- M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875.
 (4) Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; Schofield, M. H. Organometallics 1991, 10, 1832.

be 2 orders of magnitude slower than the fastest Moor W-based systems.⁸ In some cases alkylidene complexes will metathesize olefins rapidly only in the presence of Lewis acids such as $AlCl_{3}^{9-12}$ In these mixtures, it is presumed that cationic species are the most active species for olefin metathesis and that they may be present only in low concentrations. Such a presumption is consistent with recent observations that well-defined cationic early-13 and late-transition-metal14 catalysts are especially active for the polymerization of olefins. Therefore we felt that a cationic alkylidene complex of rhenium might metathesize olefins at a rate comparable to that of the most active four-coordinate neutral molybdenum or tungsten catalysts. Very recently a variety of cationic tungsten alkylidene com-

- (6) Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1990, 112, 2448. (7) Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1992, 114, 3367.
 (8) Toreki, R.; Vaughan, G. A.; Schrock, R. R.; Davis, W. M. J. Am.
- Chem. Soc. 1993, 115, 127
- (9) Blosch, L. L.; Abboud, K.; Boncella, J. M. J. Am. Chem. Soc. 1991, 113, 7066.
- (10) Flatt, B. T.; Grubbs, R. H.; Blanski, R. L.; Calabrese, J. C.; Feldman, J. Organometallics 1994, 13, 2728. (11) Schofield, M. H.; Schrock, R. R.; Park, L. Y. Organometallics
- 1991, 10, 1844.
- (12) Youinou, M. T.; Kress, J.; Fischer, J.; Aguero, A.; Osborn, J. A. J. Am. Chem. Soc. 1988, 110, 1488.
- (13) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728.
- (14) Brookhart, M.; Grant, B.; Volpe, A. F., Jr. Organometallics 1992, 11. 3920.

^{*} Abstract published in Advance ACS Abstracts, March 15, 1995. (1) Ivin, K. J. Olefin Metathesis; Academic: New York, 1983.

Schrock, R. R. J. Organomet. Chem. 1986, 300, 249.
 Schrock, R. R., Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare,

⁽⁵⁾ Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. ; Davis, W. M.; Park, L. Y.; DiMare, M.; Schofield, M.; Anhaus, J.; Walborsky, E.; Evitt, E.; Krüger, C.; Betz, P. Organometallics 1990, 9. 2262.

plexes were reported.^{9,15,16} However, these coordinatively saturated complexes do not metathesize olefins in the absence of a cocatalyst. The challenge then is to prepare cationic alkylidene complexes that are not coordinatively or sterically saturated, that do not interact strongly with the anion, and that do not decompose to alkylidyne complexes¹⁷ via loss of an α proton.

Although the primary goal of the research described here was to prepare cationic rhenium alkylidene complexes that were more active metathesis catalysts than Re(C-t-Bu)(CH-t-Bu)[OCMe(CF₃)₂]₂, another goal was to continue to search for rhenium alkylidene complexes that are stable to a range of functional groups, including alcohols and water. The alkylidene and alkylidyne ligands in the Re(C-t-Bu)(CH-t-Bu) core are stable to water under some circumstances. For example, [Re(Ct-Bu)(CH-t-Bu)Cl₂]_r can be dissolved in water and be recovered unchanged by removing the water in vacuo.⁷ Therefore we chose to focus on rhenium neopentylidene/ neopentylidyne complexes that contain ligands that are not readily protonated, such as neopentyl, tris(pyrazolyl)borate (HBpz₃), 1,4,7-trithiacyclononane, η^5 -C₅H₅, or $[CpCo(PO(OEt)_2)_3]^-$ ("L_{OEt}"),¹⁸ and counterions X that are relatively poor ligands, i.e., triflate,¹⁹ tetrafluoroborate, or B[3,5-(CF₃)₂C₆H₃]₄ ("BAr F_4 ").¹⁴

Synthesis of Re(C-t-Bu)(CH₂-t-Bu)₃X. Our first goal was to prepare complexes of the type [Re(C-t-Bu)- $(CH-t-Bu)(CH_2-t-Bu)L_n]^+$. The route we chose was to prepare complexes of the type Re(C-t-Bu)(CH₂-t-Bu)₃X in which X was either a noncoordinating or weakly coordinating anion (triflate, $BAr^{F_{4}^{-}},$ or $B\bar{F}_{4}^{-}$) and in which α -hydrogen abstraction reactions would be facile. The reaction of $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)_2$ with HX was investigated, since the reaction of Re(C-t-Bu)-(CH-t-Bu)(CH₂-t-Bu)₂ with HCl had been previously found to yield Re(C-t-Bu)(CH₂-t-Bu)₃Cl.^{20,21}

 $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)_2$ reacts with a variety of acids as shown in equations 1 and 2. The products are highly crystalline yellow solids that are obtained in yields that range from 60-80%. Wilkinson and coworkers reported the synthesis of Re(CSiMe₃)(CH₂-SiMe₃)₃Cl and found in an X-ray study that it was a trigonal bipyramid with the trimethylsilylmethyl ligands occupying the equatorial sites.²² When $X = OC_6F_5$ or OTf the structure is likely to be analogous to that of $Re(CSiMe_3)(CH_2SiMe_3)_3Cl.$ Since BF_4^- is known to coordinate through one of the fluorides in a variety of circumstances, we assume that it also coordinates to rhenium in this situation.

When the noncoordinating anion $BAr^{F_{4}^{-}}$ is employed, the resulting crystalline complex contains 1 equiv of ether, which we assume to be bound to the metal (eq 2). This ether is relatively labile and partially lost in vacuo. Therefore elemental analysis has not been correct or reproducible. A second problem is that if

traces of water are present in either $[H(OEt_2)_2]^+[BArF_4]^$ or any solvent of recrystallization, highly crystalline $[\text{Re}(\text{C-}t-\text{Bu})(\text{CH}_2-t-\text{Bu})_3(\text{H}_2\text{O})]^+[\text{BAr}^F_4]^-(\text{Et}_2\text{O})$ crystallizes as yellow blocks. A similar situation has been observed by Brookhart and co-workers in cationic Rh chemistry.²³ It should be noted that [Re(C-t-Bu)(CH₂ $t-Bu_{3}(H_{2}O)]^{+}[BAr^{F_{4}}]^{-}(Et_{2}O)$ is extremely crystalline and is isolated preferentially even if less than 1 equiv of water is present. The water is slowly lost in vacuo.

The water molecule in [Re(C-t-Bu)(CH₂-t-Bu)₃- (H_2O)]+[BAr^F₄]-(Et₂O) can be observed by IR (v_{O-H} = 3640, br) and ¹H NMR in CD₂Cl₂ (broad singlet at 7 ppm). In the ¹H NMR spectrum, resonances associated with the alkyl and alkylidyne groups are shifted from the resonances for $[Re(C-t-Bu)(CH_2-t-Bu)_3(Et_2O)]^+$ $[BAr^{F_4}]^{-}$, so water is not merely present in the crystal lattice. Addition of D_2O leads to H/D exchange on the NMR time scale at 25 °C, while addition of ether to a sample of $[\text{Re}(\text{C-}t\text{-}\text{Bu})(\text{CH}_2\text{-}t\text{-}\text{Bu})_3(\text{H}_2\text{O})]^+[\text{BAr}^F_4]^-(\text{Et}_2\text{O})$ results in only a single average ether resonance. We do not know whether the ether molecule is associated with the BAr^{F_4} counterion, or whether it is weakly hydrogen bonded to the water ligand. Hydrogen bonding between pyridine and coordinated water has been observed by X-ray crystallography in [Re(C-t-Bu)(CHt-Bu)(CH₂-t-Bu)(py)₂(H₂O·py)]⁺[BAr^F₄]⁻ (see below).

Synthesis of Rhenium Neopentyl/Neopentylidene/Neopentylidyne Complexes. W(C-t-Bu)(CH2t-Bu)₃ is known to react with excess PMe₃ or dmpe under forcing conditions (100-110 °C) to form W(C-t- $Bu)(CH-t-Bu)(CH_2-t-Bu)(L)_2$ (L = PMe₃, $\frac{1}{2}$ dmpe).²⁴ We hoped that Re(C-t-Bu)(CH₂-t-Bu)₃X would react with coordinating ligands to form neopentane and Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(L)_nX. Such α -hydrogen abstraction reactions had not been observed for Re(C-t- $Bu)(CH_2\text{-}t\text{-}Bu)_3Cl.^{21} \ \alpha\text{-}Hydrogen \ abstraction \ reactions$ generally are more facile in cationic systems or systems in which the metal is relatively electrophilic.²⁵ Thus it might be expected that $Re(C-t-Bu)(CH_2-t-Bu)_3X$ $(X = OTf, BF_4)$ and $[Re(C-t-Bu)(CH_2-t-Bu)_3(H_2O)_n (Et_2O)$]⁺[BAr^F₄]⁻ (n = 0, 1) would be more likely to undergo α -hydrogen abstraction reactions than Re(Ct-Bu)(CH₂-t-Bu)₃Cl.

⁽¹⁵⁾ Blosch, L. L.; Gamble, A. S.; Abboud, K.; Boncella, J. M. Organometallics 1992, 11, 2963.

⁽¹⁶⁾ Gamble, A. S.; Boncella, J. M. Organometallics **1993**, *12*, 2814. (17) Murdzek, J. S.; Schrock, R. R. In Carbyne Complexes; VCH: New York, 198

⁽¹⁸⁾ Klaui, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 627.
(19) Lawrance, G. A. Chem. Rev. 1986, 86, 17.
(20) Edwards, D. S.; Biondi, L. V.; Ziller, J. W.; Churchill, M. R.;

Schrock, R. R. Organometallics 1983, 2, 1505.

⁽²¹⁾ Edwards, D. S. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983. (22) Savage, P. D.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B.

Polyhedron 1987, 6, 1599.

⁽²³⁾ Hauptman, E.; Brookhart, M.; Fagan, P.; Calabrese, J. C. Organometallics 1994, 13, 774. (24) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.

⁽²⁵⁾ Schrock, R. R. In *Reactions of Coordinated Ligands*; Braterman, P. R., Ed.: Plenum: New York, 1986.

