Synthesis of 7-alkylidene-7,12-dihydroindolo-[3,2-d]benzazepine-6-(5H)-ones (7-alkylidenepaullones) by N -cyclization-oxidative Heck cascade and characterization as sirtuin modulators \dagger

 R. Álvarez*a

Abstract

An extension of our reported protocol to benzofused heterocyclic derivatives (benzofurans, indoles, isochromeneimines), involving a palladium-induced cascade of N -cyclization and oxidative Heck reactions of o-alkynylanilines, has allowed the preparation of indolobenzazepinones (paullones) with an alkylidene group at C7 in just 3-4 steps from ortho-iodoanilines. Some of these compounds behave as Sirt1 activators in biochemical assays.

Introduction

Compounds with the 7,12-dihydroindolo[3,2- d]benzazepine$6(5 \mathrm{H})$-one scaffold represented by 1a, collectively known as paullones, are endowed with a broad range of biological activities. They have been characterized as inhibitors of several kinases, ${ }^{1}$ and of mitochondrial malate dehydrogenase (mMDH). ${ }^{2}$ Some of the members of the group, in particular the $\mathbf{C} 9-\mathrm{Br}$ derivative (kenpaullone, $\mathbf{1 b}$) and analogues 2 and 3 have been reported to also target the NAD^{+}-dependent class of histone deacetylases (sirtuins, Sirt). ${ }^{3}$ In addition, kenpaullone 1b has been established as a chemical probe in stem-cell research. ${ }^{4}$ Cytotoxic, ${ }^{5}$ antiproliferative, ${ }^{6}$ and pro-apoptotic ${ }^{1 b, 7}$ effects of paullones have been noted in human cancer cell lines, rendering these compounds as promising antitumor agents. ${ }^{8}$ Additionally, paullones have been considered as therapeutic agents for trypanosomiasis and leishmaniasis, ${ }^{9}$ and

[^0]selected members of the family (cazpaullone 1c and alsterpaullone $\mathbf{1 d})^{10}$ for the treatment of diabetes since they suppress cytokine induced β-cell apoptosis. ${ }^{11}$

These promising biological activities have raised interest in these compounds and have stimulated the development of synthetic methodologies to prepare analogues retaining the basic 7,12-dihydroindolo[3,2-d]benzazepine-6(5H)-one scaffold. In addition to the classical construction of the fused $1 H$-indole moiety by Fischer indolization reactions, ${ }^{1 b, 2,6,9 b}$ a variety of other methods have been reported, among them the free radical cyclisation of indolyl iodoacetamide derivatives, ${ }^{12}$ and the photocyclization of 2-(2-chloro- 1 H -indol-3-yl)- N -arylacetamides. ${ }^{13}$ Transition-metal mediated processes have likewise provided solutions for some of the steps in the construction of the basic paullone skeleton. Notable among them are the intramolecular Heck reaction, ${ }^{14}$ an oxidative coupling after rhodium(iII)-catalyzed $\mathrm{C}-\mathrm{H}$ functionalization of acetamides with alkynes, ${ }^{15}$ the Pd-promoted borylation/Suzuki coupling and lactam formation, ${ }^{16}$ the $\mathrm{Cu}(\mathrm{I})$-catalyzed borylative cyclization of 2 -alkenylphenyl isocyanides, ${ }^{17}$ the free radical formation of stannylindoles from o-alkenyl arylisonitriles and subsequent Stille cross-coupling with N-Boc-o-iodoanilines, ${ }^{18}$ the combined Heck and Stille reactions, ${ }^{19}$ and the one-pot Suzuki-Miyaura cross-coupling of an o-aminoarylboronic acid and methyl 2-iodoindoleacetate followed by intramolecular amide formation reported by our group. ${ }^{20}$

We have developed a new synthetic methodology that streamlines the preparation of benzofurans, ${ }^{21}$ indoles ${ }^{22,21 c}$ and other heterocyclic derivatives ${ }^{21 b-c, 22,23}$ starting from the corresponding o-iodoaryl precursors. This sequential process com-

1a, $X=H, Y=C H$, Paullone
1b, $X=\mathrm{Br}, \mathrm{Y}=\mathrm{CH}$, Kenpaullone
1c, $X=C N, Y=N$, Cazpaullone
1d, $X=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{CH}$, Alsterpaullone

2, N-Benzylkenpaullone

3, Kenpaullone hydroxyamidine

Fig. 1 Biologically-relevant 7,12-dihydroindolo[3,2-d]benzazepine-6 (5H)-ones (paullones).

Scheme 1 Our synthetic approach to benzofurans and indoles, including the intramolecular version.

Scheme 2 Retrosynthetic analysis of C7-alkylidenepaullones using a Pd-catalyzed N -cyclization-intramolecular oxidative Heck cascade reaction.
bined a Pd-catalyzed Sonogashira cross-coupling and a nucleo-palladation-Heck oxidative reaction (Scheme 1). Moreover, the protocol was also performed as a "one-pot" process where the Sonogashira and oxidative steps were combined in a three-component Sonogashira-heterocyclization-Heck-coupling cascade. ${ }^{21 c}$

We envisioned that the intramolecular variant of this synthetic procedure ${ }^{21 b, c}$ could be extended to the preparation of additional paullone analogues featuring an exocyclic olefin at the C 7 position (general structure $\mathbf{4}$, Scheme 2) of the benz-azepine-6(5 H)-one ring, a modification that has no precedents to the best of our knowledge. To integrate this substitution pattern into the structures shown in Fig. 1, the precursor 5 containing an alkyne substituted with aryl rings that bear an o-amino and an o^{\prime}-acylamino group was required. Two consecutive Sonogashira reactions via 7 would trace back the

Scheme 3 Reaction conditions: (a) acryloyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $25^{\circ} \mathrm{C}$ (7a, 87\%). (b) Ethyl (E)-4-chloro-4-oxobut-2-enoate, Py, $\mathrm{Et}_{2} \mathrm{O}$, $25^{\circ} \mathrm{C}$ (7b, 99\%). (c) $\mathrm{ClCO}_{2} \mathrm{Et}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $25^{\circ} \mathrm{C}$ (6b, 99\%). (d) $\mathrm{ClC}(\mathrm{O})-$ OEt, Py, ether, $0-10{ }^{\circ} \mathrm{C}$ ($6 \mathrm{~d}, 91 \%$). (e) (Boc) ${ }_{2} \mathrm{O}$, THF, reflux ($6 \mathrm{e}, 97 \%$). (f) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$ or DMF, $60^{\circ} \mathrm{C}$ (5aa, 98%; 5ab, 99%; 5ac, 99\%; 5ae, 92\%; 5ba, 76\%; 5bb, 92\%; 5bd, 90\%; 5be, 99\%). See Table 1 for the structure of compounds 5 .
cyclising substrate 5 to simple, and in most cases commercial, o-haloanilines 6 (Scheme 2; for the meaning of $\mathrm{X}, \mathrm{R}, \mathrm{Z}$, see Scheme 3).

