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Abstract—A highly active catalyst system for the heteroarylation of acetone has been identified. The coupling between the in situ
generated tributyltin enolate of acetone and a variety of heteroaromatic bromides, chlorides, and triflates in the presence of this
catalyst system provided arylacetones in good yields.
© 2003 Elsevier Ltd. All rights reserved.

The palladium-catalyzed coupling of aryl halides with
ketone enolates to form sp2-sp3 C�C bonds has
emerged as an extremely useful method for the synthe-
sis of �-aryl ketones.1 Buchwald, Hartwig, and others
have developed new catalyst systems that rendered this
reaction quite general for a wide range of carbonyl
substrates.2 Recently, the enantioselective construction
of quaternary centers by �-arylation of ketone enolates
has also been realized.3 Although a lot of advances
have been made in this area, to the best of our know-
ledge there has been only one report of �-arylation
reaction of acetone.4,5 Herein, we report a highly active
catalyst system for the palladium-catalyzed heteroaryla-
tion of acetone that provides an array of �-heteroaryl
acetones.

During our research we required a convenient prepara-
tion of �-heteroaryl acetones from commercially avail-
able heteroaromatic halides. The attempt to convert
5-bromopyridine-3-carbonitrile to the corresponding
methyl ketone using the literature procedure (PdCl2(o-
Tol3P)2 as the catalyst)4 did not provide synthetically
useful yields (<10%). The effect of phosphine ligands on
this palladium-catalyzed heteroarylation of acetone was
then investigated and the results are summarized in
Table 1. Little or no product in the presence of
triphenylphosphine and tri(o-tolyl)phosphine (entries 1
and 2) was observed; but modest yields of products in
the presence of DPPF and Xantphos (entries 3 and
4), and much improved yields in the presence of

Table 1. Effects of phosphine on the palladium-catalyzed
heteroarylation of acetone
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Table 2. Scope of the palladium-catalyzed heteroarylation of acetone

Buchwald’s o-biphenyl phosphines (entries 5–7) were
obtained.6 2-Dimethylamino-2�-diphenylphosphino-1,1�-
biphenyl (1) was found to be the best among the
phosphines surveyed thus far, which provided the
desired �-pyridyl acetone in 81% yield.

A wide array of electronically and structurally diverse
heteroaromatic substrates were converted to the corre-
sponding methyl ketones using this catalyst system
(Table 2).7 This reaction tolerates electron-donating
groups on the aromatic ring (entry 1) as well as elec-
tron-withdrawing groups (entries 2 and 3). Yields for a
few substrates including 3-bromo-6-methoxy pyridine
(entry 6) remain low (<10%) for unknown reasons.
Heteroaromatic bromide, chloride, and triflate8 are all
suitable substrates for this synthetically useful transfor-
mation. In terms of the scope of the heterocycles, this

reaction is also quite general. Thiophenes, imidazoles,
pyridines, as well as other heterocycles are all suitable
substrates.9

This palladium-catalyzed arylation of acetone also
works quite well on phenyl halide substrates (Eqs. (1)
and (2)).6 Interestingly, with an electron-donating
group (CH3S) on the phenyl ring, biphenyl ligand 1
gave optimal results; while with an electron-withdraw-
ing group (CN) on the phenyl ring, biphenyl 2 gave the
optimal results.

(1)
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The mechanistic details of the arylation reaction are not
yet fully understood. Presumably, in a pathway similar
to that described by Buchwald and Palucki, a tin
enolate is generated in situ from tributyltin methoxide
and isopropenyl acetate, which undergoes transmetalla-
tion and coupling to the aryl partner to deliver the
�-aryl acetone.1a Since the reaction conditions are
essentially neutral, polyarylation and enolate mediated
condensation are not significant pathways. In compari-
son, both side reactions were observed in the presence
of a base.2a

In summary, we have identified a highly active catalyst
system for heteroarylation of acetone that converts
various heteroaromatic bromides, chlorides, and trifl-
ates to the corresponding �-aryl acetones in good
yields.
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