 $Re(C-t-Bu)(CH_2-t-Bu)_3(OTf)$ reacts rapidly with 2–3 equiv of pyridine in ether to form neopentane and colorless $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(py)_2(OTf)$, which precipitates from the reaction mixture virtually quantitatively. The structure shown in eq 4 is based on NMR

data as well as by analogy with several structurally characterized six-coordinate rhenium neopentylidene/ neopentylidyne complexes, all of which have several common features. The most important feature is that alkylidene and alkylidyne ligands are oriented *cis* to each other, and the remaining anionic ligands often are *cis* to the alkylidene and alkylidyne ligands.^{7,8,20} Rapid exchange on the NMR time scale is observed when pyridine is added to a sample of Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)(py)₂(OTf) at 25 °C in CD₂Cl₂. Only one rotamer is present, which we presume is the *syn* rotamer in which the *tert*-butyl group points toward the neopentylidyne ligand.

The reaction between $Re(CCMe_2Ph)(CH_2CMe_2Ph)_3$ -(OTf) and excess pyridine in ether results in formation of pink $Re(CCMe_2Ph)(CHCMe_2Ph)(CH_2CMe_2Ph)(py)_2$ -(OTf), which is similar to $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(py)_2$ (OTf), according to NMR studies, but is much more soluble in ether and benzene.

The reaction between Re(C-t-Bu)(CH₂-t-Bu)₃(OTf) and excess acetonitrile in ether results in formation of neopentane and Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃-CN)(OTf) as a beige powder. Re(C-t-Bu)(CH-t-Bu)(CH₂t-Bu)(CH₃CN)_n(OTf) (n = 2 or 3, according to proton NMR spectra) is formed initially as crystals in the crude reaction mixture, but CH₃CN is readily lost upon isolation of the crystals to yield Re(C-t-Bu)(CH-t-Bu)- $(CH_2-t-Bu)(CH_3CN)(OTf)$. When excess CH_3CN (6 equiv) is added to a C₆D₆ solution of Re(C-t-Bu)(CH-t-Bu)(CH₂t-Bu)(CH₃CN)(OTf), a spectrum analogous to that observed for "Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)_n-(OTf)" is obtained (as evidenced by shifts of all of the observed resonances), although only one CH₃CN resonance is found, consistent with rapid exchange of acetonitrile on the NMR time scale at 25 °C. The structure of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)-(OTf) is not known, and attempts to grow crystals suitable for X-ray diffraction were unsuccessful. At this stage we assume that it is a neutral five-coordinate trigonal bipyramidal species.

Re(C-t-Bu)(CH₂-t-Bu)₃(OTf) eliminates neopentane when it is dissolved in CD₃OD, and resonances consistent with formation of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃OD)_n(OTf) (n = 1-3) are observed by proton NMR. Attempts to isolate Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃OD)_n(OTf) have not been successful, even though Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃OD)_n(OTf) appears to be stable for several hours in solution. Addition of pyridine to CD₃OD solutions of Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)(CD₃OD)_n(OTf) yields Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)(py)₂(OTf). Re(C-t-Bu)(CH₂-t-Bu)₃(OTf) reacts slowly with neat THF- d_8 to form neopentane and Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(THF)_n(OTf), according to NMR studies, but again no crystalline product could be isolated.

Re(C-t-Bu)(CH₂-t-Bu)₃(BF₄) reacts with excess acetonitrile to yield colorless crystals of Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)(CH₃CN)₂(BF₄) in 70-80% yield. However, analogous complexes containing coordinating ligands other than CH₃CN could not be isolated, even though Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(L)_n(BF₄) (L = CD₃OD, THF-d₈) and neopentane are formed when Re(C-t-Bu)-(CH₂-t-Bu)₃(BF₄) is dissolved in CD₃OD or THF-d₈, according to NMR spectra. The reaction between Re-(C-t-Bu)(CH₂-t-Bu)₃(BF₄) and 3 equiv of pyridine in C₆D₆ proceeded cleanly to yield a compound whose ¹H NMR spectrum is consistent with the formulation Re(C-t-Bu)-(CH-t-Bu)(CH₂-t-Bu)(py)₂(X), but no product could be isolated, and it is not known whether X = BF₄ or F.

 $[Re(C-t-Bu)(CH_2-t-Bu)_3(Et_2O)]^+[BAr^F_4]^- \text{ reacts with pyridine or acetonitrile in ether to yield [Re(C-t-Bu)-(CH-t-Bu)(CH_2-t-Bu)(L)_3]^+[BAr^F_4]^- (L = py, CH_3CN)$

virtually quantitatively. Lower yields (70%) are obtained if $[\text{Re}(\text{C-}t\text{-Bu})(\text{CH}_2\text{-}t\text{-Bu})_3(\text{Et}_2\text{O})]^+[\text{BAr}^F_4]^-$ is generated *in situ* and pyridine or acetonitrile is added, although this procedure reduces the problem of contamination by water.

 $[\text{Re}(\text{C-}t\text{-}\text{Bu})(\text{CH}_2\text{-}t\text{-}\text{Bu})_3(\text{H}_2\text{O})(\text{Et}_2\text{O})]^+[\text{BAr}^F_4]^-$ reacts with 3 equiv of pyridine in ether to yield peach-colored cubes of [Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(py-H₂O)]+- $[BAr^{F_{4}}]^{-}$. The water molecule could not be observed by IR or NMR spectroscopy. Crystals of [Re(C-t-Bu)(CHt-Bu)(CH₂-t-Bu)(py)₃(H₂O)]⁺[BAr^F₄]⁻ suitable for X-ray diffraction were grown from ether/pentane (3/1 v/v)solution at -40 °C, and the structure was determined by X-ray crystallography. Unfortunately, disorder in the CF_3 groups and the large number of atoms in the molecule prevented satisfactory refinement. Nonetheless, connectivity could be established in the cationic fragment. The water molecule was observed to be coordinated to rhenium trans to the neopentylidyne ligand, and a molecule of pyridine was located within hydrogen-bonding distance of the water molecule.

All of the rhenium neopentyl/neopentylidene/neopentylidyne complexes described in this section were stable in C_6D_6 , CD_2Cl_2 , pyridine- d_5 , or THF- d_8 in the presence of water, but they were essentially insoluble in water itself.

Synthesis of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(L) (L = Cp, HBpz₃, L_{OEt}). Re(C-t-Bu)(CH₂-t-Bu)(CH₂-t-Bu)(py)₂(OTf) reacts with NaL (L = Cp, HBpz₃, [CpCo-(PO(OEt)₂)₃]("L_{OEt}") in THF to cleanly produce complexes of the type Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(L) in 80-95% yield (eq 6) and with 1,4,7-trithiacyclononane in dichloromethane to yield colorless crystals of [Re(C- $t\text{-Bu})(CH\text{-}t\text{-Bu})(CH_2\text{-}t\text{-Bu})(S_3C_6H_{12})][OTf]$ quantitatively (eq 7). Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(L) and [Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(S_3C_6H_{12})][OTf] are thermally stable, 18-electron compounds.

Reaction of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(L) and [Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(η^3 -S₃C₆H₁₂)]⁺-[OTf]⁻ with Acids. A possible route to complexes that contain the [Re(C-t-Bu)(CH-t-Bu)(L)]⁺ core is shown in eqs 8 and 9. Complexes of the type Re(C-t-Bu)(CH-t-Bu)(L)Cl are readily synthesized from [Re(C-t-Bu)(CH-t-Bu)(L)Cl are readily synthesized from [Re(C-t-Bu)(CH-t-Bu)(CH₂)]_x and 1 equiv of NaL (L = Cp, ⁷ L_{OEt}). Unfortunately, however, all attempts to abstract chloride ion with silver or thallium salts were unsuccessful.

$$\frac{1}{x} [\operatorname{Re}(\operatorname{C-}t\operatorname{-}\operatorname{Bu})(\operatorname{CH-}t\operatorname{-}\operatorname{Bu})\operatorname{Cl}_2]_x + \operatorname{NaL} \xrightarrow{\operatorname{THF}, 25 \circ \mathbb{C}} \operatorname{Re}(\operatorname{C-}t\operatorname{-}\operatorname{Bu})(\operatorname{CH-}t\operatorname{-}\operatorname{Bu})(\operatorname{L})(\operatorname{Cl}) (8)$$

$$\frac{\operatorname{Re}(C-t-Bu)(CH-t-Bu)(L)(Cl) +}{\operatorname{AgX} -} \left[\operatorname{Re}(C-t-Bu)(L)\right]^{+} X^{-} (9)$$

Therefore an indirect route to $[\text{Re}(\text{C}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{L})]^+$ complexes was developed that employs a combination of protonation and α -hydrogen abstraction reactions similar to that used to synthesize the $\text{Re}(\text{C}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{L})_nX$ species.

Reaction between $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(L)$ (L = Cp, [CpCo(PO(OEt)_2)_3]) and triflic acid in ether yields Re(C-t-Bu)(CH-t-Bu)(L)(OTf) complexes in 50-80% yields (eq 10). We speculate that this reaction

$$\frac{\text{Re}(\text{C}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{CH}_2-t-\text{Bu})(\text{L})}{-\text{CMe}_4}}{\text{Re}(\text{C}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{L})(\text{X})} (10)$$

proceeds via initial protonation of C_{α} of the alkylidene ligand to form Re(C-t-Bu)(CH₂-t-Bu)₂(L)(OTf), followed by α -hydrogen abstraction to form neopentane and Re(C-t-Bu)(CH-t-Bu)(L)(OTf). It should be noted that, in the d² manifold, the neutral osmium complexes, Os(Ct-Bu)(CH₂-t-Bu)₂(L) (L = Cp, L_{OEt}, HBpz₃), show no evidence of α -hydrogen abstraction.^{26,27} Re(C-t-Bu)(CHt-Bu)(L_{OEt})(OTf) is thermally stable, but Re(C-t-Bu)(CHt-Bu)(CH₂-t) decomposes slowly in the solid state at -40 °C to form an insoluble unidentified blue material. The C-H coupling constant in the alkylidene ligand in the cyclopentadienyl complex is only 90 Hz, a value that is 25-40 Hz lower than is typically observed for complexes containing the Re(C-t-Bu)(CH-t-Bu) core, including Re(C-t-Bu)(CH-t-Bu)(L_{OEt})(OTf) (121 Hz). Low $J_{CH\alpha}$ values have been attributed to an agostic interaction involving H_{α} in the alkylidene ligand.^{25,28} If Re(C-t-Bu)(CH-t-Bu)(Cp)(OTf) is a neutral species, it is nominally a six-coordinate, 18-electron species in which an agostic interaction is not possible. On the other hand, an agostic interaction is possible if it exists as the cationic species, [Re(C-t-Bu)(CH-t-Bu)(Cp)]⁺[OTf]⁻. Re(C-t-Bu)(CH-t-Bu)(Cp)(OTf) reacts readily with pyridine to form stable [Re(C-t-Bu)(CH-t-Bu)(Cp)(py)]+-[OTf]⁻, which can also be synthesized in a one-pot reaction from Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(Cp) and pyHOTf in CH₂Cl₂. As expected, $J_{CH\alpha}$ in [Re(C-t-Bu)-(CH-t-Bu)(Cp)(py)]⁺[OTf]⁻ is 125 Hz, consistent with no agostic interaction being present. Therefore we suspect that Re(C-t-Bu)(CH-t-Bu)(Cp)(OTf) exists as the cationic complex [Re(C-t-Bu)(CH-t-Bu)(Cp)]⁺[OTf]⁻ in which there is an agostic Re= CH_{α} interaction.