Results and discussion

After surveying all synthetic variants for the preparation of the N-differentiated o, o^{\prime}-bisaniline-ethyne substrates 5 (see ESI \dagger) we selected the order of steps shown in Scheme 3 comprising first the acylation of an o-alkynyl aniline and then the Sonogashira reaction with an appropriate o-iodoaniline. The condensation of 2-ethynylaniline 8 with acryloyl chloride, ${ }^{24}$ was followed by the Sonogashira reaction ${ }^{21,22}$ of product 7 a with commercial o-iodoaniline $\mathbf{6 a}$ to afford in quantitative yield the corresponding internal alkyne 5aa. Excellent yields were obtained in all steps of the synthetic route. The same sequence was used for the preparation of the remaining substrates 5 as shown in Scheme 3.

Acrylamide 5aa was treated with $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 0.5$ equivalents of KI and 1 equivalent of maleic anhydride (MA) in DMF under air, conditions previously developed for nucleo-palladation-intramolecular Heck reactions. ${ }^{21 b, c}$ When these conditions were applied at $80^{\circ} \mathrm{C}$, only the 3 H -indole product 9aa could be isolated albeit in low yield (18%, Table 1, entry 1). Raising the temperature to $100^{\circ} \mathrm{C}$ the desired product 4aa was obtained in only 14% yield after heating for 24 h (entry 2), the $3 H$-indole product 9aa being the major component (48\%). Shortening the reaction time to 3 h increased the yield of $4 \mathbf{a a}$ to 40% (entry 3), indicating that under the conditions of entry 2 , with prolonged heating at high temperature, product degradation was taking place. The substrate with a bromine atom located at the aniline para position (compound 5ac) showed somewhat higher reactivity, and the Pd-catalyzed cascade could be run at $80^{\circ} \mathrm{C}$, to yield 4ac and 9ac in a ca. 50:50 ratio (entry 4). Not surprisingly, a temperature increase (entry 5) resulted in a lower yield of 4ac, again probably due to product degradation.

In the expected cascade reaction mechanism shown in Fig. 2, the initial coordination of the o-alkynylaniline to $\operatorname{Pd}(\mathrm{II})$

Table 1 Nucleopalladation-oxidative Heck cascade for the synthesis of alkylidenepaullones ${ }^{a}$

Entry, substrate	X	R	Z	Reaction conditions			Yield (\%)		
				$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	$\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{\text {b }}$	4	9	5
1, 5aa	H	H	H	80	24	-	-	18 (9aa)	-
2, 5aa	H	H	H	100	24	-	14 (4aa)	48 (9aa)	-
3, 5aa	H	H	H	100	3	-	40 (4aa)	37 (9aa)	-
4, 5ac	Br	H	H	80	22	-	50 (4ac)	50 (9ac)	-
5, 5ac	Br	H	H	100	22	-	25 (4ac)	50 (9ac)	-
6, 5aa	H	H	H	100	3.5	0.25		28 (9aa)	28 (5aa)
7, 5aa	H	H	H	100	3.5	0.50	65 (4aa)	20 (9aa)	-
8, 5aa	H	H	H	100	3.5	1.00	22 (4aa)	<5 (9aa)	-
9, 5aa	H	H	H	100	3.5	$0.50{ }^{\text {c }}$	34 (4aa)	30 (9aa)	-
$10,5 \mathbf{b a}^{d}$	H	H	$\mathrm{CO}_{2} \mathrm{Et}$	100	24	-	(4a)	70 (9ba)	-
11, 5ab	H	$\mathrm{CO}_{2} \mathrm{Et}$	H	80	24	-	-	-	100 (5ab)
12, 5ab	H	$\mathrm{CO}_{2} \mathrm{Et}$	H	100	24	-	52 (4ab)	-	-
13, 5bb	H	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Et}$	100	24	-	65 (4bb)	-	-
14, 5bb	H	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Et}$	120	24	-	$80(4 b b)+20(4 b a)$	-	-
15, 5bd	Br	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Et}$	120	20	-	$60^{e}(4 \mathrm{bd})$	-	-
16, 5ae	H	$\mathrm{CO}_{2} t$ - Bu	H	120	20	-	25 (4ae) + 29 (4aa)	-	-
17, 5be	H	$\mathrm{CO}_{2} t$ - Bu	$\mathrm{CO}_{2} \mathrm{Et}$	120	20	-	22 (4be) + 78 (4ba)	-	-

${ }^{a}$ Standard conditions: $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 0.5 equiv. KI, 1 equiv. MA under air in DMF. ${ }^{b}$ Equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ used. ${ }^{c}$ NaOAc was used as a base. ${ }^{d}$ Using 0.5 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$, at $120^{\circ} \mathrm{C}$, the conjugate addition product was obtained (42%, see ESI). ${ }^{e}$ Traces of the deprotected product were observed by ${ }^{1} \mathrm{H}$-NMR.

Fig. 2 Mechanistic proposal for the Pd-catalyzed N -cyclization-oxidative Heck cascade to alkylidenepaullones ($Z=H$ or $E W G ; L=P P h_{3}$; $\mathrm{Y}=\mathrm{NH}$ or $\mathrm{NCO}_{2} \mathrm{R}$).
triggers nucleopalladation to afford the indole ring and then insertion of the heterocyclic $\mathrm{C} 3-\sigma-\mathrm{Pd}(\mathrm{II})$ complex into the pendant alkene leads to the olefin product, after β-hydride elimination. The resulting palladium hydride undergoes loss of HCl with the formation of $\operatorname{Pd}(0)$, which is finally oxidized to regenerate the $\operatorname{Pd}(\mathrm{II})$ species that starts the cycle. ${ }^{21,22}$ The $3 \mathrm{H}^{-}$ indole products 9 are considered to originate from a σ-indolylpalladium intermediate (II or V) that undergoes protonation to VI (Fig. 2).

Control experiments revealed that the 3 H -indole product 9aa did not undergo $\mathrm{C}-\mathrm{H}$ activation to enter the catalytic cycle at the level of intermediate II (Fig. 2) under the reaction conditions. Therefore, it seems reasonable to assume that the product ratio results from a balance between the rates of carbopalladation with the pendant olefin and protonation of the σ-indolyl intermediate. ${ }^{25}$ As a result, we tried to modulate the reactivity of the system through the addition of a base and the modification of the electronic nature of the olefin and aniline functionalization implicated in the cascade bond formation reactions.

The presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was shown to have a beneficial effect (entries 6-9). Thus, the use of 0.5 mol equivalent induced the total consumption of the reactant and afforded a $76: 24$ ratio of the benzazepinone to $3 H$-indol (4aa/9aa) mixture in 85% overall yield (entry 7). Larger amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}$ proved to be detrimental (entry 8) whereas smaller
quantities (entry 6) afforded an almost equal ratio of the reaction products in lower yields. The change to NaOAc had no effect (entry $7 v s$. entry 9).

