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The efficient and catalytic dehydrogenation of alcohols is a clean

approach for preparing carbonyl compounds accompanied only by

the generation of hydrogen gas. We have accomplished the

heterogeneous rhodium-on-carbon catalyzed dehydrogenation of

secondary, as well as primary, alcohols to the corresponding

ketones and carboxylic acids in water under basic conditions.

The oxidation of alcohols is one of the most fundamental
organic reactions used to prepare carbonyl compounds.1

Among the various methods for the oxidation of alcohols, the
transition metal-catalyzed dehydrogenation2 of hydroxyl
groups without an organic hydrogen scavenger (compounds
bearing easily reducible functionalities are used to scavenge
the hydrogen gas (H2)), or an oxidant (e.g., molecular oxygen3),
is a clean approach to provide the corresponding carbonyl pro-
ducts, due to its safety and the production of less waste, except
for hydrogen gas. Additionally, the hydrogen gas generated
during the dehydrogenation process as a side-product can be
utilized as a valuable energy source. While a variety of homo-
geneous4 and heterogeneous catalysts using Ag,5 Au,6 Cu,7

Co,8 Pt9 and Ni10 as a transition metal on a support have been
developed for the dehydrogenation of secondary and primary
alcohols into the corresponding ketones and aldehydes, only
Milstein et al. have pioneered the direct transformation of
primary alcohols into carboxylic acids, using a homogeneous
Ru catalyst in water.11 Since the reuse of catalysts is eagerly
desired from the viewpoint of green chemistry, dehydrogena-
tion reactions using a reusable water soluble Ir catalyst,4i and
heterogeneous catalysts,5–10 are considered to be the most
sustainable processes without any waste, with the exception of
H2. However, all of the previous reactions using heterogeneous
catalysts were carried out in organic solvents (e.g. toluene and
xylene). Herein, we demonstrate the heterogeneous Rh/C cata-

lyzed dehydrogenation of secondary, as well as primary, alco-
hols in water as a clean, nontoxic, non-flammable, cheap and
environmentally benign solvent, into the corresponding
ketones and carboxylic acids.

ð1Þ

We have already reported the redox reactions of secondary
alcohols under Pd/C catalyzed hydrogenation conditions.12

A platinum group metal, supported on carbon, generally dis-
plays a catalytic activity for hydrogenation.13 We have also uti-
lized not only Pd/C, but also Rh/C, Ru/C and Pt/C for the
hydrogenation of various substrates, such as arene nuclei,
alkyl chlorides and fluorinated arenes.14 Dehydrogenation
using a heterogeneous platinum group metal-on-carbon poten-
tially includes the occurrence of a problematic issue, with the
undesirable and inverse reduction of carbonyl products into
the corresponding alcohols (substrates) by the in situ-gene-
rated H2 gas (eqn (1)). Nevertheless, we have developed de-
hydrogenation reactions of alcohols when combined with
some platinum group metals on carbon analogs, along with an
inorganic base and water as the solvent, during the course of
our studies.

We initially examined the catalyst efficiencies for the de-
hydrogenation of benzhydrol (1a) in water at 100 °C for 6 h
under an argon atmosphere (Table 1). The 10% Pd/C catalyzed
reaction gave a mixture of the desirable ketone (2a) and di-
phenylmethane (3a) as a hydrogenolysis product of the in situ-
generated H2 (entry 1, without base). Furthermore, the reac-
tions using 10% Pt/C, Ru/C and Rh/C produced mixtures of an
unreacted or inversely-hydrogenated15 substrate (1a), a ketone
product (2a), diphenylmethane (3a), and bis(diphenylmethyl)-
ether (4a) (entries 3, 5, 7 and 8, without base). The generation
ratio of 2a could be improved by the addition of Na2CO3 (1.1
equiv.) (entries 1, 3, 5, and 7, with Na2CO3). The incremental
increase of Rh/C, from 10 mol% to 20 mol%, gave 2a in nearly
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quantitative isolated yields (92%, entry 8, with Na2CO3). The
role of the Na2CO3 is unclear and is under investigation.