The reaction between Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)-(L_{OEt}) and [H(OEt₂)₂]⁺[BArF₄]⁻ in ether at -40 °C proceeds cleanly to yield yellow, crystalline [Re(C-t-Bu)-(CH-t-Bu)(L_{OEt})(Et₂O)]⁺[BArF₄]⁻. The presence of the tridentate ligand L_{OEt} requires that the neutral ether ligand be located *cis* to the neopentylidene and neopentylidyne ligands, although this is not normally the preferred site for a neutral donor ligand in sixcoordinate alkylidene/alkylidyne complexes.

The reaction between $[\text{Re}(\text{C-}t\text{-Bu})(\text{CH-}t\text{-Bu})(\text{CH}_2\text{-}t\text{-Bu})(\text{S}_3\text{C}_6\text{H}_{12})]^+[\text{OTf}]^-$ and triflic acid in dichloromethane proceeds cleanly to yield $[\text{Re}(\text{C-}t\text{-Bu})(\text{CH-}t\text{-Bu})(\text{S}_3\text{C}_6\text{H}_{12})\text{-}(\text{OTf})]^+[\text{OTf}]^-$. However, the reaction between $\text{Re}(\text{C-}t\text{-Bu})(\text{CH-}t\text{-Bu})(\text{CH}_2\text{-}t\text{-Bu})(\text{Cp})$ and $[\text{H}(\text{OEt}_2)_2]^+[\text{BAr}^F_4]^-$ or $[\text{pyH}]^+[\text{BAr}^F_4]^-$ in CH_2Cl_2 or ether failed to yield any isolable products. Likewise, reactions between $\text{Re}(\text{C-}t\text{-Bu})(\text{CH-}t\text{-Bu})(\text{CH}_2\text{-}t\text{-Bu})(\text{HBp}_{23})$ and triflic acid or $[\text{H}(\text{OEt}_2)_2]^+[\text{BAr}^F_4]^-$ did not yield any characterizable products cleanly.

Reactions of the Neopentylidene/Neopentylidyne Complexes with Terminal Olefins. Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(OTf) reacts with H₂C=CHR (R = OCH₂CH₃, C₆H₅) in benzene or dichloromethane to yield neohexene and the new alkylidene complexes, Re(C-t-Bu)(CHR)(CH₂-t-Bu)(py)₂(OTf) (eq 11). No evi-

dence for formation of the methylidene complex, Re(Ct-Bu)(CH₂)(CH₂-t-Bu)(py)₂(OTf), is seen. The ethoxymethylene complex is isolated as a thermally stable pink powder. It shows no evidence of bimolecular decomposition in solution at 25 °C. The two bound pyridine molecules are inequivalent on the NMR time scale at 25 °C in CDCl₃, and exchange with added pyridine does not occur on the NMR time scale under these conditions. Re(C-t-Bu)(CHC₆H₅)(CH₂-t-Bu)(py)₂(OTf) is isolated as beige crystals. The two bound pyridine ligands are inequivalent on the NMR time scale.

Hydrogen scrambling between the alkyl, alkylidene, and alkylidyne ligands in these complexes cannot be

 ⁽²⁶⁾ LaPointe, A. M.; Schrock, R. R. Organometallics 1993, 13, 3379.
 (27) LaPointe, A. M.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc., in press.

⁽²⁸⁾ Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831.

totally ruled out without a crystal structure determination. However, in d⁰ systems, hydrogen scrambling among alkyl and alkylidene²⁹ or alkylidyne³⁰ ligands has been found to be a relatively high energy process. Re(Ct-Bu)(CHFc)[OCMe(CF₃)₂]₂ (Fc = (C₅H₄)FeCp) and Re(Ct-Bu)(CH-OEt)[OCMe(CF₃)₂]₂(THF)₂ were prepared by the reaction of Re(C-t-Bu)(CH-t-Bu)[OCMe(CF₃)₂]₂ with vinylferrocene or ethyl (vinyl) ether, respectively; X-ray structure determinations revealed that no scrambling of H_{α} had occurred between the carbene and neopentylidyne ligands.⁸ Likewise, we found that Re(C-t-Bu)-(CH-t-Bu)(CD₂-t-Bu)₂ shows no evidence for H/D scrambling among the neopentyl and neopentylidene ligands at 80 °C in toluene- d_8 . On the basis of these results, we believe that scrambling of H_{α} does not occur in the alkyl/alkylidene/alkylidyne systems and that the complexes can be described by the formula Re(C-t-Bu)- $(CHR)(CH_2-t-Bu)(py)_2(OTf).$

The reaction of $\text{Re}(\text{C-}t\text{-Bu})(\text{CH}_{-}t\text{-Bu})(\text{CH}_{2}\text{-}t\text{-Bu})(\text{py})_{2}$ -(OTf) with 3-5 equiv of ethylene in C_6D_6 or CD_2Cl_2 initially yields neohexene and $\text{Re}(\text{C-}t\text{-Bu})(\text{CH}_2)(\text{CH}_2\text{-}t\text{-Bu})(\text{py})_2(\text{OTf})$ (eq 12). However, the methylidene com-

plex is unstable at 25 °C in C₆D₆, even in the presence of 2–5 equiv of pyridine. Upon isolation it decomposes to Re(C-t-Bu)[(CH₂)₃-t-Bu](C₂H₄)(py)₂(OTf) (see below) and unidentified products. However, addition of bipyridyl to solutions containing freshly prepared Re(Ct-Bu)(CH₂)(CH₂-t-Bu)(py)₂(OTf) yields red Re(C-t-Bu)-(CH₂)(CH₂-t-Bu)(byy)(OTf), which can be recrystallized from toluene/ether mixtures at -40 °C. Unfortunately, Re(C-t-Bu)(CH₂)(CH₂-t-Bu)(bpy)(OTf) is thermally unstable and for this reason has been characterized only by ¹H NMR and partially by ¹³C NMR. In the proton NMR spectrum, two doublets (J_{HH} = 3 Hz) corresponding to H_α protons of the methylene ligand are observed at 14.05 (J_{CH} = 135 Hz) and 13.49 ppm (J_{CH} = 150 Hz).

The reaction between Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)- $(py)_2(OTf)$ and excess ethylene in benzene or dichloromethane yields a colorless microcrystalline solid whose proton NMR spectrum contained two inequivalent tertbutyl groups, two inequivalent bound pyridines, and a series of complex multiplets corresponding to five sets of inequivalent methylene groups. Because of the complexity of the spectrum and the fact that some of the resonances overlapped, it was impossible to assign the methylene portion of the spectrum. ¹⁹F NMR confirmed the presence of the triflate anion, and elemental analysis confirmed the formulation ReC₂₅H₃₈N₂F₃O₃S. The reaction of Re(C-t-Bu)(CH-t-Bu) $(CH_2-t-Bu)(py)_2(OTf)$ with ¹³ $CH_2^{13}CH_2$ produced a product that contained three isotopically enriched peaks, a singlet at 20 ppm ($J_{CH} = 123$ Hz) with twice the intensity of the other two doublets ($J_{\rm CC}=36~{\rm Hz}$) at 52 ppm ($J_{CH} = 153 \text{ Hz}$) and 46 ppm ($J_{CH} = 156 \text{ Hz}$). These results suggest that 1 equiv of ethylene was incorporated in a manner that rendered its two carbon atoms inequivalent and the other equivalent of ethylene was incorporated so that its two carbon atoms are equivalent. The reaction of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)-(py)₂(OTf) with excess C₂D₄ yields a complex with a greatly simplified ¹H NMR. Two peaks that had been complex multiplets in the unlabeled complex appeared as doublets in the labeled complex and therefore were assigned as the methylene protons in the original neopentyl ligand. These labeling experiments suggested that one of the molecules of ethylene had coordinated to the metal and the other had inserted into the metalcarbon single bond to yield Re(C-t-Bu)[(CH₂)₃-t-Bu]-(C₂H₄)(py)₂(OTf). No further reaction with ethylene is observed at 1 atm and 25 °C in C₆H₆.

In the reaction of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂-(OTf) with an excess of ethylene, the only observed byproduct is neohexene (formed in the initial metathesis reaction) and the only observed intermediate is Re(C-t-Bu)(CH₂)(CH₂-t-Bu)(py)₂(OTf). There was no evidence for formation of any other organic product (such as propylene or cyclopropane). Therefore we speculate that Re(C-t-Bu)(CH₂)(CH₂-t-Bu)(py)₂(OTf) decomposes to "Re(C-t-Bu)(CH₂-t-Bu)(py)₂(OTf)" in a bimolecular process and that subsequent reaction of transient "Re(C-t-Bu)(CH₂-t-Bu)(py)₂(OTf)" with ethylene yields Re(C-t-Bu)(CH₂-t-Bu)(py)₂(OTf) (eq 13).

$$t - BuCH_{2} \xrightarrow{f - Bu} CH_{2} \xrightarrow{f - Bu$$

Benzene solutions of Re(C-t-Bu)(CH-t-Bu)(CH₂-t- $Bu)(CH_3CN)_2(BF_4)$ become green when terminal olefins such as styrene or ethyl vinyl ether are added, and no evidence of productive metathesis is observed by NMR. The six-coordinate, cationic complexes [Re(C-t-Bu)(CH-t)] $t-Bu(CH_2-t-Bu(L)_3]^+[BArF_4]^-$ (L = py, CH₃CN) do not react with styrene, ethyl vinyl ether, or ethylene in ether. Likewise, none of the neutral or cationic complexes containing a tridentate ligand reacts with terminal olefins such as styrene or ethylene. It is likely that at least one coordination site must be free for coordination of olefin to occur. Thus, under identical conditions (C_6D_6 , 25 °C, 5–10 equiv olefin), Re(C-t-Bu)- $(CH-t-Bu)(CH_2-t-Bu)(pv)_2(OTf)$ reacts rapidly with terminal olefins but Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(bpy)-(OTf) does not react.