The introduction of carbonyl substituents at R and/or Z was examined next. Fumarate-derived substrate 5ba led only to the $3 H$-indole derivative $9 \mathbf{~ b a}$ in 70% yield (entry 10) under the standard conditions.

However, starting from the N-ethylcarbamate 5ab the cascade product $\mathbf{4 a b}$ was isolated in 52% yield under the same reaction conditions (entry 12) and, furthermore, the similar reactions of the carbamate-fumarate substrates 5bb and 5bd also afforded the desired alkylidenepaullones in good yields (entries 13-15). It is apparent that reducing the electron density at the palladium-substituted indole C3 position slows down protiodemetallation. As additional benefit, carbamates were expected to exhibit greater solubility thus facilitating the handling of the final product.

We also noticed that the indole carbamate underwent partial deprotection under the thermal conditions required for the Pd-catalyzed cascade reaction (see entries 14 and 15). Since tert-butylcarbamates are known to deprotect by thermal fragmentation reaction, ${ }^{26}$ it was thought that they could directly provide the deprotected indolobenzazepine-6-one. However, this expectation was only partially realized, as the deprotection of the N-Boc- o, o^{\prime}-bisaniline-ethynes $5 \mathbf{a e}$ and $5 \mathbf{b e}$ (obtained from previously described ${ }^{27} \mathbf{6 e}$) to $\mathbf{4 a e}$ and $\mathbf{4} \mathbf{b e}$ was incomplete after heating to $120{ }^{\circ} \mathrm{C}$ (4ae, 25\%; 4aa, 29\%; 4ae, 22\%; 4ba, 78%, Table 1, entries 16 and 17). Nevertheless, the use of tertbutylcarbamate 5be allowed the isolation of $\mathbf{4 b} \mathbf{b a}$ (a product that could not be obtained from fumarate 5ba) in useful yield (78\%).

The structures of indolobenzazepinones $\mathbf{4 a b}$ and $\mathbf{4} \mathbf{b b}$ were confirmed by X-ray analysis (see ESI \dagger), which also corroborated the geometry of the exocyclic olefin, as anticipated from the stereospecific syn- β-elimination of $\mathrm{PdL}_{2} \mathrm{XH}$ from intermediate III depicted in Fig. 2. As a result, it is confirmed that the products of this highly regio-, stereo- and chemoselective reaction indeed correspond to a 7 -exo intramolecular Heck-type cyclization process, whereas the indolobenzazocinone products (originating from the alternative 8 -endo cyclization manifold, ${ }^{28,29}$ which have been observed in other substrates), ${ }^{30}$ were not detected. Furthermore, the only products that were isolated originated from the manifold where the N further removed from the pendant alkenyl chain participated in the starting nucleopalladation step.

Biological evaluation

To explore the antitumor activities of the alkylidenepaullones, we first assessed their effects on cell cycle progression and cell death using the U937 leukaemia cell line (Fig. 3). As shown in Fig. 3A, the effect on the cell cycle of these compounds was not significant relative to the control, the Zn^{2+}-dependent histone deacetylase inhibitor suberoylanilide hydroxamic acid

Fig. 3 Effects of alkylidenepaullones on cell cycle (A) and apoptosis (B) after treatment of U937 leukemia cells with the indicated compounds at $50 \mu \mathrm{M}$ for 30 h . DMSO (0.1%) was used as the vehicle control and SAHA (SA) as the reference compound at $5 \mu \mathrm{M}$.
(SAHA) used at $5 \mu \mathrm{M}$. However, some compounds were able to induce cell death at the dose of $50 \mu \mathrm{M}$ (Fig. 3B).

As second analysis, we checked by western blot the activity of the alkylidenepaullones on a recombinant Sirt1 enzyme. ${ }^{20}$ Using a Sirt1 assay under conditions that detect both activation and inhibition, compounds $\mathbf{4 a}$ a and $\mathbf{4 a c}$ were found to display an apparent activating effect at $50 \mu \mathrm{M}$ (compound STAC used as the reference ${ }^{31}$ displayed activation in the same settings at the lower dose of $10 \mu \mathrm{M}$). On the other hand, compounds $\mathbf{4 b a}, \mathbf{4 b b}, \mathbf{4 b d}$ and $\mathbf{4 a e}$ displayed a low inhibitory effect under the same conditions (Fig. 4A). When compound 4ac was tested in MCF7 cells for its ability to activate Sirt1 activity by causing deacetylation of p53 on K382 (a target of sirtuins ${ }^{32,33}$) after 30 h of treatment (Fig. 4B), a dose-dependent effect was noted, suggesting that the effective dose to obtain Sirt1 activation, in the cellular settings, is higher.

Conclusion

In conclusion, the Pd-catalyzed N -cyclization of o-alkynylanilines, combined with an intramolecular oxidative Heck reaction in a cascade process, allows the regioselective con-

Fig. 4 Sirt1 activity assay. (A) The indicated compounds were tested at $50 \mu \mathrm{M}$. DMSO (0.1%) was used as the vehicle control. EX527 and STAC at 5 and $10 \mu \mathrm{M}$, respectively, were used as reference compounds. (B) Western blot analysis of p53K382 acetylation levels in MCF7 cells upon increasing concentrations of 4 ac for 30 h . DMSO (0.1%) and STAC ($50 \mu \mathrm{M}$) were used as reference compounds. Signal quantitation was performed using the ImageJ software.
struction of the core indole and benzazepinone heterocycles of the polycyclic alkylidenepaullones. The scope of this methodology might be broadened with its application to other heterocyclic analogs ($\mathrm{X}=\mathrm{O}, \mathrm{S}$ in Scheme 1). Some of these compounds appear to activate Sirt1 in biochemical assays, and although at present the concentration required for their activity is higher than those of existing compounds, they represent a useful starting point for further additional structural studies aimed to improve their potencies as sirtuin activators.

Experimental section

Ethyl (2-iodophenyl)carbamate 6b. ${ }^{\mathbf{3 4}}$ 2-Iodoaniline $\mathbf{6 a}$ (1.2 g , $5.478 \mathrm{mmol})$, ethylchloroformate ($2.37 \mathrm{~g}, 21.916 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.54 \mathrm{~g}, 32.873 \mathrm{mmol})$ were stirred in 20 mL of acetone at room temperature for 18 h . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The organic layers were washed
with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by column chromatography (silica gel, $70: 30$ hexane-EtOAc) to afford $1.57 \mathrm{~g}(99 \%)$ of the title compound as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,138.9,138.6,129.4,125.1,120.4$, 88.9, 61.7, 14.6 ppm.
tert-Butyl (2-iodophenyl)carbamate $\mathbf{6 e} .^{\mathbf{3 0}} \mathrm{A}$ solution of 2-iodoaniline 6a ($500 \mathrm{mg}, 2.283 \mathrm{mmol}$) and (Boc$)_{2} \mathrm{O}(797.2 \mathrm{mg}$, 3.653 mmol) in THF (4 mL) was refluxed for 4 days. Then $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with AcOEt ($3 \times$) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, 90:10 hexane-EtOAc) to afford $0.705 \mathrm{~g}(97 \%)$ of 6 e as white crystals. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400.16 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (ddd, $J=8.8,7.6$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 152.7,138.9,138.9,129.3,124.8,120.3,88.9,81.2,28.4 \mathrm{ppm}$.

