Naphthalene oxidation by peracetic acid catalysed by Mn³⁺ porphinoid complexes

Svetlana V. Barkanova,* Oleg L. Kaliya and Eugene A. Luk'yanets

Institute of Organic Intermediates and Dyes, 103787 Moscow, Russian Federation. Fax: +7 095 254 1200; e-mail: rmeluk@cityline.ru

10.1070/MC2001v011n03ABEH001429

A comparison of the oxidation of naphthalene and its d^{8} -derivative by peracetic acid catalysed by Mn^{3+} tetranitrotetra-*tert*butyltetraazaporphine allowed us to refine both the mechanisms of 1,4-naphthoquinone and 1-naphthol formation and the structures of the final products of 1-naphthol oxidation.

The oxidation of aromatic compounds in nuclei is a subject of continual interest; in the last decade, certain success has been achieved in the resolution of this problem. It was reported on 2-methylnaphthalene conversion to 2-methyl-1,4-naphthoquinone (menadione) in 45-65% yield by means of different oxidants [H₂O₂,¹ (Me₃SiO)₂,² KHSO₅,³ AcOOH⁴⁻⁶] and catalysts of both non-porphinoid (Re7+ oxo complexes1,2) and porphinoid structure (Mn and Fe complexes of substituted porphyrin³ and azaporphines⁴⁻⁶). Previously, we found the effectiveness of Mn³⁺ azaporphines in naphthalene (Nph) oxidation by peracetic acid to the corresponding para-quinones and oligomeric products in acetonitrile-acetic acid solutions. Of studied complexes {3,5-octanitrophthalocyanine (ONPcMnCl),4,5 tetra-R-tetra-tert-butyltetraazaporphine [RTAPMnCl; $R = NO_2(1), Br]^6$ }, tetraazaporphine 1 was the most active in the formation of *para*-quinones. We hypothesised that under the reaction conditions naphthalene oxidation proceeds via two parallel paths with the participation of oxene and peroxide Mn complexes with the formation of 1-naphthol (as a primary product, NOH) and 1,4-naphthoquinone (Q), respectively. Here, we describe the results of the comparative oxidation of naphthalene and its deuterated analogue $(C_{10}D_8)$ in 1 + AcOOH catalytic system.

Previously, we found that the kinetics of 1-naphthol formation was almost the same in the naphthalene oxidation in the catalytic systems AcOOH + Mn3+-porphinoids (PMnX) [P = mesotetra(2,6-dichloro-6-R-phenyl)porphyrins (RTDCPPMnCl, R == MeO, H, Br, Cl, NO_2),⁷ tetraazaporphines (RTAPMnCl, R = H, PhSO₂, 1),⁸ phthalocyanine (ONPcMnCl)⁵]. The epoxidation of cis-olefins in the same catalytic systems was found to be highly stereospecific,^{7,8} which is commonly accepted as a proof of the formation of highly-reactive Mn^{5+} -oxene {[$PMn^{5+}(O)(L)$](X)}. Nevertheless, comparative and competitive oxidation of naphthalene and olefins^{7,8} revealed that naphthalene hydroxylation is fulfilled by another catalytic intermediate, presumably by the Mn⁴⁺-oxene of a porphinoid π -cation radical {[+·PMn⁴⁺(O)(L)](X), 2; L = AcOH}. The intimate mechanism of oxygen atom transfer from oxene 2 to the naphthalene molecule, though, was not established. As reported, hydrocarbon hydroxylation in both actual enzymes and model systems can occur via either H-atom abstraction⁹ or the insertion of an oxygen atom of metallo-oxene into the C-H bond with the intermediate formation of a pentacoordinated carbon atom.¹⁰ To discriminate some of the proposed possibilities, we compared the rates of 1-naphthol formation in the course of $C_{10}H_8$ and $C_{10}D_8$ oxidation by AcOOH + 1. Actually, if an oxygenated product is formed with H-atom abstraction from a substrate molecule, its formation should be characterised by a significant kinetic isotope effect (KIE).