Reaction of the Neopentylidene/Neopentylidyne Complexes with Unstrained Internal Olefins. Re(C*t*-Bu)(CH-*t*-Bu)(CH₂-*t*-Bu)(CH₃CN)(OTf) reacts rapidly with 5–10 equiv of *cis*-3-hexene in C₆D₆ to yield a new propylidene complex that decomposes within 1 h at 25 °C. Similar results were obtained in reactions between Re(C-*t*-Bu)(CH-*t*-Bu)(CH₂-*t*-Bu)(CH₃CN)(OTf) and methyl oleate or oleic acid. When the reaction between Re(C*t*-Bu)(CH-*t*-Bu)(CH₂-*t*-Bu)(CH₃CN)_n(OTf) and 5–10 equiv of *cis*-3-hexene in C₆D₆ is conducted in the presence of 5-10 equiv of CH₃CN, "Re(C-*t*-Bu)(CHCH₂CH₃)(CH₂-*t*-Bu)(CH₃CN)_n(OTf)" forms within 10 min, but still largely decomposes within 4 h in C₆D₆ at 25 °C. In neat CD₃CN, Re(C-*t*-Bu)(CH-*t*-Bu)(CH₂-*t*-Bu)(CH₃CN)_n(OTf) does not react with 5 equiv of *cis*-3-hexene at 25 °C. At

⁽²⁹⁾ Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. **1978**, 100, 3359.

⁽³⁰⁾ Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z. J. Am. Chem. Soc. **1991**, *113*, 6082.

60 °C the reaction proceeds slowly (2/1 propylidene/ neopentylidene after 1 h); in CD₃CN, Re(C-t-Bu)(CHCH₂-CH₃)(CH₂-t-Bu)(CH₃CN)_n(OTf) is stable for 24 h at 25 °C. Upon addition of excess 2,2,2-trimethyl-3-hexene to a CD₃CN solution of Re(C-t-Bu)(CHCH₂CH₃)(CH₂-t-Bu)(CH₃CN)_n(OTf) at 25 °C, no metathesis was observed at room temperature in 24 h. Therefore, in acetonitrile, Re(C-t-Bu)(CHCH₂CH₃)(CH₂-t-Bu)(CH₃CN)_n(OTf) is not much more reactive than the analogous neopentylidene complex.

Upon addition of 100 equiv of cis-2-pentene to Re(Ct-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)_n(OTf) at 25 °C in benzene, an equilibrium mixture of butenes, pentenes, and hexenes was reached in ~5 min. However, no further metathesis occurred when another 100 equiv of cis-2-pentene was added 1 h later.

The reaction of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃-OD)_n(OTf) with 5–10 equiv of *cis*-3-hexene in CD₃OD occurs within 30 min at 25 °C. Re(C-t-Bu)(CHCH₂-CH₃)(CH₂-t-Bu)(CD₃OD)(OTf) is stable for several hours at 25 °C in CD₃OD. However, very little (<5%) meta-thesis was observed in the reaction of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃OH)_n(OTf) with 100 equiv of *cis*-2-heptene in CH₃OH.

None of the other rhenium alkylidene complexes described here reacts with unstrained internal olefins. Low reactivity can be traced to the fact that the neutral donor ligands and/or multidentate ligands L (L = Cp, HBpz₃, L_{OEt}, S₃C₆H₁₂) are not sufficiently labile, so no coordination sites are available to bind the olefin.

Discussion

A wide variety of coordinating ligands was found to induce α -hydrogen abstraction reactions in Re(C-t-Bu)- $(CH_2-t-Bu)_3(X)$ (X = OTf, BF₄, BAr^F₄) species. The finding that acetonitrile and methanol can induce a-hydrogen abstraction reactions is particularly interesting; these ligands are frequently incompatible with alkylidene complexes of tantalum, molybdenum, and tungsten. This result is a nice example of the greater tolerance of rhenium-carbon multiple bonds for a variety of organic functional groups. It should be noted that the coordinating ligands must be nucleophilic but not especially basic. For example, the reaction of Re(Ct-Bu)(CH₂-t-Bu)₃(OTf) with quinuclidine or tert-butylamine results in deprotonation at C_{α} to form $\operatorname{Re}(C-t-$ Bu)(CH-t-Bu)(CH₂-t-Bu)₂. Similar results have been observed in the case of Re(C-t-Bu)(CH₂-t-Bu)₃Cl.^{20,21}

Although quantitative experiments were not possible, α -hydrogen abstraction was significantly faster in the systems where cationic intermediates could form. Thus, for a given ligand, α -hydrogen abstraction reactions of Re(C-t-Bu)(CH₂-t-Bu)₃(X) were much faster when X = OTf, BArF₄ than when X = Cl, OC₆F₅. For instance, the reaction of Re(C-t-Bu)(CH₂-t-Bu)₃(OTf) with 3 equiv of pyridine in ether or pentane was complete within 10 min at 25 °C, while the reaction of Re(C-t-Bu)(CH₂-t-Bu)₃Cl with neat pyridine-d₅ required 24 h. These observations are consistent with earlier findings that demonstrated that α -hydrogen elimination reactions are faster in systems that are cationic or strongly polarized.²⁵

The synthesis of a large number of complexes containing the rhenium neopentyl/neopentylidene/neopentylidyne core suggests that this system can support a

wide range of ligand environments. Once formed, complexes containing the Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu) core are quite stable. All of the complexes described here that contain the Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu) core are thermally stable, in the solid state they are moderately stable to air and water, and in solution they are stable to water at 25 °C. For instance, a solid sample of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(HBpz₃) showed no decomposition after a month of exposure to moist air. The tradeoff is that the complexes described here are not especially active for the metathesis of olefins, or, if they are, activity is short-lived as a consequence of (presumably) bimolecular decomposition reactions involving relatively small alkylidenes. An interesting result to note is the extremely low reactivity of the tetra-(aryl)borate complexes. Since these systems are truly cationic, they might be expected to be more reactive than the triflate derivatives. However, the extreme electrophilicity of the metal center causes the coordinated pyridine, acetonitrile, or ether to be bound quite tightly to the metal, and no reactivity with olefins is observed. The most desirable anion would be one that is so weakly coordinated that it is readily displaced by an incoming olefin, but coordinated strongly enough to prevent decomposition of the "naked" cation.

In an attempt to surmount the problems of ligand dissociation and bimolecular decomposition, the complexes containing tridentate ligands such as Cp, HBpz₃, LOEt, and 1,4,7-trithiacyclononane were synthesized and their reactivity with olefins was investigated. However, cationic "[Re(C-t-Bu)(CH-t-Bu)(L)]+" is already a fivecoordinate, 16-electron species, and dissociation of part of the tridentate ligand (to yield a more reactive intermediate) would be expected to be quite difficult. Furthermore, the Re(C-t-Bu)(CH-t-Bu)(L) fragment typically binds another ligand (triflate, pyridine, ether) to form exceedingly unreactive species. It should be noted that cationic tungsten alkylidene complexes containing a hydridotris(pyrazolyl)borate ligand do not react with olefins in the absence of a Lewis acid cocatalyst,^{9,15,16} nor does five-coordinate Re(NAr)(CH-t-Bu)[OCMe-(CF₃)₂]₃¹¹ or six-coordinate ReO(CHCHCPh₂)[OCMe-(CF₃)₂]₃(THF).¹⁰ These results reaffirm the proposal that in a long-lived olefin metathesis catalyst, four coordination sites must be filled by nonlabile, ionic ligands which provide a large amount of steric protection. If additional neutral donor ligands are present, they must be quite labile. According to these general requirements, complexes such as [Re(NAr)(CHR)(OR')2]+ and $Re(N \cdot BPh_3)(CHR)(OR')_2$ (if they could be synthesized) might be relatively reactive toward olefins, but relatively stable thermally.

A variety of reduction pathways for transition metal alkylidenes and alkylidynes have been discovered. These include bimolecular coupling to form an olefin and a reduced metal complex, intramolecular coupling with another metal—ligand multiple bond (e.g., in the reduction of Os(CH-t-Bu)₂(CH₂-t-Bu)₂ to Os(PMe₃)₃(t-Bu-CCt-Bu)),²⁷ and a formally "3 + 2" addition of ethylene to a rhenium alkylidene/alkylidyne to form a metallacyclopentene complex.³¹ In the "3 + 2" reaction, the "supporting" neopentylidyne ligand is involved; this illustrates one potential pitfall in the design of transi-

⁽³¹⁾ Vaughan, G. A.; Toreki, R.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. **1993**, 115, 2980.

tion metal catalysts. The reduction of $\text{Re}(\text{C}-t-\text{Bu})(\text{CH}-t-\text{Bu})(\text{CH}_2-t-\text{Bu})(\text{py})_2(\text{OTf})$ to $\text{Re}(\text{C}-t-\text{Bu})((\text{CH}_2)_3-t-\text{Bu})-(\text{py})_2(\text{OTf})$ provides another example of involvement of the supporting ligands, in this case, insertion of ethylene into the metal-carbon single bond.

Experimental Section

General Details. All experiments were performed under a nitrogen atmosphere in a Vacuum Atmospheres HE-43 drybox or using standard Schlenk techniques unless otherwise specified. Pentane was washed with sulfuric/nitric acid (95/5 v/v), aqueous sodium bicarbonate solution, and then water, stored over CaCl₂, and then distilled from sodium benzophenone ketyl. Ether, tetrahydofuran, benzene, and 1,2-dimethoxyethane were distilled from sodium benzophenone ketyl under nitrogen or argon. Toluene was distilled from molten sodium under nitrogen or argon, and dichloromethane, acetonitrile, and pyridine were distilled from calcium hydride under nitrogen or argon. All deuterated NMR solvents were purchased from Cambridge Isotope Laboratories. Tetrahydofuran- d_8 was vacuum transferred from sodium benzophenone ketyl. C_6D_6 , CD_2Cl_2 , $CDCl_3$, CD_3CN , and pyridine- d_5 were stored over activated molecular sieves in the drybox. CD₃OD was used as received.