Ethyl (4-bromo-2-iodophenyl)-carbamate 6d. Ethyl chloroformate ($115 \mu \mathrm{~L}, 1.217 \mathrm{mmol}$) was added to a solution of commercial 4-bromo-2-iodoaniline 6c ($250 \mathrm{mg}, 0.839 \mathrm{mmol}$) in pyridine $(1.13 \mathrm{~mL})$ at $0-10^{\circ} \mathrm{C}$ and the mixture was stirred for 3 h . The pyridine was evaporated and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were washed with a 3 M aqueous solution of HCl and a saturated aqueous solution of NaHCO_{3} and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by column chromatography (silica gel, 95:5 hexane-EtOAc) to afford $282.1 \mathrm{mg}(91 \%)$ of the title compound as a white solid. m.p.: $105-106{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.97\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.87\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.44$ (dd, $J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.24(\mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.34\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,140.6,137.9$, 132.2, 121.0, 116.3, 88.7, 61.9, 14.6 ppm. MS (EI): m/z (\%) 370 $\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 37\right), 368\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 36\right), 324$ (94), 322 (100), 298 (33), 296 (35), 215 (85), 213 (71), 170 (31), 169 (65), 167 (46), 63 (29). HRMS (EI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{9}{ }^{81} \mathrm{BrINO}_{2}$ 370.8841; found, 370.8845. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9}{ }^{79} \mathrm{BrINO}_{2}$ 368.8861; found, 368.8865 . IR (neat): $\nu 3293$ (w, N-H), 2980 (w, C-H), 2929 (w, C-H), 1730 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
N-(2-Ethynylphenyl)-acrylamide 7a. Acryloyl chloride ($79 \mu \mathrm{~L}$, 0.971 mmol) was added to a solution of 2-ethynylaniline 8 $(0.13 \mathrm{~g}, 0.883 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $25^{\circ} \mathrm{C}$, an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic combined layers were dried $\left(\mathrm{NaSO}_{4}\right)$ and the solvent was evaporated. The residue was purified by column chromatography (silica gel, $90: 10$ hexaneEtOAc) to afford 144 mg (87%) of the title compound as a white solid. m.p.: $91-92{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400.16 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.42$ (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.39-7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{td}$,
$J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.40\left(\mathrm{dd}, J=16.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$, 6.28 (dd, $J=16.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \text { trans }}$), 5.74 (dd, $J=10.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 c i s}$), $3.55(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 163.3,139.2,132.1,131.2,130.0,127.8,123.4,119.5,111.0$, 84.7, 79.0 ppm . MS (EI): m/z (\%) 171 (${ }^{+}, 46$), 143 (11), 117 (100), 90 (19), 89 (21). HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$ 171.0684; found, 171.0689. IR (neat): ע 3379 (s, N-H), 3255 (s, Csp-H), 3209 (s, Csp ${ }^{2}-\mathrm{H}$), 2195 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{C}$), 1665 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm^{-1}.