The initial rate of 1-naphthol formation $(W_{\text{NOH}}^{\text{in}})$ exhibits the Michaelis–Menten kinetics [Figure 1; equation (1)], indicating the participation of a hydroxylating moiety in both 1-naphthol formation and catalyst destruction [rate constants k_{N} and k_{d} , respectively; unimolecular catalyst degradation is considered for simplicity].

If 1-naphthol formation had been fulfilled with H-atom abstraction from a molecule of naphthalene, then at its low concentrations [equation (2)] the $W_{\text{NOH}}^{\text{in}}$ value should have been much lower for $C_{10}D_8$ than for $C_{10}H_8$ ($k_N^{\text{deut}} \ll k_N^{\text{nondeut}}$). This contradicts the experiment: as shown in Figure 2, the kinetic curves of 1-naphthol formation are identical for both substrates.

Figure 1 Partial rate $(W_{\text{NOH}}^{\text{in}}/[1])$ of 1-naphthol formation as a function of naphthalene concentration. $[1] = (0.5-2) \times 10^{-8} \text{ mol dm}^{-3}$, $[\text{AcOOH}] = 0.05 \text{ mol dm}^{-3}$. MeCN + AcOH (0.5 M).

$$W_{\rm NOH} \sim \frac{k_{\rm N} [\rm Naphthalene]_0}{k_{\rm d} + k_{\rm N} [\rm Naphthalene]_0} \quad \text{at } k_{\rm d} > k_{\rm N} [\rm Naphthalene]_0 \quad (1)$$

$$W_{\rm NOH} \sim \frac{k_{\rm N}}{k_{\rm d}} [\text{Naphthalene}]_0$$
 (2)

These data allow us to reject the radical, oxygen-rebound and concerted non-synchronous mechanisms (the last is characterised by a high KIE value of the first intermediate transformation to the final product¹⁰). The proposed¹¹ intermediate formation of 1,2-arene oxides last time is considered rather questioned both for mimicking³ and enzyme-depending systems¹² and does not occur under the reported conditions because of the absence of isomeric 2-naphthol in the RTAPMnCl-catalysed reactions.[†] This

Figure 2 Kinetic curves of 1-naphthol formation in the reaction of $C_{10}H_8$ (open squares and circles) and $C_{10}D_8$ (solid squares and circles) oxidation by AcOOH catalysed by 1. (*1*) [1] = 1×10⁻⁸ mol dm⁻³, [$C_{10}H_8$] = [$C_{10}D_8$] = 0.025 mol dm⁻³, [AcOOH] = 0.05 mol dm⁻³, [AcOOH] = 0.5 mol dm⁻³; (2) [1] = 2×10⁻⁸ mol dm⁻³, [$C_{10}H_8$] = [$C_{10}D_8$] = 0.004 mol dm⁻³, [AcOOH] = 0.025 mol dm⁻³, [AcOOH] = 0.25 mol dm⁻³, [AcOOH] = 0.25 mol dm⁻³.

last also contradicts with the mechanism of one-electron naphthalene oxidation followed by proton abstraction. We suggest that the discussed reaction occurs by a 'concerted' mechanism of oxygen insertion into the C_{arom} -H bond or *via* the intermediate formation of the σ -adduct PMn–O– C_{arom} , which has been proposed³ for Mn(Fe) porphyrin-catalysed oxidation of 2-methylnaphthalene by KHSO₅ (Figure 3).

(b) Mechanism with σ -adduct formation

Figure 3 Possible mechanisms of naphthalene hydroxylation by peracetic acid in an acetonitrile–acetic acid solution catalysed by Mn^{III} porphinoid complexes [PMn^{III}(L)](X), P = substituted porphyrins, porphyrazines, phthalocyanines; L = AcOH; X = Cl⁻, AcO⁻ (not shown).

Under the specified conditions, firstly formed 1-naphthol undergoes further oxidation to oligomers;⁵ the nature of these products depends on the substrate concentration.