Neopentyl chloride was purchased from Strem and purified by literature methods.³² t-BuCH₂MgCl was prepared by the published procedure.³² Rhenium heptoxide (99.99%) was purchased from Aesar. [Re(C-t-Bu)(CH-t-Bu)Cl₂_k⁷ and [Re-(C-t-Bu)(CH-t-Bu)(t-BuNH₂)Cl₂]₂²⁰ were prepared by literature methods, and Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ was prepared by the published procedure²⁰ or from [Re(C-t-Bu)(CH-t-Bu)-Cl₂]_k and t-BuCH₂MgCl in THF at -40 °C. [H(OEt₂)₂]⁺[BArF₄]⁻ was prepared by literature methods.¹⁴ Na[CpC0(PO(OEt)₂)₃]¹⁸ was a gift from Dr. Robert D. Simpson. Ethylene (polymer grade) was purchased from Matheson and used as received.¹³C₂H₄ and C₂D₄ were purchased from Cambridge Isotope Laboratories. Pyridine and acetonitrile were distilled from Calcium hydride. All other reagents were purchased from Aldrich and used as received.

NMR spectra were recorded on either a Bruker WM-250, Varian XL-300, or Varian UNITY-300 spectrometer. ¹H and ¹³C data are listed in parts per million downfield from tetramethylsilane and were referenced by the residual solvent proton peak. ¹⁹F data are listed in parts per million downfield from CF₂Cl₂ and were externally referenced. Coupling constants are listed in hertz. Obvious multiplicities and routine coupling constants are usually not listed. IR spectra were recorded in a Mattson spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 CHN analyzer in our laboratories.

Re(C-t-Bu)(CH₂-t-Bu)₃(OTf). Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ (1.07 g, 2.28 mmol) was dissolved in 15 mL of ether, and the solution was cooled to -40 °C. Triflic acid (200 μ L, 2.28 mmol) was added, and the solution was allowed to warm to room temperature and stir for 1 h. Ether was removed *in vacuo*, leaving a yellow-brown solid, which was extracted with pentane (50 mL). The solution was filtered through Celite, and the filtrate was concentrated to 10 mL and then cooled to -40 °C. Yellow, microcrystalline Re(C-t-Bu)(CH₂-t-Bu)₃(OTf) was isolated, washed with cold pentane, and dried; yield 1.00 g (71%). The spectral data for the compound prepared in this manner matched those reported.^{20,21}

 $[\text{Re}(\text{C-}t\text{-}\text{Bu})(\text{CH}_2\text{-}t\text{-}\text{Bu})_3(\text{Et}_2\text{O})]^+[\text{BAr}^F_4]^-$. Re(C-t-Bu)(CH-

collected and washed with cold ether; yield 506 mg (73%): ¹H NMR (CD₂Cl₂) δ 7.7 (s, 8, Ar), 7.6 (s, 4, Ar), 3.55 (q, 4, OCH₂-CH₃), 2.65 (s, 6, ReCH₂-t-Bu), 1.65 (s, 9, ReC-t-Bu), 1.20 (t, 6, OCH₂CH₃), 1.14 (s, 27, CH₂-t-Bu).

 $[{\rm Re}({\rm C-}t{\rm -}{\rm Bu})({\rm CH}_2{\rm -}t{\rm -}{\rm Bu})_3({\rm Et}_2{\rm O})({\rm H}_2{\rm O})]^+[{\rm BAr}{\rm F}_4]^-. [{\rm Re}({\rm C-}t{\rm -}{\rm Bu})({\rm CH}_2{\rm -}t{\rm -}{\rm Bu})_3({\rm Et}_2{\rm O})({\rm H}_2{\rm O})]^+[{\rm BAr}{\rm F}_4]^- {\rm was prepared in a fashion identical to [{\rm Re}({\rm C-}t{\rm -}{\rm Bu})({\rm CH}_2{\rm -}t{\rm -}{\rm Bu})_3({\rm Et}_2{\rm O})]^+[{\rm BAr}{\rm F}_4]^- {\rm except}$ that 1 equiv of water was added by syringe prior to recrystallization from ether: ¹H NMR (CD₂Cl₂) δ 7.75 (s, 8, Ar), 7.6 (s, 4, Ar), 7.0 (s, 2, OH₂) 3.56 (q, 4, O(CH₂CH₃)₂), 2.56 (s, 6, CH₂-t-Bu), 1.65 (s, 9, C-t-Bu), 1.14 (s, 27, CH₂-t-Bu); ¹³C NMR (CD₂Cl₂) δ 307.0 (ReC-t-Bu), 162.3 (q, CF₃, J_{CF} = 50 Hz), 135.3, 126.9, 123.3, 117.9 (C_{aryl}), 86.0 (CH₂-t-Bu), 66.2 (O(CH₂CH₃)₂), 55.6 (CCMe₃), 37.7 (CH₂CMe₃), 32.9 (CH₂CMe₃), 27.7 (CCMe₃), 15.4 (O(CH₂CH₃)₂); ¹⁹F NMR (CD₂Cl₂) δ -62.3; IR (Nujol) cm¹ 3640 (O-H). Anal. Calcd for C₅₆H₆₆BF₂₄O₂: C, 47.23; H, 4.67. Found: C, 47.53; H, 4.76.

[Re(C-t-Bu)(CH₂-t-Bu)₃]⁺[BF₄]⁻. Re(C-t-Bu)(CH-t-Bu)-(CH₂-t-Bu)₂ (445 mg, 0.95 mmol) was dissolved in 8 mL of ether, and the solution was cooled to −40 °C. An 85% solution of HBF₄·Et₂O (190 mg, 1.0 mmol) was added, and a yellow precipitate formed immediately. The mixture was allowed to warm to room temperature and was stirred for 30 min. The precipitate was collected, washed with pentane, and determined to be >95% pure by ¹H NMR; yield 305 mg (58%): ¹H NMR (CD₂Cl₂) δ 2.75 (s, 6, CH₂-t-Bu), 1.62 (s, 9, C-t-Bu), 1.13 (s, 27, CH₂-t-Bu); ¹³C NMR (CD₂Cl₂) δ 300.9 (C-t-Bu), 85.2 (CH₂-t-Bu), 54.8 (CCMe₃), 37.5 (CH₂CMe₃), 32.7 (CH₂CMe₃), 27.5 (CCMe₃); ¹⁹F NMR (CD₂Cl₂) δ −141. Anal. Calcd for ReC₂₀H₄₂BF₄: C, 43.24; H, 7.62. Found: C, 43.37; H, 7.56.

 $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(py)_2(O_3SCF_3)$. Re(C-t-Bu)(CH₂-t-Bu)₃(O₃SCF₃) (106 mg, 0.172 mmol) was dissolved in 4 mL of ether. Pyridine (57 $\mu L,\,0.72$ mmol) was added, and a white precipitate formed after several minutes. After 3 h the precipitate was collected, washed with pentane, and dried in vacuo to yield 108 mg (89%) of a white powder that was pure Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) by NMR and elemental analysis: ¹H NMR (CD₂Cl₂) δ 13.73 (s, 1, CHt-Bu), 8.65, 8.6 (d, 2 each, py), 7.9, 7.8 (t, 1 each, py), 7.5, 7.3 (t, 2 each, py), 2.38 (d, 2, $CH_{a}H_{b}$ -t-Bu, $J_{HH} = 12$), 1.84 (d, 2, $CH_{a}H_{b}$ -t-Bu, $J_{HH} = 12$), 1.34, 1.22, 0.93 (s, 9 each, t-Bu); ¹³C NMR (CD₂Cl₂) δ 289.1 (J_{CH} =128, CH-t-Bu), 287 (C-t-Bu) 155.3, 151.4 (py ortho), 139.1, 139.0 (py meta), 125.3, 125.0 (py para), 55.9, 48.3 (CMe₃, third resonance obscured by solvent peak), 34.1(CH₂-t-Bu), 33.9, 30.8, 29.1 (CMe₃); ¹⁹F NMR (CD₂Cl₂) δ -78.3. Anal. Calcd for ReC₂₆H₄₀F₃N₂O₃S: C, 44.37; H, 5.73; N, 3.98. Found: C, 44.15; H, 5.70: N, 3.94.

Re(CCMe₂Ph)(CHCMe₂Ph)(CH₂CMe₂Ph)(py)₂-(O₃SCF₃). Re(CCMe₂Ph)(CHCMe₂Ph)(CH₂CMe₂Ph)(py)₂-(O₃SCF₃) was prepared in a manner analogous to that used to prepare Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) from crude Re(CCMe₂Ph)(CH₂CMe₂Ph)₃(O₃SCF₃) and excess pyridine in ether. A pink powder was obtained, which could be recrystallized from ether to yield analytically pure purplishpink microcrystals: ¹H NMR (pyr-d₅) δ 14.0 (s, 1, CHCMe₂-Ph), 7.66 (m, 3, H_{aryl}), 7.1 (m, 6, H_{aryl}), 3.15 (d, 1, J_{HH} = 12, CH_aH_bCMe₂Ph), 2.25 (br d, 1, CH_aH_bCMe₂Ph), 1.98, 1.88, 1.84, 1.67, 1.58, 1.57 (s, 3 each, CH₃). Anal. Calcd for C₄₁H₄₆F₃N₂O₃SRe: C, 55.33; H, 5.21; N, 3.15. Found: C, 55.23; H, 5.39; N, 3.15.

 $Re(C-t-Bu)(CH-t-Bu)(CH_2-t-Bu)(CH_3CN)(O_3SCF_3)$. Re-(C-t-Bu)(CH₂-t-Bu)₃(O₃SCF₃) (196 mg, 0.32 mmol) was dissolved in 3 mL of ether, and 1 mL of acetonitrile was added. The solution was stirred at room temperature for an hour, and then the solvent was removed *in vacuo*. The resulting beige solid was washed with pentane (180 mg, 96%): ¹H NMR

⁽³²⁾ Schrock, R. R.; Sancho, J.; Pedersen, S. F. Inorg. Synth. 1989, 26, 44.