The dehydrogenation efficiency of 1a, using various bases,
was estimated using 10% Rh/C as the catalyst for 3 h (Table 2,
entries 1, 3, 4, 6 and 7). Na2CO3, NaHCO3, and K2CO3 were
found to be more effective than NaOH and Et3N. An organic
base was less efficient due to the catalytic poison effect by the
coordination ability of Et3N towards Rh metal. For com-
parison, the generation ratios of 2a using Na2CO3, NaHCO3,

and K2CO3 for 6 h (entries 2, 5 and 8) were investigated.
Na2CO3 was chosen as the appropriate base for the Rh/C
catalyzed dehydrogenation.

While the present dehydrogenation in organic solvents
[MeOH, toluene, cyclopentyl methyl ether (CPME) and
1,4-dioxane] led to low conversion yields (Table 3, entries 2–5),
the desired ketone (2a) was nearly quantitatively obtained in
water (entry 1).

Water as a solvent can also play a crucial role in the trans-
formation of primary alcohols into carboxylic acids (Table 4).

Namely, the first dehydrogenation stage of decanol (6a), as a
primary alcohol, can give the corresponding decanal (7a),
which is subsequently transformed into the hydrate intermedi-
ate (A) in water, and the following second dehydrogenation (A)
produces the corresponding carboxylic acid (8a).11,16 NaOH
was found to be the most effective base for the double de-
hydrogenation of decanol (6a) to provide decanoic acid (8a) with
a yield of 53% (entry 5 in comparison with entries 1–4 and 6),
since the hydroxyl ion of NaOH synergistically facilitated the
formation of the hydrate (A). Decanal (7a) as the starting
material was also efficiently converted into decanoic acid (8a)
under the same reaction conditions with a yield of 52%
(eqn (2)), which clearly indicates that the presented double
dehydrogenation of 6a into 8a proceeded via the formation of
7a as an intermediate. The reaction of 6-phenylhexanol (6b)
also gave the desired carboxylic acid (8b) with a yield of 50%,
accompanied by trace amounts of pentylbenzene (9b) and
1-phenyl-1-pentene (10b) as byproducts (eqn (3)). Undesirable
decarbonylations of the terminal aldehyde and the carboxylic

Table 1 The catalyst efficiencies towards the dehydrogenation of benz-
hydrol (1a) as a sec-alcohol

Entry Catalyst

Ratio of 1a/2a/3a/4a a

Without base With Na2CO3
b

1 10% Pd/C (10 mol%) 0/68/32/0 0/70/30/0
2 10% Pd/C (20 mol%) — 29/71/0/0
3 10% Pt/C (10 mol%) 29/46/1/24 9/82/9/0
4 10% Pt/C (20 mol%) — 1/87/7/0
5 10% Ru/C (10 mol%) 67/28/1/4 22/77/1/0
6 10% Ru/C (20 mol%) — 59/49/0/0
7 10% Rh/C (10 mol%) 32/56/11/1 16/78/6/0
8 10% Rh/C (20 mol%) 20/66/4/10 0/98(92)c/2/0

a The ratios were determined by 1H NMR spectroscopy. b 1.1 equiv. of
Na2CO3 were used. c Isolated yield.

Table 2 Base efficiencies

Entry Base Time (h) Ratio of 1a/2a/3a/4a a

1 Na2CO3 3 35/63/2/0
2 Na2CO3 6 0/98(92)b/2/0
3 NaOH 3 45/53/2/0
4 NaHCO3 3 35/65/0/0
5 NaHCO3 6 5/92/2/1
6 Et3N 3 74/26/0/0
7 K2CO3 3 21/78/1/0
8 K2CO3 6 2/97(91)b/1/0

a The ratios were determined by 1H NMR spectroscopy. b Isolated
yields.

Table 3 Solvent effects

Entry Solvent Ratio of 1a/2a/3a/4a a

1 H2O 0/98/2/0
2 MeOH 94/6/0/0
3 Toluene 68/30/0/2
4 CPME 72/24/2/2
5 1,4-Dioxane 96/4/0/0

a The ratios were determined by 1H NMR spectroscopy.