Ethyl (E)-4-(2-ethynylphenylamino)-4-oxobut-2-enoate 7b. To a solution of $8(0.25 \mathrm{~g}, 1.552 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(7.75 \mathrm{~mL})$ was added pyridine ($139 \mu \mathrm{~L}, 1.707 \mathrm{mmol}$). After cooling down to $-78{ }^{\circ} \mathrm{C}$, a solution of ethyl (E)-4-chloro-4-oxobut-2-enoate ($0.25 \mathrm{~g}, 1.552 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.35 \mathrm{~mL})$ was added dropwise. The resulting suspension was warmed to $25{ }^{\circ} \mathrm{C}$ for 1 h and then partitioned between EtOAc (50 mL) and brine (50 mL). The layers were separated and the aqueous layers were extracted with EtOAc ($3 \times$) and the combined organic layers were washed with a 5% aqueous HCl solution $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, $90: 10$ hexane-EtOAc) to afford $0.38 \mathrm{~g}(99 \%)$ of the title compound as white crystals. m.p.: $139{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.16 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.19(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 7.49$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{td}, J=8.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}$), $7.10(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.58(\mathrm{~s}, 1 \mathrm{H}), 1.35\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,161.5,139.0,136.4$, 132.4, 131.9, 130.4, 124.3, 119.7, 111.2, 85.3, 79.0, 61.5, 14.2 ppm. MS (EI): m/z (\%) 243 (M ${ }^{+}, 52$), 198 (13), 170 (43), 127 (23), 117 (100), 116 (17), 99 (19), 89 (20). HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} 243.0895$; found, 243.0893. IR (neat): $\nu 3289$ (w, $\mathrm{N}-\mathrm{H}), 3247(\mathrm{~s}, \equiv \mathrm{C}-\mathrm{H}), 1712(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1641(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
N-[2-(2-Aminophen-1-ylethynyl)-phenyl]acrylamide 5aa. General procedure for the Sonogashira reaction. To a solution of 2-iodoaniline $\mathbf{6 a}(0.025 \mathrm{~g}, 1.141 \mathrm{mmol})$ in THF (12 mL) were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.016 \mathrm{~g}, 0.022 \mathrm{mmol})$, CuI (0.008 g , $0.045 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.96 \mathrm{~mL})$ and N -(2-ethynylphenyl)-acrylamide $7 \mathrm{a}(0.293 \mathrm{~g}, 1.712 \mathrm{mmol})$, and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and then extracted with EtOAc ($3 \times$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated. The residue was purified by column chromatography (silica gel, $80: 20$ hexane-EtOAc) to afford the title compound (292.5 mg , $98 \%)$ as a yellowish-brown solid. m.p.: $94-95{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$-NMR ($400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49$ (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.23 (s, 1H, NH), 7.49 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.43-7.28$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.19 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.85-6.70 (m, 2H, ArH), 6.44 (dd, $J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{3 \text { trans }}$), 6.31 (dd, $J=16.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 5.76 (dd, $J=10.2$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 c i s}\right), 4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,148.0,138.5,132.0,131.5,131.4$, 130.5, 129.7, 127.9, 123.8, 119.7, 118.3, 114.8, 112.6, 107.1, 93.4, 89.5 ppm . MS (EI): $m / z(\%) 262\left(\mathrm{M}^{+}, 5\right), 244$ (64), 243 (100), 242 (27), 204 (11). HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$,
262.1106; found, 262.1097. IR (neat): $\nu 3436$ ($\mathrm{s}, \mathrm{N}-\mathrm{H}$), 3380-3350 (m, N-H), 3293 (w, Csp ${ }^{2}-\mathrm{H}$), 2210 ($\mathrm{w}, \mathrm{C} \equiv \mathrm{C}$), 1659 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm^{-1}.
N-\{2-[(N-Ethoxycarbonyl-2-aminophenyl)-ethynyl]-phenyl $\}$ acrylamide 5ab. Following the general procedure for the Sonogashira reaction, the reaction of ethyl (4-bromo-2-iodo-phenyl)-formate 6b ($100 \mathrm{mg}, 0.343 \mathrm{mmol}$), N-(2-ethynylphenyl)acrylamide $7 \mathbf{a}(88 \mathrm{mg}, 0.515 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.005 \mathrm{~g}$, $0.007 \mathrm{mmol})$, $\mathrm{CuI}(0.003 \mathrm{~g}, 0.014 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.89 \mathrm{~mL})$ in THF (3.6 mL) afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), 114.8 mg (100\%) of the title compound as a white solid. m.p.: $158-159{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$-NMR ($\left.400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 8.14 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (br, 1H, NH), 7.57-7.49 (m, 1H, ArH), 7.48 (ddd, $J=7.7,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.46-7.35 (m, 2H, ArH), 7.30 (br, 1H, NH), 7.13 (td, $J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.07 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.44 (dd, $\left.J=16.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.31\left(\mathrm{dd}, J=16.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{~A}}\right)$, 5.78 (dd, $\left.J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{~B}}\right), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $1.31\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100.62 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 163.5,153.3,139.1,138.9,132.1,132.0,131.4,130.5$, 130.4, 128.1, 123.9, 123.1, 120.1, 118.8, 111.9, 111.3, 91.6, 90.9, 61.7, $14.6 \mathrm{ppm} . \mathrm{MS}(\mathrm{EI}): m / z(\%) 334\left(\mathrm{M}^{+}, 4\right), 288$ (27), 287 (21), 260 (14), 259 (12), 246 (24), 244 (71), 243 (100), 242 (23), 234 (76), 206 (24), 205 (30), 204 (16). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ 334.1337; found, 334.1331. IR (neat): $\nu 3307$ (w, $\mathrm{N}-\mathrm{H}), 2193(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1705(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1667(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
N-[2-((2-Amino-5-bromophenyl)-ethynyl)-phenyl]-acrylamide 5ac. Following the general procedure for the Sonogashira reaction, the reaction of 4-bromo-2-iodoaniline $\mathbf{6 c}(650 \mathrm{mg}$, 2.182 mmol), N-(2-ethynylphenyl)-acrylamide 7 a (560 mg , $2.273 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.031 \mathrm{~g}, 0.044 \mathrm{mmol})$, CuI $(0.017 \mathrm{~g}, 0.087 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.7 \mathrm{~mL})$ in DMF (23 mL) afforded, after purification by column chromatography (silica gel, $90: 10$ hexane-EtOAc), $744.4 \mathrm{mg}(100 \%)$ of the title compound as a white solid. m.p.: $133-134{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.08$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.50 (ddd, $J=7.7,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47$ (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.40 (ddd, $J=8.6,7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.30-7.27 (m, 1H, ArH), 7.11 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.66 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.45 (dd, $J=16.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 6.31 $\left(\mathrm{dd}, J=16.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{~A}}\right), 5.81(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{3 \mathrm{~B}}$), $4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$-NMR ($100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,147.5,139.0,134.4,133.5,132.1,131.6,130.5,128.5$, 124.2, 120.2, 116.5, 112.4, 109.5, 109.2, 91.9, 90.7 ppm. MS (EI): $m / z(\%) 342\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 20\right), 340\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 23\right), 325$ (23), 324 (61), 323 (46), 322 (62), 321 (31), 243 (61), 242 (100), 206 (54), 205 (25). HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}, 342.0191$; found, 342.0194. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}, 340.0211$; found, 340.0212. IR (neat): $\nu 3449$ (w, N-H), 3256 (w, N-H), 3274 ($\mathrm{w}, \mathrm{N}-\mathrm{H}$), $1654(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
N - $\{2-[(N$-tert-Butoxycarbonyl-2-aminophenyl)-ethynyl $]$-phenyl $\}$ acrylamide 5ae. Following the general procedure for the Sonogashira reaction, the reaction of tert-butyl 2-iodophenyl formate 6 e ($60 \mathrm{mg}, 0.188 \mathrm{mmol}$), N-(2-ethynylphen-1-yl)-acrylamide $7 \mathrm{a}(39 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.003 \mathrm{~g}$,
