1,4-ADDITION REACTIONS TO α,β UNSATURATED TERTIARY AMIDES

C. CHUIT, R.J.P. CORRIU and C. REYE

Laboratoire des Organométalliques - Equipe de Recherche Associée au C.N.R.S. N° 554 Université des Sciences et Techniques du Languedoc - Place Eugène Bataillon 34060 - Montpellier-cedex

 $\frac{Summary}{1}: Ketones, phenylacetonitrile, ethylmalonate, cyanoethyl acetate, nitromethane$ $and nitroethane were found to add directely to <math>\alpha,\beta$ -unsaturated tertiary amides in the presence of CsF/Si(OMe)₄ to give 1,4-addition products in fair to good yields.

Examples of 1,4-additions of Grignard reagents to α,β -unsaturated tertiary amides have been known for some time (1,2). The 1,4-addition of organolithium reagents has been the subject of more recent studies (2a, 3,4) but includes only one example of 1,4 addition reaction of lithium enolate to α,β -unsaturated tertiary amides (4).

In previous studies (5,6), we have shown the efficiency of $CsF/Si(OR)_4$ for Michael addition of ketones and phenylacetonitrile to α,β -unsaturated ketones, esters and nitriles. Since Michael addition is recognized to be an useful method for carbon-carbon bond formation, we have extended our studies to the use of $CsF/Si(OR)_4$ for promotion of 1,4-addition to α,β -unsaturated tertiary amides and report the results of these investigations here in.

As demonstrated in Table I, $CsF/Si(OR)_4$ allows direct Michael additions of compounds with active methylene group such as $PhCH_2CN$, $NCCH_2CO_2Et$ and $CH_2(CO_2Et)_2$ as well as ketones, CH_3NO_2 and $CH_3CH_2NO_2$ to tertiary cinnamamide and crotonamides in fair to good yields. We observed no reaction when β,β -dimethylacrylamide (entries 13 and 14) is taken as the Michael acceptor even with an active methylene compound (entry 14). It is worth to note that the 1,5-difunctional product can be obtained in situ without hydrolysis.

The reaction of ethylcyanoacetate with crotonomorpholide illustrates the standard procedure : 20 mmol of $CNCH_2CO_2Et$, 20 mmol of crotonomorpholide and 10 mmol of $Si(OMe)_4$ were added to 20 mmol of CsF under a nitrogen atmosphere. The well-stirred mixture was heated at 80°C. The course of the reaction was monitored by following the disappearance of the C = C stretch in the IR spectrum. When reaction was complete (1 hour), 50 ml of CH_2Cl_2 were added to the mixture ; filtration on Hyflosupercel and evaporation gave the crude product. Recrystallization from ethanol-pentane gave the expected product (mp : 76-78°C) (7).

Nucleophilic activation of Si(OR)₄ by fluoride ion to give a basic species able to promote enolate formation is proposed to explain the observed results. This enolate would be rapidly silylated to the corresponding silyl enol ether. The salt-activated silyl

	tions reaction product T °C) isolated yield (%) (a)	80 Dh CON(E1)2 (86)	$65 \begin{array}{ c c } Ph & CON(Ef)_2 & (92) \\ Ph & CN \\ Ph & CN \end{array}$	65 X CON (E1)2 (79)	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c c} & & \\ & &$	25 Ph CON 0 (81)	65 2 2 CON 0 (50)
Cs F/ Si (0R)4	reaction condi t(h)	ß		0.75	۲	F	σ	m
ary amides in presence of	Michael donor	0 (1eq)	Ph CH ₂ CN (1eq)	Ph CH ₂ CN (1eq)	$CH_2 \sim \frac{CO_2 E^{\dagger}}{CN}$ (1eq)	CH ₂ (CO ₂ Et) ₂ (1eq)	(Ph CH ₂) ₂ CO (1eq)	0 (1 eq)
ichael additions on terti	Michael acceptor	Ph /// CON (E t) ₂ (1eq)	(1eq)	✓✓>CON(Et) 2 (1eq)	√CON0 (1eq)	// (1eq)	" (2eq)	1eq)
Σ	entry	-	2	m	t	ъ	Q	7

1	(1eq)	рь со сн _з	(1eq)	7 8	Ph 2 CON	0(76)
1	(1eq)	∘=∕	(1 eq)	5 7		0 (75)
1	(1eq)	(CH ₃ CH ₂ CH ₂) ₂	CO (1eq)	4		(72)
"	(1eq)	N 02 CH3	(10 eq)	32 8	0 NO2 CON O	(82)
	(1eq)	N02 CH2 CH3	(5eq)	74 8	0 X CONC	(14)
CON	(1eq)	Ph CO CH ₃	(1eq)	24 7	0 no reaction	
2	(1eq)	^{CH2} CO2 Et	(1eq)	72 7	0 no reaction	
the pr R and	oducts NMR) C	gave satisfactory onsistent with th	elemental neir struct	analysis and spe ures	ectral data are	

enolether would promote formation of the 1,4-adduct from the α , β -unsaturated tertiary amide. This adduct would react in situ with the alcohol obtained to give the 1,5-difunctional compound.

The ability of α , β -unsaturated primary and secondary amides to function as Michael acceptors is the subject of further study.

References and Footnotes

- E.P. Kohler and G. Heritage, J. Am. Chem. Soc., <u>33</u>, 21 (1905); N. Maxim and N. Ioanid, Bull. Soc. Chim. Romania, <u>10</u>, 29 (1928); N. Maxim, Ann. Chiu., <u>9</u>, 55 (1928); Bull. Soc. Chim. Romania, <u>10</u>, 97 (1928), <u>10</u>, 116 (1928); <u>11</u>, 123 (1930); N. Maxim and N. Ioanid, Bull. Soc. Chim. Romania, <u>12</u>, 28 (1930); N. Maxim and I. Zugravescu, Bull. Soc. Chim. Fr., <u>1</u>, 1087 (1934); G. Gilbert, J. Am. Chem. Soc., <u>77</u>, 4413 (1955).
- 2 a) G. Gilbert and F. Aycock, J. Org. Chem., 22, 1013 (1957), b) J. Klein, Tetrahedron, 20, 465 (1964); c) G. Daviaud and P. Miginiac, Tetrahedron Letters, 3251 (1971).

3 - J.E. Baldwin and W.A. Dupont, Tetrahedron Letters, 1881 (1980).

- 4 G.B. Mpango, K.K. Mahalanabis, Z. Mahdavi-Damghani and V. Snieckus, Tetrahedron Letters, 4823 (1980).
- 5 J. Boyer, R.J.P. Corriu, R. Perz and C. Reyé, J. Chem. Soc. Chem. Comm., 122 (1981).
- 6 J. Boyer, R.J.P. Corriu, R. Perz and C. Reyé, Tetrahedron (in press).
- 7 The spectroscopic data are the following : IR (CHCl₃) cm⁻¹ 2260, 1745, 1640 ; ¹H-NMR (CDCl₃) δ : 1.1 (d, 3H), 1.3 (t, 3H) 2.4 (d, 2H) 2.88 (m, 1H) 3.6 (s, 8H) 4.2 (m, 3H). Analysis (Found C 57.93, H 7.58, N 10.43 ; Calc. for C₁₃H₂₀O₄N₂ C 58.20, H 7.46 N 10.44).

(Received in France 29 September 1982)