
COMMUNICATIONS

174 ¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 1433-7851/02/4101-0174 $ 17.50+.50/0 Angew. Chem. Int. Ed. 2002, 41, No. 1

1,2-Azaborolyls, Isoelectronic Analogues of the
Ubiquitous Cyclopentadienyl Ligand: Synthesis
of B-Heteroatom-Substituted 1,2-Azaborolyl
Complexes and an Assessment of Their
Electronic Features**
Shih-YuanLiu,Michael M.-C. Lo,* andGregory C. Fu*

The cyclopentadienyl group is one of the most widely used
ligands in organometallic chemistry, and metal complexes that
bear cyclopentadienyl (Cp) ligands have been applied across a
broad spectrum of fields.[1] One particularly noteworthy use of
cyclopentadienyl complexes (e.g., zirconocene- and titano-
cene-based systems) is as catalysts for Ziegler ±Natta poly-
merizations of olefins.[2]

The desire to modulate the reactivity of Ziegler ±Natta
catalysts has led to growing interest in the development of
variations of Cp-based Group 4 metallocenes.[2, 3] For exam-
ple, a number of recent studies have pursued the use of boron-
based heterocycles as alternatives to cyclopentadienyl.[4]

Particularly noteworthy are the investigations of Bazan and
Ashe, who have shown that boratabenzene ± zirconium com-
plexes can furnish reactivity distinct from cyclopentadienyl-
zirconium complexes and that the electronic nature of the
boron substituent dictates the catalyst×s course of action.[5±8]

1,2-Azaborolyls are isoelectronic with cyclopentadienyls
(Scheme 1). As with boratabenzenes,[9] the boron of azabor-
olyls provides a potentially straightforward point of attach-
ment for substituents that can modulate the electronic nature
of the boron heterocycle.[10]
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Scheme 1. Cyclopentadienyl and related ligands.

Surprisingly, 1,2-azaborolyls have not been widely inves-
tigated. Nearly all of the work to date is due to Schmid, whose
pioneering studies of azaborolyls were initiated two decades
ago.[11, 12] Only two substituents on boron, both of which are
carbon-based (methyl and phenyl), have been described.

In 1998, we initiated a program directed at expanding the
diversity of accessible 1,2-azaborolyls, with a particular focus
on the boron substituent. Herein, we demonstrate that, from a

single precursor, we can synthesize azaborolyl complexes that
bear a wide array of substituents (hydrogen, carbon, nitrogen,
oxygen, fluorine, phosphorus, and sulfur). We have structur-
ally characterized a B�OR adduct, and through electro-
chemical studies we have established that the group on boron
exerts a significant impact on the electronic nature of the
metal complex.

In our initial investigation, we chose to focus on the
synthesis of azaborolyl ± iron complexes, thereby allowing
direct comparison with much-studied, isoelectronic ferroce-
nes.[1b] Transmetalation of the previously reported stannacycle
1[13] with BCl3 affords the B-chloroboracycle 2, which is then
complexed to iron (Scheme 2).[14] Treatment of this �5-(1,2-
azaborolyl) adduct 3 with TlCp[15] furnishes ferrocene ana-
logue 4, the chloride of which is then abstracted by AgOTf
(OTf�OSO2CF3) to provide the more reactive triflate
complex 5.[16]
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Scheme 2. Synthesis of B-heteroatom-substituted �5-(1,2-azaborolyl) com-
plexes.

Complex 5 reacts with anionic nucleophiles to produce a
wide array of B-substituted adducts 6 in good to excellent
yields (Table 1). Organometallic reagents (Table 1, entries 1
and 2), hydride (Table 1, entry 3),[17] alkoxides and thiolates
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Table 1. Synthesis of a diverse array of B-substituted 1,2-azaborolyl
complexes by nucleophilic substitution.
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Entry M�Nu Yield [%][a]

1 Li-nBu 84

2 MgBr 88

3 LiAlH4 91
4 Na-OMe 83[b]

5 Na-SBn 89
6 Li-NMe2 85
7 K-PPh2 75
8 K-F 87

[a] Yield of isolated product (average of two runs). [b] 95% purity.
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(Table 1, entries 4 and 5), amides and phosphides (Table 1,
entries 6 and 7), as well as fluoride (Table 1, entry 8) all
cleanly displace the triflate, presumably via an addition ± eli-
mination pathway. The syntheses illustrated in Table 1 and
Scheme 2 describe the first examples of heteroatom-substi-
tuted 1,2-azaborolyls.

To gain insight into how the boron substituent affects the
electronic nature of the iron, we have measured the oxidation
potential of these new azaborolyl complexes (Table 2).[18] As
expected, the NMe2 and OMe groups are the best donors
among those that we have examined (Table 2, entries 1 and 2).
The nBu, SBn, F, and allyl substituents appear to be modestly
electron-donating (Table 2, entries 3 ± 6) relative to H (Ta-
ble 2, entry 7), whereas PPh2 is electron-withdrawing (Table 2,
entry 8).