 $\begin{array}{l} ({\rm CD_3CN}) \ \delta \ 13.24 \ ({\rm s}, \ 1, \ CH\-t\-Bu), \ 2.22 \ ({\rm d}, \ 1, \ CH\-t\-Bu, \ J_{\rm HH} \\ = 12), \ 1.34 \ ({\rm d}, \ 1, \ CH\-t\-Bu, \ J_{\rm HH}\-t\-Bu, \ J_{\rm HH}\-12), \ 1.26, \ 1.14. \ 0.78 \ ({\rm s}, \ 9 \\ \\ {\rm each}, \ t\-Bu); \ ^{13}{\rm C} \ {\rm NMR} \ ({\rm CD}_3{\rm CN}) \ \delta \ 294.8 \ (C\-t\-Bu), \ 291.8 \ (CH\-t\-Bu, \ J_{\rm CH}\-116), \ 53.5, \ 50.1, \ 48.1 \ (CMe_3), \ 33.5 \ (CH\-t\-Bu), \ 291.8 \ (CH\-t\-Bu), \ 33.8, \ 30.4, \ 28.5 \ (CMe_3). \ {\rm Anal.} \ {\rm Calcd} \ {\rm for} \ {\rm Rec}_{1_8} H_{33} F_3 {\rm NO}_3 {\rm S:} \ {\rm C}, \ 36.85; \ {\rm H}, \ 5.67; \ {\rm N}, \ 2.39. \ {\rm Found:} \ {\rm C}, \ 36.65; \ {\rm H}, \ 5.63; \ {\rm N}, \ 2.29. \end{array}$

 $[\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{CH-t-Bu})(\operatorname{CH}_2-t-\operatorname{Bu})(\operatorname{pv})_3]^+[\operatorname{BAr}_4]^-, \operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{Re}(\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re})\operatorname{Re}(\operatorname{Re})\operatorname$ t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ (160 mg, 0.34 mmol) was dissolved in 5 mL of ether, solid $[H(OEt_2)]^+[BArF_4]^-$ (344 mg, 0.34 mmol) was added, and the mixture was stirred for 45 min. Pyridine $(110 \,\mu\text{L}, 1.39 \,\text{mmol})$ was added, and the resulting red solution was allowed to stir for an additional 30 min. The volume of the solution was reduced to 3 mL and cooled to -40 °C overnight to yield orange-pink microcrystals (370 mg, 73%), which were washed with pentane and dried: ¹H NMR (pyr d_5) δ 13.78 (s, 1, CH-t-Bu), 8.41 (s, 8, H_{aryl}), 7.81 (s, 4, H_{aryl}), 2.81 (d, 1, CH_aH_b -t-Bu, $J_{HH} = 12$), 1.82 (d, 1, CH_aH_b -t-Bu, J_{HH} = 12), 1.33, 1.24, 1.12 (9 each, *t*-Bu); ¹³C NMR (py- d_5) δ 289.9 (C-t-Bu), 288.5 (CH-t-Bu, $J_{CH} = 120$), 163 (CF₃, $J_{C-F} = 49$), 155, 127.1, 120, 118.5 (Carvi), 54.5, 53.4, 48.6 (CMe₃), 34.6 (CH₂-t-Bu), 34.2, 30.8, 28.9 (CMe₃). Anal. Calcd for ReC₆₂H₅₇-BF₂₄N₃: C, 49.74; H, 3.83; N, 2.94. Found: C, 49.74; H, 4.13; N, 2.90.

 $[\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{CH-t-Bu})(\operatorname{CH}_2-t-\operatorname{Bu})(\operatorname{py})_2(\operatorname{py})_2(\operatorname{py})_1(\operatorname{BAr}_4)^-.$ $[\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{CH-t-Bu})(\operatorname{CH}_2-t-\operatorname{Bu})(\operatorname{py})_2(\operatorname{py})_1(\operatorname{BAr}_4)^-.$ $[\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{CH}_2-t-\operatorname{Bu})(\operatorname{CH}_2-t-\operatorname{Bu})_3-(\operatorname{OH}_2)]^+[\operatorname{BAr}_4]^-.$ and 3 equiv of pyridine in ether and was recrystallized from 2/1 ether/pentane at -40 °C. Orange cubes formed and were collected and dried. Spectral data matched those for [\operatorname{Re}(\operatorname{C-t-Bu})(\operatorname{CH-t-Bu})(\operatorname{CH}_2-t-\operatorname{Bu})(\operatorname{py})_3]^+[\operatorname{BAr}_4]^-.
in pyridine-d5. These complexes are insoluble in C₆D₆ and toluene-d₈ and decompose in CD₂Cl₂ and CDCl₃.

[Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)₃][BAr^F₄]. Re-(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)₂ (340 mg, 0.72 mmol) was dissolved in 5 mL of ether, solid $[H(OEt_2)_2][BArF_4]$ (700 mg, 0.70 mmol) was added, and the mixture was stirred for 20 min. CH₃CN (1 mL) was added, and the solution was stirred for 45 min. The solvent was removed in vacuo, and the resulting beige powder was washed with pentane until the washings were colorless. An analytical sample was recrystallized from ether/pentane: ¹H NMR (C₆D₆) & 13.38 (s, 1, ReCH-t-Bu), 8.25 $(s, 8, H_{aryl}), 7.53 (s, 4, H_{aryl}), 2.47 (d, 1, ReCH_{a}H_{b}-t-Bu, J_{HH} =$ 12), 1.56 (d, 1, ReCH_a H_b -t-Bu, $J_{HH} = 12$), 1.21, 1.15, 1.07 (s, 9) each, t-Bu), 0.78 (br s, 9, CH₃CN); $^{13}\mathrm{C}$ NMR (CD₃CN) δ 298 (C-t-Bu), 292.1 (CH-t-Bu), 163 (q, CF₃, $J_{C-F} = 48$), 130.9, 127.6, 124.0, 120.4 (Caryl), 54.0, 49.2, 33.8 (CMe₃), 48.5 (CH₂-t-Bu), 34.0, 30.6, 28.7 (CMe₃). Anal. Calcd for C₅₃H₅₁BF₂₄N₃Re: C, 46.03; H, 3.72; N, 3.04. Found: C, 45.70; H, 3.99; N, 2.79.

Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)₂(BF₄). Re(C-t-Bu)(CH₂-t-Bu)₃(BF₄) (43 mg, 0.078 mmol) was dissolved in 1 mL of ether, and 1 mL of CH₃CN was added. The solution immediately became colorless and was stirred for 1 h at room temperature. The solvents were removed *in vacuo*, and the resulting solid was washed with pentane to yield 35 mg (74%) of pale yellow Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CH₃CN)₂(BF₄): ¹H NMR (C₆D₆) δ 13.59 (s, 1, CH-t-Bu), 2.68 (d, 1, J_{HH} = 12, CH_aH_b-t-Bu), 1.95 (d, 1, J_{HH} = 12, CH_aH_b-t-Bu), 1.80 (br s, 3, CH₃CN), 1.51 (br s, 6, CH₃CN), 1.32, 1.28, 1.19 (s, 9 each, t-Bu); ¹³C NMR (CD₃CN) δ 296.1 (ReCCMe₃), 291.5 (ReCH-t-Bu, J_{CH} = 122), 53.6, 48.7, 48.1 (CMe₃), 33.6, 30.2, 28.3 (CMe₃), 33.4 (CH₂-t-Bu); ¹⁹F NMR (C₆D₆) δ -151.3. Anal. Calcd for ReC₁₉H₃₆N₂BF₄: C, 40.35; H, 6.42; N, 4.95. Found: C, 40.30; H, 6.45; N, 4.82.

Re(C-t-Bu)(CH₂-t-Bu)(CH₂-t-Bu)(CD₃OD)_n(O₃SCF₃). Re-(C-t-Bu)(CH₂-t-Bu)₃(O₃SCF₃) (15 mg) was transferred to an NMR tube which was capped with a septum cap and brought out of the drybox. CD₃OD (1 mL) was added by syringe to yield a yellow solution of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃-OD)_n(O₃SCF₃). Experiments employing an internal standard showed that Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃OD)_n(O₃SCF₃) is formed in >90% yield: ¹H NMR (CD₃OD) δ 13.00 (s, 1, CH- t-Bu), 2.82 (d, 1, CH_aH_b -t-Bu, $J_{HH} = 12$), 2.39 (d, 1, CH_aH_b -t-Bu, $J_{HH} = 12$), 1.36, 1.26, 1.15 (s, 9 each, t-Bu).

Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(THF-d₈)_n(O₃SCF₃). Re-(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(THF-d₈)_n(O₃SCF₃) was prepared in the same manner as Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃-OD)_n(O₃SCF₃) in THF-d₈, although it took 2 h for Re(C-t-Bu)-(CH₂-t-Bu)₃(O₃SCF₃) to react completely: ¹H NMR (THF-d₈) δ 13.08 (s, 1, CH-t-Bu), 2.50 (d, 1, CH_aH_b-t-Bu, J_{HH} = 12), 1.48 (d, 1, CH_aH_b-t-Bu, J_{HH} = 12), 1.36, 1.27, 0.94 (s, 9 each, t-Bu).

ReCl(L_{OEt})(C-t-Bu)(CH-t-Bu). Solid [Re(C-t-Bu)(CH-t-Bu)Cl₂]_x (44 mg, 0.11 mmol) and NaL_{OEt} (55 mg, 0.10 mmol) were combined, and 3 mL of THF was added. The orange-red mixture was stirred for 1.5 h, and the THF was then removed *in vacuo* to yield an orange-pink solid, which was extracted with ether. Ether was then removed *in vacuo* to yield a pink film (85 mg, 95%). An analytical sample was recrystallized from ether/pentane at -40 °C: ¹H NMR (C₆D₆) δ 13.95 (s, 1, ReCH-t-Bu), 4.89 (s, 5, Cp), 3.8-4.6 (m, 12 total, POCH₂CH₃), 1.62, 1.54 (s, 9 each, *t*-Bu), 1.0-1.4 (m, 18 total, POCH₂CH₃). Anal. Calcd for ReCoC₂₇H₅₄ClO₉P₃: C, 36.18; H, 6.07. Found: C, 35.94; H, 5.92.

Re(η⁵-C₅H₅)(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu). Re(C-t-Bu)-(CH-t-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) (100 mg, 0.14 mmol) was dissolved in 5 mL THF, and a THF solution of NaCp (0.15 mmol) was added. The resulting orange mixture was stirred for 1 h, and the volatile components were removed *in vacuo*. The resulting beige solid was extracted with pentane (10 mL), and solvent was removed *in vacuo* to yield a beige oil (62 mg, 96%) that was pure by ¹H NMR: ¹H NMR (C₆D₆) δ 12.67 (s, 1, ReCH-t-Bu), 5.32 (s, 5, η⁵-C₅H₅), 2.52 (d, 1, J_{HH} = 12, ReCH_aH_b-t-Bu), 2.36 (d, 1, J_{HH} =12, ReCH_aH_b-t-Bu), 1.34, 1.12, 1.11 (s, 9 each, t-Bu); ¹³C NMR (C₆D₆) δ 285.7 (ReC-t-Bu), 265.6 (ReCH-t-Bu, J_{CH} =116), 97.6 (C₅H₅), 52.9, 47.6, 33.0 (CMe₃), 34.2, 31.9, 29.4 (CMe₃), 17.4 (ReCH₂-t-Bu). Anal. Calcd for ReC₂₀H₃₆: C, 52.03; H, 7.64. Found: C, 52.54; H, 7.75.