The oxidation of naphthalene or 1-naphthol at low concentrations ($< 0.01 \text{ mol dm}^{-3}$) leads to a brownish residue, which was isolated as a main product in the reactions catalysed by RTDCPPMnCl and Mn3+ tetra-tert-butyltetraazaporphine and as a by-product in the reactions catalysed by ONPcMnCl and 1. Capillary electrophoresis, IR spectroscopy and HPLC (4-5 nonresolved peaks with $V_{\rm R}$ higher that that of naphthalene; Separon C₁₈ reverse phase, 10–100% aqueous acetonitrile) and ¹H NMR (8-9 peaks at 1.8-2.4 ppm; ~20 peaks at 7.5-8.0 ppm; Bruker 80 MHz or 300 MHz) indicate that this residue is a mixture of hydroxylated and acetylated derivatives of naphthoxy radical coupling products, whose composition depends on AcOOH concentration. At a fourfold excess of the oxidant ([AcOOH]: $[Nph]:[ONPcMnCl] = 640:160:1, [Nph]_0 = 0.004 M$, the isolated precipitate exhibited *m/z* 286, 374, 426, 442, 456, 472 and 486 (FAB MS data), which correspond to hydroxy, acetoxy and naphthoxy derivatives of 1,1'-dinaphthoquinone-4,4' 3. At [AcOOH]: [Nph] = 1.5, naphthoxy-3 is not formed: mass ions (*m/z* 333, 347, 375, 389, 403, 418 and 432) correspond to acetylated and hydroxylated derivatives of both 3 and 1,1'-dihydro-3. The determination of the exact composition of such complex mixtures needs additional research; the reported data, though, fit well with the hypothesis on the radical mechanism of 1-naphthol oxidation with H-atom abstraction followed by the coupling of the formed

naphthoxy radical, oxidation to **3**, its acetylation and hydroxylation. In terms of this hypothesis, the oxidation of $C_{10}D_8$ instead of $C_{10}H_8$ under the same conditions should yield a lower number of oligomers. Really, MALDI analysis[‡] of the spent reaction solution of $C_{10}D_8$ oxidation revealed only dimer **4** and its 4,4'-dihydroxy derivative (*m*/*z* 191.9 and 192.9, *z* = 2; Figure 4).

Figure 4 The proposed structures of the oligomeric products of naphthalene oxidation.

When 0.1 M naphthalene or 1-naphthol was oxidised by dropwise addition of AcOOH to a mixture of the catalyst and the substrate, the single product was a violet precipitate unstable both in solution and in the solid state. Based on the data of elemental analyses (13–16% oxygen content per naphthalene unit), MALDI[§] spectra (m/z 426.3, 286), ¹H NMR (only broadened peaks at 7.0– 8.0 ppm) and IR spectra (peaks corresponding to the C–OH and C=O bands), we suppose this compound to be a mixture of 1,1'-dinaphthoquinone-4,4' complexes with the naphthyloxy radical and its oxygenated form (5, C₃₀H₁₀O₃, M = 427; 5a; Figure 4).

cal and its oxygenated form (**5**, $C_{30}H_{19}O_3$, M = 427; **5a**; Figure 4). Our conclusion on 1-naphthol radical oxidation agrees with the results on 2,3,5-trimethylphenol (TMP) oxidation under the same reaction conditions ([AcOOH]:[TMP]:[ONPcMnCl] = 6400: 4000:1). In this case, phenoxy radical coupling is sterically hindered, and exhaustive TMP oxidation leads to the formation of 2,3,5-trimethyl-1,4-benzoquinone in a yield higher than 95% (based on the oxidant used).

As we found previously,^{4–6} in the oxidation of naphthalene and its methyl derivatives in APMnX + AcOOH catalytic systems, the quinone yield determined at the end of the reaction (η^{in}) increases significantly (η^{therm}) after heating (40–70 °C) or continuous storage of neutralised reaction solutions at 20 °C. HPLC analysis before heating revealed an unidentified peak of a polar compound, the intensity of which decreases on heating with a simultaneously increasing peak of *para*-quinone, thus indicating the formation of quinone precursor **6**.[¶] Here, we report the study of 1,4-naphthoquinone- d_6 (Q_d) formation in the reaction C₁₀D₈ + AcOOH + **1**.