Table 4 Double dehydrogenations of pri-alcohol (6a) into the corres-
ponding carboxylic acid (8a)

Entry Solvent Ratio of 6a/7a/8a a

1 Na2CO3 0/0/100 (32)b

2 K2CO3 12/44/44 (22)c

3 Li2CO3 8/39/53 (24)c

4 NaHCO3 45/3/52 (30)c

5 NaOH 0/0/100 (53)b

6 Et3N 0/0/100 (37)c

a The ratios were determined by 1H NMR spectroscopy. Other
products, which could not be identified, were also obtained. b Isolated
yields of 8a. c The yields of 8a were determined by 1H NMR
spectroscopy using 1,2-methylenedioxybenzene as the internal
standard.
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acid under the transition metal-catalyzed hydrogenation con-
ditions17 could not be completely suppressed.

ð2Þ

ð3Þ

Table 5 Scope of the substratesa

Entry Substrate Product
Time
(h)

Yield
(%)

1b 6 74

2 6 81

3 48 76

4 6 76

7

5 6 64

6 6 89

7 6 89

8 24 89

9 6 63d

29d

Table 5 (Contd.)

Entry Substrate Product
Time
(h)

Yield
(%)

10 6 82

11 24 38 (42)e

12 6 51

13 24 74

14 12 62 (10)e

15c 24 54

16c 24 44

17c 24 38

aNa2CO3 (2.2 equiv.) was used for the dehydrogenation of the
secondary alcohols and NaOH (2.2 equiv.) was used for the double
dehydrogenation of the primary alcohols as the bases, unless
otherwise noted. bNa2CO3 (1.1 equiv.) was used as the base. c After the
reaction, the reaction mixture was neutralized with diluted H2SO4, and
then filtered and extracted. d The yields were determined by 1H NMR
spectroscopy because the generated products were inseparable.
e Isolated yields of the starting materials.
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The scope of application of the substrates was next investi-
gated, using Na2CO3 for the secondary alcohols and NaOH for
the primary alcohols as the bases (Table 5). Various secondary
benzylic and aliphatic alcohols, bearing linear and cyclic sub-
structures, efficiently underwent dehydrogenation to give the
corresponding carbonyl products (entries 1–14). As mentioned
in the introduction, a platinum group metal-on-carbon poten-
tially possesses a hydrogenation activity.13 Therefore, the H2

gas generated under the dehydrogenation conditions may
cause the hydrogenation of the coexisting reducible functional-
ities. The alkene was completely hydrogenated (entry 12),
while the cyclopropane, the aromatic fluoride18 and the benzyl
ether functionalities were partially reduced (entries 4, 9, 13
and 14). Meanwhile, the aromatic chloride was perfectly tole-
rated under the Rh/C catalyzed conditions (entry 8).18 Primary
benzylic alcohols also underwent double dehydrogenation in
water to give the corresponding carboxylic acids in moderate
yields (entries 15–17).

Since reuse is one of the key components for heterogeneous
transition metal-catalyzed reactions, from the view point of
green chemistry and cost performance, the reuse of 10% Rh/C
was attempted during the dehydrogenation of 1a.19 While Rh/
C was reusable up to four times without any loss of the cata-
lytic activity, after simple filtration and washes with H2O and
MeOH, a gradual decrease in the catalytic activity was observed
in the fifth and sixth runs. Since analysis using Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)
indicated no metal leaching into the reaction mixture,20 the
modest decrease in the catalytic activity might have been due
to the chemical or mechanical damage caused by the basic
conditions and/or the stirring (Table 6).

Conclusions

We have accomplished the Rh/C catalyzed, hydrogen scaven-
ger- and oxidant-free, dehydrogenation of secondary and
primary alcohols in water, under basic conditions, to provide
the corresponding ketone and carboxylic acid derivatives. The

heterogeneous Rh/C could be recovered by a simple procedure
and reused up to four times. The presented dehydrogenation
is the first successful case using water as the solvent for this
heterogeneous catalytic system, and carboxylic acids were
obtained from primary alcohols using water as part of the
oxygen source.
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