$0.004 \mathrm{mmol}), \mathrm{CuI}(0.001 \mathrm{~g}, 0.07 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.49 \mathrm{~mL})$ in THF (2 mL) afforded, after purification by column chromatography (silica gel, $70: 30$ hexane-EtOAc), $62.4 \mathrm{mg}(92 \%)$ of the title compound as a white solid. m.p.: $135-136{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$. ${ }^{1} \mathrm{H}$-NMR ($400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.54(\mathrm{dd}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.47 (dd, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.45-7.36$ (m, 2H, ArH), 7.18 (s, 1H, NH), 7.14 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.05 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.45 (dd, $J=16.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime \prime} \mathrm{A}}$), $6.31\left(\mathrm{dd}, J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2^{\prime \prime}}\right), 5.80$ (dd, $\left.J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime \prime} \mathrm{B}}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6$ (s), 152.6 (s), 139.7 (s), 139.0 (s), 132.2 (d), 132.1 (d), 131.6 (d), 130.7 (d), 130.5 (d), 128.4 (t), 124.1 (d), 122.9 (d), 120.1 (d), 118.7 (d), 111.9 (s), $111.0(\mathrm{~s}), 92.0(\mathrm{~s}), 90.8(\mathrm{~s}), 81.4(\mathrm{~s}), 28.5(\mathrm{q}) \mathrm{ppm} . \mathrm{MS}^{\left(\mathrm{ESI}^{+}\right): ~ m / z}$ (\%) $385\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right), 363\left[\left(\mathrm{M}+\mathrm{H}^{+}\right]\right)$. HRMS (ESI^{+}): Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} 363.17032$; found, 363.17033. IR (NaCl): $\nu 3400(\mathrm{w}$, N-H), 3295 (w, N-H), 2978 (w, C-H), 1732 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1688 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Ethyl (E)-4-[(2-(2-aminophenylethynyl)-phenyl)amino]-4-oxobut-2-enoate 5ba. Following the general procedure for the Sonogashira reaction, the reaction of 2-iodoaniline $\mathbf{6 c}(22 \mathrm{mg}$, 0.101 mmol), ethyl (E)-4-[(2-ethynylphenyl)-amino]-4-oxobut-2enoate 7b $(37 \mathrm{mg}, 0.152 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.001 \mathrm{~g}$, $0.002 \mathrm{mmol})$, $\mathrm{CuI}(0.001 \mathrm{~g}, 0.004 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL})$ in DMF $(1.06 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), 25.8 mg (76%) of the title compound as a white solid. m.p.: $176-179{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 8.41 (s, 1H, NH), 7.51 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.43-7.33$ (m, 2H, ArH), 7.20 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.18-7.07 (m, 2H, ArH + Csp $\left.{ }^{2}-\mathrm{H}\right), 6.96(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Csp}^{2}-\mathrm{H}\right), 6.82-6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.27\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.33\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(100.62 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,161.6,148.0,138.0,136.5,132.1,131.8,131.7$, 130.6, 129.8, 124.4, 120.0, 118.5, 115.0, 112.9, 107.2, 93.9, 89.3, 61.4, 14.2 ppm . MS (EI): m/z (\%) 334 (${ }^{+}, 3$), 317 (10), 316 (64), 288 (11), 244 (12), 243 (100), 242 (36). HRMS (EI): Calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}, 334.1317$; found, 334.1318. IR (neat): $\nu 3482$ (w, N-H), 3385 (w, N-H), 3295 (w, N-H), 2204 (w, C=C), 1705 (s, $\mathrm{C}=\mathrm{O}), 1666(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
Ethyl (E)-4-((2-((2-ethoxycarbonylamino-phenyl)-ethynyl)-phenyl)-amino)-4-oxobut-2-enoate 5bb. Following the general procedure for the Sonogashira reaction, the reaction of 2-iodo-phenyl-formate $\mathbf{6 b}$ ($500 \mathrm{mg}, 1.718 \mathrm{mmol}$), ethyl (E)-4-(2-ethynyl-phenylamino)-4-oxobut-2-enoate 7 b ($627 \mathrm{mg}, 2.576 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.024 \mathrm{~g}, 0.034 \mathrm{mmol}), \mathrm{CuI}(0.013 \mathrm{~g}, 0.069 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.46 \mathrm{~mL})$ in DMF (18 mL) at $60{ }^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), $641.9 \mathrm{mg}(92 \%)$ of the title compound as a white solid. m.p.: $168-169{ }^{\circ} \mathrm{C} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.16 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.24(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.56(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.51 (dd, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.48-7.35$ (m, 2 H , ArH), 7.18 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ $\left.+\mathrm{Csp}^{2}-\mathrm{H}\right), 6.97\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.35-4.15(\mathrm{~m}, 4 \mathrm{H}$,
$\left.2 \times \mathrm{CH}_{2}\right), 1.39-1.26\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.62 MHz, CDCl_{3}) $\delta 165.3,161.8,153.3,139.0,138.2,136.3$, 132.2, 132.1, 131.8, 130.4, 130.1, 124.6, 123.1, 120.6, 118.9, 112.7, 111.5, 91.8, 90.5, 61.6, 61.3, 14.5, 14.1 ppm . MS (EI): m / z (\%) $406\left(\mathrm{M}^{+}, 3\right), 360(23), 318$ (57), 316 (50), 288 (23), 287 (100), 259 (29), 243 (87), 242 (38), 234 (61), 206 (38), 205 (47). HRMS (EI): Calc. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}, 406.1529$; found, 406.1534. IR (neat): $~ 2289$ (w, N-H), 2978 (w, C-H), 1706 (s, C=O), 1672 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
Ethyl (E)-4-((2-((5-bromo-2-ethoxycarbonylaminophenyl)-ethynyl)-phenyl)-amino)-4-oxobut-2-enoate 5bd. Following the general procedure for the Sonogashira reaction, the reaction of ethyl (4-bromo-2-iodophenyl)-formate $\mathbf{6 b} \quad(100 \mathrm{mg}$, 0.265 mmol), ethyl (E)-4-(2-ethynylphenylamino)-4-oxobut-2enoate 7b ($97 \mathrm{mg}, 0.398 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.004 \mathrm{~g}$, $0.005 \mathrm{mmol})$, $\mathrm{CuI}(0.002 \mathrm{~g}, 0.011 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.69 \mathrm{~mL})$ in DMF (2.8 mL) at $60^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $90: 10$ hexane-EtOAc), 117.6 mg (90%) of the title compound as a white solid. m.p.: $215-216{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta 10.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $9.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 7.77(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{dd}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.58 (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.50-7.38$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}+\mathrm{Csp}^{2}-\mathrm{H}\right), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.78(\mathrm{~d}, J=$ $\left.15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.20\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17(\mathrm{t}, J=$ 7.1 Hz, 3H, CH 3) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) δ 164.9, 161.8, 153.6, 138.3, 138.1, 137.2, 134.5, 132.8, 132.3, $130.2,129.7,125.2,123.7,123.3,116.6,115.2,115.0,92.0,89.9$, $60.9,60.8,14.4,14.0 \mathrm{ppm}$. MS (ESI^{+}): $m / z(\%) 509\left(\mathrm{M}+\mathrm{Na}^{+}\right.$, $\left.{ }^{81} \mathrm{Br}\right), 507\left(\mathrm{M}+\mathrm{Na}^{+},{ }^{79} \mathrm{Br}\right), 487\left(\mathrm{M}+\mathrm{H}^{+},{ }^{81} \mathrm{Br}\right), 485\left(\mathrm{M}+\mathrm{H}^{+}\right.$, ${ }^{79} \mathrm{Br}$), 340 (6), 318 (8), 290 (4), 262 (3). HRMS (ESI ${ }^{+}$): Calc. for $\mathrm{C}_{23} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$485.07066; found, 485.07086. IR (neat): $\nu 3293$ (m, N-H), 2981 (w, C-H), 1701 ($\mathrm{m}, \mathrm{C}=\mathrm{O}$), 1671 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Ethyl (E)-4-((2-((2-tert-butoxycarbonylamino-phenyl)-ethynyl)-phenyl)-amino)-4-oxobut-2-enoate 5be. Following the general procedure for the Sonogashira reaction, the reaction of tert-butyl 2-iodophenyl formate $\mathbf{6 e}(76 \mathrm{mg}, 0.238 \mathrm{mmol})$, ethyl (E)-4-(2-ethynylphenylamino)-4-oxobut-2-enoate $7 \mathbf{b} \quad(69 \mathrm{mg}$, $0.286 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.003 \mathrm{~g}, 0.005 \mathrm{mmol})$, CuI ($0.002 \mathrm{~g}, 0.009 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.62 \mathrm{~mL})$ in DMF $(2.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $85: 15$ hexane-EtOAc), 102.1 mg (99\%) of the title compound as a white solid. m.p.: $127-128{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 8.21 (s, 1H, NH), 8.15 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.56 (dd, $J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.49 (td, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.50-7.38$ (m, 2H, ArH), 7.22-7.14 (m, 2H, ArH + NH), 7.12-7.02 (m, 2H, $\left.\mathrm{ArH}+\mathrm{Csp}^{2}-\mathrm{H}\right), 6.97\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.27(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,161.7$, $152.4,139.7,138.3,136.3,132.2,132.1,132.0,130.5,130.2$, 124.6, 122.7, 120.5, 118.6, 112.7, 110.9, 92.2, 90.4, 81.2, 61.4, $27.3(3 \times), 14.2 \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z(\%) 457\left(\mathrm{M}+\mathrm{Na}^{+}\right), 435$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$
435.9145; found, 435.19132. IR (NaCl): $\nu 3207$ (w, N-H), 3267 ($\mathrm{w}, \mathrm{N}-\mathrm{H}$), 2978 ($\mathrm{w}, \mathrm{C}-\mathrm{H}$), 1734 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1666 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm ${ }^{-1}$.