As in the case of $C_{10}H_8$, the formation of 1,4-naphthoquinone- d_6 (Q_d)^{$\dagger\dagger$} is preceded by the formation of a **6**-type inter-

[†] The minor formation of 2-naphthol (10% to 1-naphthol) in RTDCPPMnCl⁷ and ONPcMnCl⁵ dependent reactions might be explained by a lower electrophilicity of the corresponding Mn-oxenes as compared with their tetraazaporphine analogues.

^{* &#}x27;Mass spectrum with matrix assisted laser desorption ionization' (MALDI); under the conditions of MALDI analyses (2,5-dihydroxybenzoic acid or sinapinic acid as a matrix), the authentic samples of 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone were determined as the 1,4-dihydroxy derivatives. We suppose also partial reduction of **4** at MALDI spectrum registration and attribute a peak m/z 192.9 (z = 2) to its 4,4'-dihydroxy derivative.

^{§ 2,4,6-}Trihydroxyacetophenone was used as a matrix.

[¶] Presumably, HPLC analysis detects not intermediate **6**, but a product of its transformation under analytical conditions.

^{††} Thermal transformation of $\mathbf{6}_{d}$ to 1,4-naphthoquinone- d_{6} was proved by HPLC and MALDI.

Figure 5 Time dependence of 1,4-naphthoquinone formation on heating (50 °C) the neutralised (with solid Na₂CO₃) reaction solution after exhaustive oxidation of $C_{10}H_8$ (open circles) and $C_{10}D_8$ (solid circles). $[C_{10}H_8] = [C_{10}D_8] = 0.004$ mol dm⁻³, [**1**] = 5×10⁻⁶ mol dm⁻³, [AcOOH] = 0.002 mol dm⁻³, [AcOH] = 0.02 mol dm⁻³, [AcOH] = 0.02 mol dm⁻³.

mediate ($\mathbf{6}_d$). The rates of $C_{10}D_8$ and $C_{10}H_8$ disappearance were found to be equal; taking into account the independence of the 'oxenoid' pathway on deutero substitution, this evidences the absence of a significant isotope effect at the stage of $\mathbf{6}_d$ formation. It seems that all H atoms of the substrate are kept in the molecule of a quinone precursor. On the contrary, the transformation of $\mathbf{6}_d$ to 1,4-naphthoquinone- d_6 is significantly hindered as compared with the non-deuterated analogue: the total time of heating the neutralised reaction mixture to provide a maximum quinone yield (50%) is eight times longer for $C_{10}D_8$ than that for $C_{10}H_8$ (Figure 5).

Moreover, in the case of $C_{10}D_8$ at the beginning of gentle heating (40–50 °C; HPLC, TLC),^{‡‡} 1,4-dihydroxynaphthalene, in addition to a quinone, was detected, thus elucidating two steps of $\mathbf{6}_d$ transformation to the quinone. Presumably, 1,4-dihydroxynaphthalene- d_8 is the first product of $\mathbf{6}_d$ decomposition, and its further oxidation to 1,4-naphthoquinone- d_6 is not accompanied by an isotope effect due to quick OD–OH exchange. We suppose that the high isotope effect of *para*-quinone formation from **6** reflects the breakage of the C_{arom}–H bond in the latter at the stage of 1,4-dihydroxynaphthalene formation.

Based on the data on the comparative and competitive oxidation of aromatic and aliphatic hydrocarbons,^{4–6} we proposed the structure of 1,4-peroxo-2,3-epoxy-1,2,3,4-tetrahydronaphthalene for intermediate **6**. The data reported here agree with this attribution and with the mechanism of **6** formation (Scheme 1, stage 8).

