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In asymmetric catalytic
tions!!l racemic catalysts give only
racemic products, whereas nonrace-
mic catalysts generate nonracemic
products. Recently, an enantiomer-
selective deactivation strategy for
racemic catalysis was reported to
provide a level of asymmetric induc-
tion that does not exceed that at-
tained by enantiopure catalysts. In
this system, the selective complex-
ation and deactivation with a “chiral
poison” is indispensable (Scheme 1;
3aversus 3b).? In contrast, a “chiral
activator” may selectively complex
but activate rather than deactivate
one enantiomer of a racemic catalyst;
an enantioselectivity higher than
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that achieved with enantiopure cata-
lysts (x,o>>x), as well as a higher
level of catalyst efficiency (k.. > k;
Scheme 1; 2a), can be obtained.l!
Asymmetric activation can also be
achieved by nonpreferential com-
plexation (Scheme 1; 2b), which uti-
lizes the difference in the turnover
frequencies (catalytic activities) be-
tween the activated diastereomers
(koo > kot); these differences de-
pend on the substrates employed.?d
We report here an asymmetric acti-
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Scheme 1. Asymmetric activation/deactivation.

vation/deactivation protocol for achieving higher enantiose-
lectivity irrespective of the substrates employed (Scheme 1; 1)
by maximizing the difference in the catalytic activity between
the catalyst enantiomers.

The preferential complexation of [RuCl,((R)-binap)]
(BINAP=2,2-bis(diphenylphosphanyl)-1,1"-binaphthyl)¥ with
(R)-3,3'-dimethyl-1,1-binaphthyl-2,2"-diamine  (DM-DABN)P!
was readily explained from a modeling study (Figure 1a). As
expected, the addition of a racemic [RuCl,(binap)] species to
0.5 molar equivalents of (R)-DM-DABN resulted in a prefer-
ential complexation to form the single diastereomeric complex
[RuClLy((R)-dm-dabn)((R)-binap)]. Only the [RuCL((R)-dm-

1433-7851/00/3920-3707 $ 17.50+.50/0 3707



COMMUNICATIONS

a)

Me

OO (R)-dm-dabn

“ g J0 ,
OO c‘lMe OO OO \{)'C\'Me OO
( (

[RuCl,((R)-dm-dabn)((R)-binap)]

H,N

H,N
Me

[RuCl,((R)-dm-dabn)((S)-binap)]

[RuCl,((R)-dm-dabn)((R)-binap)]

Figure 1. a) Model study of the [RuCl,(dm-dabn)((R)-binap)] complex.
b) X-ray analysis of [RuCl,((R)-dm-dabn)((R)-binap)]. Selective bond
lengths [A] and bond angles [°]: Ru-Cl1 2.418(4), Ru-CI2 2.401(3), Ru-P1
2.273(3), Ru-P2 2.270(4), Ru-N1 2.228(9), Ru-N2 2.263(10); Cl1-Ru-CI2
165.34(11), P1-Ru-P2 89.80(12), N1-Ru-N2 80.1(4).

dabn)((R)-binap)] complex formed even when a racemic
complex of [RuCl,(binap)] was treated with an excess of (R)-
DM-DABN in CDCl; at room temperature. No [RuCL((R)-
dm-dabn)((S5)-binap)] complex was evident in the 'H NMR
(CDCl;) spectrum, which showed only one set of amino
protons corresponding to the [RuClL((R)-dm-dabn)((R)-bi-
nap)| complex (6 =3.80, 4.69). The (R)/(R) configuration of
the [RuCl,(dm-dabn)(binap) ] diastereomer was confirmed by
X-ray analysis!® of the single crystal obtained from a mixture
of dichloromethane/diethyl ether/hexane (Figure 1b). This
structure showed that the reason why no complex was formed
from a mixture of [RuClL((S)-binap)] and (R)-DM-DABN
was because of the severe steric repulsion that would result
between the aryl group of (S)-binap and the methyl group of
(R)-DM-DABN, as exemplified in the modeling study (Fig-
ure 1a). However, the [RuCl,((S)-binap)] complex gave a
different complex with enantiopure (S,S)- or (R,R)-diphenyl-
ethylenediamine (DPEN)." 8l The two different dichlororu-
thenium complexes formed with DM-DABN and DPEN may
be further converted into mono- or dihydridoruthenium
species under hydrogenation conditions,” ' although the
dm-dabn complex is far less catalytically active under such
conditions (Table 1).
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Table 1. Hydrogenation of 1'-acetonaphthone 4 by [RuCL((R)-dm-binap)] with

diamines.
O i O

[RuCl,((R)-dm-binap)(dmf), ] (1) (0.4 mol%)
diamine (0.4 mol%)

OH

+ H2 *
‘ 8 am KOH (0.8 mol%) ‘
(CHz),CHOH
4 RT 5
Me
OO NH, Ph Ph Ph Ph
NH» 3 ) -
OO H,N NH, H,oN NH,
Me (R,R)-dpen 3 (S,S)-dpen 3
(R)-DM-DABN 2
Diamines Time [h] ee [%] of 5 Yield [%] of 5
none 14 4 (R) 4
(R)-DM-DABN (2) 14 7(R) 6
(R,R)-DPEN (3) 4 > 99 (S)t! >99
(S,5)-DPEN (3) 4 56 (S) >99

[a] The enantiomeric pair (5)-1/(S,S)-3 afforded the enantiomeric product of
(R)-5.