Re(LOEt)(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu). Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) (78 mg, 1.10 mmol) was dissolved in 5 mL of THF, and solid NaLOEt was added. The mixture was stirred for 1.5 h, and then the THF was removed in vacuo to yield a yellow solid. The solid was extracted with 2 mL of ether, and the ether was removed in vacuo to yield pure Re(L_{OEt})(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu) as a pale yellow solid (97 mg, 94%): ¹H NMR (C₆D₆) δ 13.02 (s, 1, ReCH-t-Bu), 4.90 (s, 5, η^5 -C₅H₅), 3.8-4.4 (m, 12 total, POCH₂CH₃), 2.73 (d, 2, J_{HH} = 12, $\text{ReCH}_{a}\text{H}_{b}$ -t-Bu), 1.79 (d, 2, J_{HH} = 12, $\text{ReCH}_{a}H_{b}$ -t-Bu), 1.59, 1.52, 1.39 (s, 9 each, t-Bu), 1.0-1.3 (m, 18 total, POCH₂CH₃); ¹³C NMR (C₆D₆) δ 281.6 (ReC-t-Bu), 275.7 (ReCHt-Bu, $J_{CH} = 125$), 89.5 (η^5 - C_5H_5), 61.1 (POCH₂CH₃), 54.8 (ReCH₂-t-Bu), 51.7, 46.3, 34.2 (CMe₃), 34.7, 32.5, 29.7 (CMe₃), 17.3 (POCH₂CH₃). Anal. Calcd for CoOsC₃₂H₆₅O₉P₃: C, 41.24; H, 7.03. Found: C, 40.93; H, 6.86.

Re(HBpz₃)(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu). Re(C-t-Bu)(CHt-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) (90 mg, 0.128 mmol) was dissolved in 3 mL of THF, and solid NaHBpz₃ (30 mg, 0.127 mmol) was added. The resulting solution was allowed to stir for 1 h, and then the THF was removed in vacuo. The residue was extracted with ether, the resulting solution was filtered through Celite, and the ether was removed in vacuo to vield a white solid; yield 67 mg (0.110 mmol, 86%): ¹H NMR (C_6D_6) δ 13.22 (s, 1, ReCH-t-Bu), 8.34, 8.09, 7.79 (s, 1 each, pz), 7.34, 7.32, 7.28 (s, 1 each, pz), 5.97, 5.88, 5.80 (s, 1 each, pz), 2.74 $(d, 2, J_{HH} = 12, ReCH_aH_b-t-Bu), 1.74 (d, 2, J_{HH} = 12, ReCH_aH_b-t-Bu)$ *t*-Bu), 1.40, 1.35, 1.24 (s, 9 each, *t*-Bu); 13 C NMR (C₆D₆) δ 289.3 (ReC-t-Bu), 282.7 (ReCH-t-Bu), 148.1, 144.3, 141.7, 135.0, $134.5,\,134.0,\,105.9,\,105.4,\,105.2\,(\text{pz}),\,53.0\,(\text{Re}C\text{H}_2\text{-}t\text{-Bu}),\,52.3,$ 47.7, 34.3 (CMe₃), 34.7, 31.3, 29.1 (CMe₃). Anal. Calcd for $ReC_{24}H_{40}N_6B$: C, 47.28; H, 6.61; N, 13.79. Found: C, 47.53; H, 6.18; N, 13.85.

Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(C₆H₁₂S₃)(O₃SCF₃). Re-(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(py)₂(O₃SCF₃) (183 mg, 0.26 mmol) was dissolved in 5 mL of dichloromethane, and solid S₃C₆H₁₂ (70 mg, 0.39 mmol) was added. The solution was stirred for 2 h, and then the dichloromethane was removed *in vacuo* to yield a colorless solid, which was recrystallized from dichloromethane/ pentane at -40 °C; yield 180 mg (95%): ¹H NMR (CD₂Cl₂) δ 12.91 (s, 1, ReC+t-Bu), 2.95-3.9 (m, 12 total, S₃C₆H₁₂), 2.59 (d, 1, ReCH_aH_b-t-Bu, J_{HH} = 12), 1.54 (d, 1, ReCH_aH_b-t-Bu, J_{HH} = 12), 1.27, 1.17, 0.92 (s, 9 each, t-Bu); ¹³C NMR (CD₂Cl₂) δ 294.9 (ReC-t-Bu), 283.5 (ReCH-t-Bu), 53.6 (ReCH₂-t-Bu), 49.5, 40.3, 40.2, 38.7, 36.6, 36.3 (S₃C₆H₁₂), 35.2, 33.2, 32.1 (CMe₃), 33.6, 29.6, 28.2 (CMe₃). Anal. Calcd for ReC₂₂H₄₂O₃S₄F₃: C, 36.39; H, 5.83. Found: C, 36.17; H, 5.40.

Re(η⁵-C₅H₅)(C-t-Bu)(CH-t-Bu)(O₃SCF₃). Re(η⁵-C₅H₅)(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu) (110 mg, 0.23 mmol) was dissolved in 5 mL of ether, and the mixture was cooled to -40 °C. Triflic acid (20 μL, 0.22 mmol) was added, and the mixture was warmed to room temperature and stirred for 10 min. Ether was then removed *in vacuo*, and the solid was extracted with pentane (10 mL). Pentane was removed *in vacuo* from the filtrate, and a microcrystalline colorless solid was collected; yield 104 mg (84%): ¹H NMR (C₆D₆) δ 13.72 (s, 1, ReCH-t-Bu), 5.27 (s, 5, η⁵-C₅H₅), 1.29, 1.14 (s, 9 each, t-Bu); ¹³C NMR (C₆D₆) δ 306.5 (ReC-t-Bu), 298.6 (ReCH-t-Bu, J_{CH} = 90), 98.5 (C₅H₅), 54.4, 48.8 (CMe₃), 31.7, 29.4 (CMe₃); ¹⁹F NMR (C₆D₆) δ -75.5. Re(η⁵-C₅H₅)(C-t-Bu)(CH-t-Bu)(O₃SCF₃) is too unstable in the solid state for elemental analysis.

[**Re**(η^5 -**C**₅**H**₅)(**C**-*t*-**Bu**)(**C**+*t*-**Bu**)(**py**)]⁺[**OTf**]⁻. Re(Cp)(C*t*-Bu)(CH-*t*-Bu)(CH₂-*t*-Bu) (65 mg, 0.141 mmol) was dissolved in 5 mL of CH₂Cl₂, and the solution was cooled to -40 °C. Solid pyHOTf (31 mg, 0.135 mmol) was added, and the solution became yellow. The mixture was allowed to warm to room temperature and was stirred for 1 h. Dichloromethane was removed *in vacuo*, and a pale yellow solid was isolated, washed with pentane, and crystallized from a CH₂Cl₂/ether mixture at -40 °C; yield 50 mg (60%): ¹H NMR (C₆D₆) δ 14.33 (s, 1, ReCH-*t*-Bu), 8.60 (d, 2, py), 7.13 (t, 1, py), 7.00 (t, 2, py), 5.76 (s, 5, C₅H₅), 1.08, 1.00 (s, 9 each, *t*-Bu); ¹³C NMR (CDCl₃) δ 311.4 (ReC-*t*-Bu), 295.8 (ReCH-*t*-Bu, J_{CH} = 125), 161.5, 140.4, 127.3 (py), 99.3 (Cp), 55.1, 50.4 (CMe₃), 30.6, 28.8 (CMe₃). Anal. Calcd for ReC₂₁H₂₉NF₃O₃S: C, 40.77; H, 4.72; N, 2.26. Found. C, 41.02; H, 4.67; N, 2.20.

 $Re(L_{OEt})(C-t-Bu)(CH-t-Bu)(O_3SCF_3). Re(L_{OEt})(C-t-Bu)-$ (CH-t-Bu)(CH₂-t-Bu) (100 mg, 0.11 mmol) was dissolved in 5 mL of ether, and the solution was cooled to -40 °C. Triflic acid (10 μ L, 0.11 mmol) was added, and the yellow mixture was warmed to room temperature and stirred for 45 min. Ether was then removed in vacuo, and the sticky yellow solid was recrystallized from ether/pentane at -40 °C to yield yellow prisms; yield 63 mg (59%): ¹H NMR (CD₂Cl₂) & 13.77 (s, 1, ReCH-t-Bu), 5.13 (s, 5, η^5 -C₅H₅), 3.4-4.2 (br m, 12 total, POCH₂CH₃), 1.34, 1.33 (s, 9 each, t-Bu), 1.16 (br m, 18, POCH₂CH₃); ¹³C NMR (CD₂Cl₂) δ 300.8 (ReCH-t-Bu, J_{CH} = 121), 298.0 (ReC-t-Bu), 90.1 (C_5H_5), 61.9 (br, POCH₂CH₃), 46.9 $(CMe_3, other CMe_3 peak obscured by the solvent peak), 32.9,$ 29.5 (CMe₃), 16.7 (POCH₂CH₃); ¹⁹F NMR (CD₂Cl₂) δ -78.1. Anal. Calcd for CoReC₂₈H₅₄F₃O₁₂P₃S: C, 33.30; H, 5.39. Found: C, 32.92; H, 5.10.