Using the data in Table 2 and a two-parameter Hammett
analysis (�I� inductive component; �R� resonance compo-
nent),[19, 20] we have determined an excellent correlation
between observed and calculated oxidation potentials for
these substituted 1,2-azaborolyl complexes (Figure 1; Epa�
0.42�I � 0.94�R � 0.20).

We have confirmed our structural assignment for azabor-
olyl complexes 6 through an X-ray crystallographic study of
the B-OMe adduct (Figure 2). As expected on the basis of our
electrochemical investigations, the OMe group adopts a

Figure 1. Observed and calculated (by Hammett analysis) oxidation
potentials for substituted 1,2-azaborolyl complexes (Epa(calcd)� 0.42 �I

� 0.94 �R � 0.20).

geometry consistent with � bond-
ing between oxygen and boron
(Figure 2).[21]

Finally, we have determined the
impact that replacing two carbons
of a cyclopentadienyl ligand with
the corresponding isoelectronic
B�N unit has on a metal. Thus,
electrochemistry indicates that 1,2-
azaborolyl is somewhat more elec-
tron-donating than cyclopentadien-
yl (Scheme 3).[22]

In summary, we have developed
a synthetic route that provides
access to a diverse array of the first
B-heteroatom-substituted (H, N,
O, F, P, S, and Cl) 1,2-azaborolyl complexes. In addition, we
have established that the substituent on boron can modulate
the reactivity of the complexes, specifically, their susceptibility
to one-electron oxidation. Furthermore, we have determined
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Scheme 3. Direct electrochemical comparison between a 1,2-azaborolyl
and a cyclopentadienyl complex (0.0026� ; 0.10� Bu4NPF6; CH2Cl2;
20 mVs�1; potentials relative to Ag/Ag� with E1/2� 0.23 V for Fc/Fc�).

that a 1,2-azaborolyl is more electron-rich than an isostruc-
tural cyclopentadienyl ligand. In view of the ubiquity and the
utility of cyclopentadienyl ±metal complexes, we anticipate
that the observations described in this study will stimulate the
development of applications of �5-(1,2-azaborolyl) ligands in
metal-catalyzed processes.
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Entry Boron substituent Epa [V][a]

Nu on 6

1 NMe2 � 0.26
2 OMe � 0.08
3 nBu 0.07
4 SBn 0.08
5 F 0.08
6 allyl 0.13
7 H 0.20
8 PPh2 0.29

[a] Epa� anodic peak potential.

Figure 2. Molecular struc-
ture of azaborolyl complex
6 (Nu�OMe) (ORTEP il-
lustration, with thermal el-
lipsoids drawn at the 35%
probability level).
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Total Synthesis of Ambruticin**
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Ambruticin (1) was isolated from fermentation extracts of
the Myxobacteria species Polyangium cellulosum var. fulvum.
It is an orally active antifungal agent showing in vitro and in
vivo activity against a variety of pathogenic fungi, including
Histoplasma capsulatum, Coccidioides immitis, and Blasto-
myces dermatitides, as well as the dermatophytic filamentous
fungi.[1] Ambruticin features unique cis-2,6-disubstituted
tetrahydropyran and dihydropyran ring systems together with
a methylcyclopropane moiety. In spite of considerable interest
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in the preparation of 1,[2] we found in the literature only one
total synthesis, reported by Kende in 1990,[3] and the difficulty
in designing a stereoselective total synthesis is manifested in
recent reports dealing with partial syntheses of the molecule.[4]

In our continuing search for new applications of stereo-
selective radical cyclization reactions of �-alkoxyacrylates,[5]

we examined the efficacy of these reactions in a stereo-
controlled synthesis of 1.

In our retrosynthetic analysis, the tetrahydropyran alde-
hyde B was to be prepared from a �-alkoxyacrylate precursor
C, which may be obtained from �-arabinose (2). The
dihydropyran derivative E was envisaged to arise from the
diene F by olefin metathesis.[6] Connection of the parts A and
D by Julia-type olefination would then complete the con-
struction of the carbon framework (Scheme 1).

Selective acetonide protection of the dithioacetal derivative
of �-arabinose (2) and benzylation of the remaining hydroxy
groups gave the acetonide 4 (Scheme 2).[2a] The �-alkoxy-
acrylate 5 was obtained from 4 by acetonide deprotection,
regioselective TBS protection of the primary hydroxy group,
and reaction with methyl propiolate. The aldehyde group
generated from the dithioacetal moiety in 5 was reduced with
NaBH4, and bromide substitution led to the primary bromide
6, which was then stereoselectively transformed into the
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