7-Methylene-6-oxo-6,7-dihydrobenzo[b]azepino[4,5-b]indole 9 aa and N -(2-indol-2-yl-phenyl)-acrylamide 4aa. General procedure for the N -cyclization-Heck reaction. To a solution of 5aa ($32 \mathrm{mg}, 1.122 \mathrm{mmol}$) in DMF (3 mL) were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(4 \mathrm{mg}, 0.006 \mathrm{mmol})$, KI $(10 \mathrm{mg}, 0.061 \mathrm{mmol})$, and MA ($12 \mathrm{mg}, 0.122 \mathrm{mmol}$) and the reaction was heated at $100^{\circ} \mathrm{C}$ for 3 hours, under an air atmosphere. The reaction was cooled down to $25{ }^{\circ} \mathrm{C}$ and a saturated aqueous solution of $\mathrm{NaCl}(25 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc $(3 \times)$, the combined organic layers were washed with water (15 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated. The residue was purified by flash chromatography to afford $17.4 \mathrm{mg}(37 \%)$ of $9 \mathbf{a a}$ and $12.3 \mathrm{mg}(40 \%)$ of $4 \mathbf{a a}$.

Data for 4aa: m.p.: $180{ }^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.16 MHz, DMSO-d ${ }_{6}$) $\delta 10.37$ (s, 1H, NH), 7.79 (dd, $J=7.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}$), 7.71 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.48 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.36 (ddd, $J=8.3,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.30 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.24 (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.12 (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.12$ (d, $J=$ $\left.1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Csp}^{2}-\mathrm{H}\right), 5.74\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Csp}^{2}-\mathrm{H}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta$ 170.6, 137.7, 135.7, 134.7, 132.4, 128.6, 126.6, 126.0, 123.6, 123.0, 121.6, 121.1, 120.5, 120.0, 118.6, 111.6, 110.7 ppm . HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+1]^{+}\right)$261.10224; found, 261.10233. IR (neat): ν $3253(\mathrm{~s}, \mathrm{C}=\mathrm{H}), 1644(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Data for 9aa: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 8.43 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.06 (s, 1H, NH), 7.68 (dt, $J=7.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.49-7.40$ (m, 2H, ArH), 7.36 (ddd, $J=8.7$, $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.27 (ddd, $J=8.2,6.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.22-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{dd}, J=2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.34$ (dd, $J=16.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 6.11 (dd, $J=16.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{3 \text { trans }}$), 5.70 (dd, $J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 c i s}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.62 MHz, CDCl_{3}) $\delta 163.9,136.8,135.2,134.0,131.3,129.4$, 129.3, 128.8, 128.0, 124.7, 123.5, 122.9, 121.6, 120.8, 120.6, 111.3, 102.6 ppm . MS (EI): $m / z(\%) 262\left(\mathrm{M}^{+}, 3\right), 244$ (83), 243 (100), 242 (34). HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ 262.1106; found, 262.1094. IR (neat): $\boldsymbol{\nu} 3336$ (m, N-H), 3209 (m, N-H), 2975 (w, C-H), 2927 (w, C-H), 1649 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm ${ }^{-1}$.

Ethyl 7-methylene-6-oxo-6,7-dihydrobenzo[2,3]azepino[4,5-b]-indole-12(5H)-carboxylate 4ab. Following the general procedure for N -cyclization-Heck reaction, the reaction of acrylamide 5ab ($25 \mathrm{mg}, 0.075 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.003 \mathrm{~g}$, $0.004 \mathrm{mmol})$, KI ($0.006 \mathrm{~g}, 0.037 \mathrm{mmol}$), and MA (7 mg , $0.075 \mathrm{mmol})$ in DMF $(1.8 \mathrm{~mL})$ at $100{ }^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexaneEtOAc), $13.0 \mathrm{mg}(52 \%)$ of the title compound as a white solid. m.p.: $205-208{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta$ 10.37 (s, 1H, NH), 8.12 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.72 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.49-7.43$ (m, 1H), 7.40 (d, $J=7.91 \mathrm{H}, \mathrm{ArH}$), 7.39-7.33 (m, 2H), 7.28 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.20\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 5.87\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\right.$ H), $4.31\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.13\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 172.2,151.0,137.7$, $134.6,134.0,132.5,129.8,128.5,126.6,126.0,124.5,123.8$,
123.1, 122.5, 122.2, 120.9, 119.0, 114.7, 63.7, 13.6 ppm. HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$333.12337; found, 333.12402. IR (neat): $\nu 3192$ (w, N-H), 3068 (w, N-H), 2970 (w, C-H), 2923 (w, C-H), 1737 (s, C=O), $1660(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. X-Ray: see ESI. \dagger

9-Bromo-7-methylene-6-oxo-6,7-dihydrobenzo[b]azepino[4,5b]indole 9ac and N-(2-(5-bromo-indol-2-yl)-phenyl)-acrylamide 4ac. Following the general procedure for N -cyclization-Heck reaction, the reaction of acrylamide $5 \mathbf{a c}(32 \mathrm{mg}, 0.094 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.003 \mathrm{~g}, 0.005 \mathrm{mmol}), \mathrm{KI}(0.008 \mathrm{~g}, 0.047 \mathrm{mmol})$, and MA ($9 \mathrm{mg}, 0.094 \mathrm{mmol}$) in DMF (2.3 mL) at $80^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), 15.8 mg (50\%) of 9ac and 15.9 mg (50\%) of 4ac as a white solid.