 $[\operatorname{Re}(\operatorname{L}_{\operatorname{OEt}})(\operatorname{C-t-Bu})(\operatorname{CH-t-Bu})(\operatorname{Et}_2\operatorname{O})]^+[\operatorname{BAr}^F_4]^-$. $\operatorname{Re}(\operatorname{L}_{\operatorname{OEt}})^-$ (C-t-Bu)(CH-t-Bu)(CH₂-t-Bu) (140 mg, 0.15 mmol) was dissolved in 5 mL of ether, and the solution was cooled to -40°C. Solid $[H(OEt_2)_2][BArF_4]$ (149 mg, 0.15 mmol) was added and the yellow solution was allowed to warm to room temperature and stirred for 1.5 h. Ether was removed in vacuo and the yellow-tan solid was recrystallized from ether/pentane at -40 °C overnight; yield 140 mg (50%): ¹H NMR (CD₂Cl₂) δ 13.78 (s, 1, ReCH-t-Bu), 7.72 (s, 8, ArF), 7.56 (s, 4, ArF), 5.32 $(s, 5, Cp), 3.8-5.2 (m, 12, OCH_2CH_3), 3.40 (br q, 4, OCH_2CH_3),$ 1.33, 1.31 (s, 9 each, t-Bu), 1.0-1.3, (m, 24 total, OCH₂CH₃); ¹³C NMR (CDCl₃) δ 302.9 (ReCH-t-Bu, $J_{CH} = 124$), 299.0 (ReC*t*-Bu), 163.0 (q, CF_3 , $J_{C-F} = 48$), 135.0, 130.0, 126.6, 123.0 $(C_{aryl}), 90.1 (Cp), 61.8 (OCH_2CH_3), 61.5 (OCH_2CH_3), 32.7, 29.3$ (CMe₃), 53.0, 46.9 (CMe₃), 16.5 (OCH₂CH₃), 12.6 (OCH₂CH₃). Anal. Calcd for ReCoC₆₃H₇₆BF₂₄O₁₀P₃: C, 42.08; H, 4.26. Found: C, 42.39; H, 4.23.

[Re(S₃C₆H₁₂)(C-t-Bu)(CH-t-Bu)(O₃SCF₃)]⁺[O₃SCF₃]⁻. [Re-(S₃C₆H₁₂)(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)]⁺[O₃SCF₃]⁻ (60 mg, 0.083 mmol) was dissolved in 5 mL of CH₂Cl₂, and the solution was cooled to -40 °C. Triflic acid (8 μ L, 0.09 mmol) was added, and the resulting pale pink mixture was warmed to room temperature and stirred for 45 min. CH₂Cl₂ was then removed *in vacuo*, and the resulting microcrystalline pale pink solid was washed with pentane and dried; yield 40 mg (60%): ¹H NMR (CD₂Cl₂) δ 14.56 (s, 1, ReCH-t-Bu), 3.1-4.2 (overlapping multiplets, 12 total, S₃C₆H₁₂), 1.43, 1.32 (s, 9 each, *t*-Bu); ¹³C NMR (CD₂Cl₂) δ 306.4 (ReCH-t-Bu, J_{CH} = 116), 304.6 (ReC-t-Bu), 55.2, 51.6 (CMe₃), 43.7, 41.9, 36.5, 34.0, 32.9, 30.1 (S₃C₆H₁₂), 29.7, 28.5 (CMe₃); ¹⁹F NMR (CD₂Cl₂) δ -75.6, -78.6. Anal. Calcd for ReC₁₈H₃₁F₆O₆S₅: C, 26.89; H, 3.89. Found: C, 26.96; H, 3.74.

Re(C-t-Bu)(CHC6H5)(CH2-t-Bu)(py)2(OTf). Re(C-t-Bu)-(CH-t-Bu)(CH2-t-Bu)(py)2(OTf) (49 mg, 0.26 mmol) was dissolved in 3 mL of CH₂Cl₂. Styrene (36 μ L, 0.315 mmol) was added, and the resulting orange solution was allowed to stir at room temperature for 1.5 h. The volatiles were removed in vacuo to yield a beige powder, which was washed with pentane (10 mL) and recrystallized from CH₂Cl₂/ether to yield beige microcrystals: ¹H NMR (CD₂Cl₂) δ 14.35 (s, 1, ReCHC₆H₅), 8.76, 8.46 (d, 2 each, py ortho), 8.00, 7.80 (br t, 1 each, py meta), $7.76 (d, 2, J_{HH} = 9, phenyl ortho), 7.55, 7.38 (t, 2 each, py meta),$ 7.25 (m, 3, phenyl meta and para), 2.52 (d, 2, $J_{\rm HH} = 12$, $\text{ReCH}_{a}\text{H}_{b}\text{CMe}_{3}$), 2.07 (d, 2, $J_{\text{HH}} = 12$, $\text{ReCH}_{a}H_{b}\text{CMe}_{3}$), 1.33, 0.86 (s, 9 each, t-Bu); ¹³C NMR (CD₂Cl₂) δ 290.4 (ReC-t-Bu), 270.3 (ReCHC₆H₅, $J_{CH} = 128$ Hz), 155.2, 153.2, 152.2, 139.6, 139.4, 129.7, 128.7, 128.4, 125.6 (py and phenyl), 57.6 (ReCH₂C₆H₅), 36.1 (CMe₃), 34.0, 28.5 (CMe₃). Anal. Calcd for C₂₈H₃₆N₂F₃O₃SRe: C, 46.46; H, 5.01; N, 3.87. Found: C, 46.16; H, 5.04; N, 3.63.

Re(C-t-Bu)(CHOEt)(CH₂-t-Bu)(py)₂(OTf). Re(C-t-Bu)-(CHOEt)(CH₂-t-Bu)(py)₂(OTf) was prepared from Re(C-t-Bu)-(CH-t-Bu)(CH₂-t-Bu)(py)₂(OTf) and ethyl vinyl ether in a manner similar to that used in the preparation of Re(C-t-Bu)-(CHC₆H₅)(CH₂-t-Bu)(py)₂(OTf). A pink solid was obtained after dichloromethane was removed *in vacuo*; this was washed with ether and dried; yield 60%: ¹H NMR (CDCl₃) δ 12.89 (ReCHt-Bu), 8.76, 8.45 (d, 2 each, py), 7.83, 7.70 (t, 1 each, py), 7.40, 7.20 (d, 2 each, py), 4.07 (q, 2, OCH₂CH₃), 2.03 (d, 1, ReCH_aH_bt-Bu), 1.38 (d, 1, ReCH_aH_b-t-Bu), 1.31 (t, 3, OCH₂CH₃), 1.20, 0.94 (s, 9 each, t-Bu); ¹³C NMR (CDCl₃) δ 288.1 (ReCHOEt), 280.3 (ReC-t-Bu), 154.6, 153.1, 138.6, 138.2, 125.4, 124.8 (py), 75.4 (OCH₂CH₃), 50.6, 35.0 (CMe₃), 33.8, 27.9 (CMe₃), 16.1 (OCH₂CH₃).

Re(C-*t*-**Bu**)(**CH**₂)(**CH**₂-*t*-**Bu**)(**bpy**)(**OTf**). ¹H NMR (C₆D₆) δ 14.03, (d, 1, ReCH_aH_b, J_{HH} = 3, J_{CH} = 135), 13.50 (d, 1, ReCH_aH_b, J_{HH} = 3, J_{CH} = 150), 6.4–9 (m, 8 total, bpy), 2.79 (d, 1, ReCH_aH_b-*t*-Bu), 1.86 (d, 1, ReCH_aH_b-*t*-Bu), 1.39, 0.86 (s, 9 each, *t*-Bu); ¹³C (partial) δ 258 (ReCH₂). Due to the instability of Re(C-*t*-Bu)(CH₂)(CH₂-*t*-Bu)(bpy)(OTf) at -40 °C, a pure sample could not be prepared, and neither elemental analysis nor a complete set of ¹³C NMR data could be obtained. The ¹³C data were obtained by preparing a sample of Re(C-*t*-Bu)(¹³CH₂)(CH₂-*t*-Bu)(bpy)(OTf).

Re(C-t-Bu)[(**CH**₂)₃-t-**Bu**](**C**₂**H**₄)(**py**)₂(**O**₃**SCF**₃). Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(**p**)₂(**O**₃**SCF**₃) (176 mg, 0.25 mmol) was dissolved in 10 mL of benzene and stirred under an atmosphere of ethylene for 45 min. The brown-orange solution was then reduced in volume to 2 mL, and 5 mL of pentane was added to precipitate a beige powder, which was then washed with 15 mL of pentane and dried to yield a beige solid; yield 135 mg (78%). An analytical sample was recrystallized from ether at -40 °C: ¹H NMR (C₆D₆) δ 8.9, 8.7 (d, 2 each, py ortho), 6.65 (br m, 2, py meta), 6.45 (br m, 4, py para), 3.5 (br m, 4, C₂H₄), 3.15 (m, 1, ReCH₂-), 2.51 (m, 1, ReCH₂-), 2.42 (overlapping multiplets, 2 total, ReCH₂CH_aH_b and Re-(CH₂)₂CH_aH_b, partial assignment by C₂D₄ labeling experiment), 2.04 (m, 1, ReCH₂CH_aH_b), 1.80 (m, 1, Re(CH₂)₂CH_aH_b), 1.16, 0.80 (s, 9 each, t-Bu); ¹³C NMR (C₆D₆) δ 248.2 (ReC-tBu), 153.9, 153.7 (py ortho), 138.4, 137.6 (py meta), 125.4, 125.1 (py para), 53.9 (ReCH₂CH₂-, $J_{CH} = 153$, $J_{C-C} = 36$), 53.0, 50.6 (CMe₃), 51.2 (Re(CH₂)₂CH₂-), 46.6 (ReCH₂CH₂-, $J_{CH} = 156$, $J_{C-C} = 36$), 29.9, 25.8 (CMe₃), 20.7 (C_2 H₄, $J_{CH} = 123$); ¹⁹F NMR (C₆D₆) δ -78.7. Anal. Calcd for ReC₂₅H₃₈N₂F₃O₃SRe: C, 43.53; H, 5.55; N, 4.02. Found: C, 43.71; H, 5.76; N, 4.02.

Observation of Re(C-t-Bu)(CHEt)(CH₂-t-Bu)(CD₃CN)_n-(OTf). A 2:1 mixture of Re(C-t-Bu)(CHEt)(CH₂-t-Bu)(CD₃CN)_n-(OTf) and Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃CN)_n(OTf) was generated by heating a CD₃CN solution of Re(C-t-Bu)(CH-t-Bu)(CH₂-t-Bu)(CD₃CN)(OTf) (12 mg, 0.02 mmol) and *cis*-3hexene (10 μ L, 0.08 mmol) at 60 °C for 1 h. Partial ¹H NMR $(CD_3CN) \delta$ 13.53 (t, 1, ReCHEt), 3.5 (d of m, 2 total, ReCHCH₂-CH₃), 2.2 (d, 1, ReCH_aH_b-t-Bu), 1.25, 0.9 (s, 9 each, t-Bu). The remaining resonances could not be assigned due to overlap with the resonances associated with *cis*-3-hexene.

Acknowledgment. R.R.S. thanks the National Science Foundation (Grant CHE 91 22827) for research support, and A.M.L. thanks Dr. R. D. Simpson for a gift of NaL_{OEt}.

OM940949S