Intermediate $\mathbf{6}_d$ is rather stable only in MeCN solutions; we failed to isolate it in a solid state. Under conditions of MALDI spectrum measurements, $\mathbf{6}_d$ was also decomposed: the spent unheated reaction solution shows a peak at m/z 158.9 with z = 2 corresponding to a complex of 1,4-dihydroxynaphthalene- d_6 with naphthol- d_7 [($C_{10}D_6H_2O_2$)·($C_{10}D_7HO$), MW 317.4].^{§§} In terms of our hypothesis on the structure of **6**, these compounds could be derived from two molecules of **6** by a laser pulse with the withdrawal of an oxygen atom or an O–O fragment, respectively.

In summary, we specified the stages of formation of 1,4-naphthoquinone, 1-naphthol and its oxidative products (Scheme 1, stages 7–10 and 3–5, respectively) in the proposed mechanism of aromatics oxidation by peracetic acid catalysed by Mn³⁺ azaporphines.

This work was supported by the Russian Foundation for Basic Research (grant no. 00-03-32017a).

§§ 2,5-Dihydroxybenzoic acid was used as a matrix.

L = AcOH, Cat = APMn³⁺(L), counter ion is not shown

Scheme 1

References

- 1 V. A. Herrmann, J. Organomet. Chem., 1995, 500, 149.
- 2 C. Jost and J. Sundermeyer, Abstracts of the 7th International Symposium on Dioxygen Activation and Homogeneous Catalytic Oxidation, York, July 1999, p. 68.
- 3 R. Song, A. Sorokin, J. Bernadou and B. Meunier, J. Org. Chem., 1997, 62, 673.
- 4 S. V. Barkanova, V. M. Derkacheva, O. V. Dolotova, V. D. Li, V. M. Negrimovski, O. L. Kaliya and E. A. Luk'yanets, *Tetrahedron Lett.*, 1996, **37**, 1637.
- 5 S. V. Barkanova and O. L. Kaliya, J. Porph. Phthal., 1999, (3) 180.
- 6 S. V. Barkanova, E. A. Makarova, O. L. Kaliya and E. A. Luk'yanets, Mendeleev Commun., 1999, 177.
- 7 (a) S. Banfi, M. Cavazzini, G. Pozzi, S. V. Barkanova and O. L. Kaliya, J. Chem. Soc., Perkin Trans. 2, 2000, 871; (b) S. Banfi, M. Cavazzini, G. Pozzi, S. V. Barkanova and O. L. Kaliya, J. Chem. Soc., Perkin Trans. 2, 2000, 879.
- 8 S. V. Barkanova and E. A. Makarova, J. Mol. Catal. A: Chem., in press.
- 9 T. Nakano, N. Agatsuma, S. Kodama, H. Kakuda and D. Dolphin, Bull. Chem. Soc. Jpn., 1996, **69**, 3513.
- 10 (a) E. I. Karasevich, V. S. Kulikova, A. E. Shilov and A. A. Shteinman, Usp. Khim., 1998, 67, 376 (Russ. Chem. Rev., 1998, 67, 335) and references therein; (b) A. F. Shestakov and A. E. Shilov, J. Mol. Catal. A: Chem., 1996, 105, 1.
- 11 D. M. Jerina, J. W. Daly, B. Witkop, P. Zaltxman-Nirenberg and S. Udenfriend, *Biochemistry*, 1970, 9, 147.
- 12 W.-D. Woggon, Top. Curr. Chem., Bioorg. Chem., 1997, 184, 40.

Received: 24th January 2001; Com. 01/1755

^{‡‡} The oxidation of 1,4-dihydroxynaphthalene to 1,4-naphthoquinone by oxygen in the presence of Mn complexes was demonstrated in independent experiments. In the case of $C_{10}D_8$, the heating of the neutralised reaction mixture at 75 °C leads to 1,4-dihydroxynaphthalene without a significant impurity of *para*-quinone, supposedly because of the reduced oxygen content as compared with heating at 50 °C.