Thus, a racemic [Ru(dm-binap)]®"' catalyst achieves
higher enantioselectivity in carbonyl hydrogenation after
activation/deactivation by the sequential addition of two
different types of chiral diamines than that attained by
simple activation.’ The mixture of [RuCly((%)-dm-
binap)(dmf),] and 0.6 molar equivalents of (R)-DM-DABN
was stirred for 30 minutes at room temperature in dichloro-
methane. After removal of the dichloromethane under
reduced pressure, 0.5 molar equivalents of (S,5)-DPEN in
2-propanol was added to give [RuCl,((R)-dm-dabn)((R)-dm-
binap)] and [RuCL((S,S)-dpen)((S)-dm-binap)], selectively.
Enantioselective hydrogenation was performed after the
addition of KOH and ketones 4, and 6-8 to a mixture of
[RuCl,(dm-binap)(dmf),] (1), (R)-DM-DABN (2), and (S,S)-
DPEN (3). The efficiency of this asymmetric activation/
deactivation protocol was reflected in the higher enantiose-
lectivity in the hydrogenation irrespective of the ketonic
substrates was used relative to the enantioselectivity obtained
using the [RuClLy((S,S)-dpen)((+)-dm-binap) ] complex at the
same temperature and pressure (Table 2). Thus, (R)-1-(1-
naphthyl)-ethanol!'? (5) was obtained with 96 % ee in quanti-
tative yield. 2,4,4-Trimethyl-2-cyclohexenonel® ¢ 131 (9) was
also hydrogenated in high enantioselectivity by changing the
chirality of DPEN from S to R.

In summary, we have developed an “asymmetric activation/
deactivation” strategy for highly enantioselective hydrogena-
tion irrespective of the ketonic substrates used by maximizing
the difference in the catalytic activity between the enantio-
meric catalysts. Thus, the present “asymmetric activation/
deactivation protocol” can be regarded as a paradigm shift in
racemic catalysis.

Experimental Section

5: [RuCl,((%)-dm-binap)(dmf),] (1; 10.5 mg, 10 umol) and (R)-DM-DABN
(2; 1.9 mg, 6 umol) were placed in an autoclave, and the air replaced with
argon. Dichloromethane (3.3 mL) was added to the autoclave under a
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Table 2. Hydrogenation of ketones by the racemic [RuCl,(dm-binap)]
complex through asymmetric activation/deactivation.
[RUCly((+)-dm-binap)(dmf), ] (1) (0.4 mol%)
(R)-DM-DABN (2) (0.22 mol%)
] dpen (3) (0.2 mol%) OH

+H
Ar)l\ . KOH (0.8 mol%) Ar)*\
2-propanol
RT
ketones
© O T:R=H o
X 8a: R = 0-Me
COC €7 8k
Z 8c: R =p-Me
4 6 9

Ketones (R)-2 3 Time [h] ee [%] Yield [%]
4 ++ (S.8) 4 96 (R) >99
4 - (S.5) 4 80 (R) >99
6 ++ S8 4 91 (R) >99
6 - (S.5) 4 45 (R) >99
7 ++ (S5 4 95 (R) >99
7 - (S.5) 4 70 (R) >99
8a ++ (S.9) 4 95 (R) >99
8a - (S.5) 4 82 (R) >99
8b ++ (S,5) 6 95 (R) >99
8b - (S.5) 4 60 (R) >99
8c ++ S8 4 93 (R) >99
8¢ - (S.5) 4 60 (R) >99
9 ++ (R,R) 4 92 (R) > 990l
9 - (R,R) 4 84 (R) > 990l

[a] ++ denotes the presence of (R)-2. [b] Racemic [RuCl,(Tol-binap)]
was used; Tol-BINAP = (2,2'-bis(di-4-tolylphosphanyl)-1,1"-binaphthyl).

stream of argon. After the mixture had been stirred at room temperature
for 30 min, the dichloromethane was removed under reduced pressure. The
autoclave was again purged with argon after the addition of (S,S)-DPEN
(3; 1.0 mg, 4.5 umol). 2-Propanol (2.8 mL) was added to the autoclave
under a stream of argon, followed by the addition of KOH/2-propanol
(0.5Mm, 40 pL, 20 pmol) with stirring at room temperature for 30 min.
1'-Acetonaphthone (4; 0.38 mL , 2.5 mmol) was added to the autoclave at
room temperature under a stream of argon, and then hydrogen was
introduced at a pressure of 8 atm. After vigorously stirring the mixture for
4 h at room temperature, the solvent was removed under reduced pressure.
The residue was filtered through a short column of silica gel. The chemical
yield and enantiomeric ratio of 1-(1-naphthyl)ethanol (5) were calculated
by gas chromatography on a column with a chiral stationary phase (>99 %,
96 % ee (R)). The product could also be isolated by column chromatog-
raphy on silica gel (eluent, hexane/EtOAc 5/1) to give 426 mg (99 %) of 5.
[a]F=+75.5 (c=1.0, CHCL) (Ref. [12] [a]s =+78.9 (c=1, CHCL), R
isomer); 'H NMR (300 MHz, CDCl;): 6 =1.59 (d, /=6.6 Hz, 3H, CHj;),
1.90 (d, J=3.6 Hz, 1H, OH), 5.59 (dq, J=3.6, 6.6 Hz, 1 H, CH), 7.37-7.51
(m, 3H, aromatic CH), 7.60 (d, J=6.6 Hz, 1 H, aromatic CH), 7.70 (d, /=
8.1 Hz, 1 H, aromatic CH), 7.78 - 7.81 (m, 1 H, aromatic CH), 8.02-8.05 (m,
1H, aromatic CH); GC (column CP-Cyclodextrin-$-2,3,6-M-19,
i.d. 025 mm x 25 m, CHROMPACK; carrier gas, nitrogen (75KPa);
column temp. 160°C; injection temp. 190°C; split ratio 100/1), retention
time (tg); (R)-(4+)-5: 32.7 min (98.1%), (S)-(—)-5: 31.6 min (1.9%), 4:
21.3 min (0%).
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