Data for 4ac: m.p.: $200{ }^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400.16 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 10.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.77 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.44$ (dd, $J=8.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.41-7.22(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 5.75(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 170.5$, 136.4, 135.1, 135.0, 133.8, 129.2, 127.8, 126.9, 125.5, 123.7, 121.8, 121.4, 120.7, 120.7, 113.7, 112.6, 110.1 ppm. HRMS (ESI $)$: Calc. for $\mathrm{C}_{17} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$339.01275; found, 339.01264. IR (neat): $\nu 3256$ (w, C-H), 3036 (w, C-H), 1648 (s, $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Data for 9ac: m.p.: 94-96 ${ }^{\circ} \mathrm{C} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.16 MHz, DMSO-d ${ }_{6}$) $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.87 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.59 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.46$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.38 (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.53(\mathrm{dd}, J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}$, H_{2}), 6.26 (dd, $\left.J=17.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \text { trans }}\right), 5.80(\mathrm{dd}, J=10.2$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 c i s}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $_{6}$) $\delta 163.7$, 154.3, 152.7, 151.8, 134.6, 131.6, 131.0, 129.5, 128.1, 127.2, 127.2, 127.1, 126.1, 123.7, 115.4, 113.1, 104.5 ppm . MS (ESI ${ }^{+}$): $m / z(\%) 343\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{81} \mathrm{Br}\right), 341\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}\right)$. HRMS (ESI $\left.{ }^{+}\right):$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$341.02840; found, 341.02751. IR (neat): $\nu 3364$ (s, N-H), 3265 (w, N-H), 1669 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Ethyl (E)-4-(2-(1H-indol-2-yl)-phenylamino)-4-oxobut-2enoate 9ba. Following the general procedure for N -cyclizationHeck reaction, the reaction of compound $\mathbf{5 b a}$ (65 mg , $0.194 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.007 \mathrm{~g}, 0.010 \mathrm{mmol})$, KI $(0.016 \mathrm{~g}$, $0.097 \mathrm{mmol})$, and MA ($19 \mathrm{mg}, 0.194 \mathrm{mmol}$) in DMF (4.75 mL) at $100{ }^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), $45.1 \mathrm{mg}(70 \%)$ of the title compound as a white solid. m.p.: $131{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.46(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.27 (s, 1H, NH), $7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.56-7.40 (m, 2H, ArH), $7.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.28$ $(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.87$ (app s, $\left.2 \mathrm{H}, 2 \times \operatorname{Csp}^{2}-\mathrm{H}\right), 6.67(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 4.23(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,161.9,136.8,136.2,134.8,133.6$, 131.9, 129.5, 129.3, 128.8, 125.2, 123.6, 123.1, 121.6, 121.0, 120.8, 111.3, 102.8, 61.4, 14.2 ppm . MS (EI): m/z (\%) 334 (M ${ }^{+}$, 12), 317 (25), 316 (94), 288 (38), 244 (23), 243 (100), 242 (79). HRMS (EI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ 334.1317; found, 334.1325.

IR (neat): $\nu 3216$ (br, N-H), 3058 (w, C-H), 2925 (w, C-H), 1706 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $1670(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
Ethyl (Z)-7-(2-ethoxy-2-oxoethylene)-6-oxo-6,7-dihydrobenzo-[2,3]azepino[4,5-b]indole-12(5H)-carboxylate 4bb and (Z)-7-(2-ethoxy-2-oxoethylene)-6-oxo-6,7-dihydrobenzo[b]azepino[4,5-b]indole 4ba. Following the general procedure for N -cyclizationHeck reaction, the reaction of compound $\mathbf{5 b b}$ (35 mg , $0.861 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.030 \mathrm{~g}, 0.043 \mathrm{mmol})$, KI $(0.071 \mathrm{~g}$, $0.430 \mathrm{mmol})$, and MA ($84 \mathrm{mg}, 0.861 \mathrm{mmol}$) in DMF (21 mL) at $110{ }^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $70: 30$ hexane-EtOAc), 23.9 mg (80%) of $\mathbf{4 b b}$ and $4.9 \mathrm{mg}(20 \%)$ of $\mathbf{4 b a}$ as a white solid.

Data for 4bb. m.p.: $200{ }^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.79 (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.45 (ddd, $J=8.5,7.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.41-7.31$ (m, 3H, ArH), 7.28 (d, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $7.20(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\right.$ H), $4.35\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.31\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,164.7,151.5,139.0$, 138.6, 133.9, 132.9 ($2 \times$), 129.9, 128.7, 126.4, 125.0 ($2 \times$), 124.1, 123.9, 122.8, 121.7, 119.2, 115.4, 63.8, 61.1, 13.9, 13.8 ppm . HRMS (ESI ${ }^{+}$): Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 405.14450$; found, 405.14453. FTIR (neat): $\nu 3290(\mathrm{w}, \mathrm{N}-\mathrm{H}), 2922(\mathrm{w}, \mathrm{C}-\mathrm{H})$, 1731 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1712 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm^{-1}. X-Ray: see ESI. \dagger

Data for 4ba. m.p.: $\quad 230-232{ }^{\circ} \mathrm{C} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400.16 MHz, DMSO-d $\left.)_{6}\right) \delta 10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.34-7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.16$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 6.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.13(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100.62 MHz, DMSO-d ${ }_{6}$) $\delta 166.1,165.6,139.8,137.8,134.2$, 133.7, 128.9, 127.1, 125.1, 124.0, 123.4 (2×), 122.1, 121.3, 120.6, 118.2, 112.0, 110.4, 60.2, 13.9 ppm . HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$333.12337; found, 333.12361. IR (neat):乙 3333 (w, N-H), 3038 (w, C-H), 2921 (w, C-H), 1710 (s, C=O), 1618 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) cm^{-1}.
(Z)-Ethyl 9-bromo-7-(2-ethoxy-2-oxoethylene)-6-oxo-6,7-di-hydrobenzo[2,3]azepino[4,5-b]indole-12(5H)-carboxylate 4bd. Following the general procedure for N -cyclization-Heck reaction, the reaction of compound $\mathbf{5 b d}(22 \mathrm{mg}, 0.045 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{KI}(4 \mathrm{mg}, 0.022 \mathrm{mmol})$, and MA ($4 \mathrm{mg}, 0.045 \mathrm{mmol}$) in DMF (1.2 mL) at $120^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $80: 20$ hexane-EtOAc), $13.0 \mathrm{mg}(60 \%)$ of the title compound as a white solid. m.p.: $250{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400.16 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.77 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.65(\mathrm{dt}, J=8.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.50 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.42$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.52$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.42-4.24\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.62 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) $\delta 167.8,164.8$, $150.4,137.8,136.6,134.7,133.8$, 130.3 , 129.1, 128.8, 127.4, 125.4, 123.5, 122.7, 122.5, 121.0, 119.2, 117.1, 116.5, 64.2, 60.6, 13.8, 13.6 ppm. HRMS (ESI ${ }^{+}$): Calc. mass for $\mathrm{C}_{23} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right)$483.05501; found, 483.05485. IR (neat): $\downarrow 3293$ (w, N-H), 3070 (w, C-H), 2978 (w, C-H), 1731 (s, C=O), 1711 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $1665(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
tert-Butyl 7-methylene-6-oxo-6,7-dihydrobenzo[2,3]azepino-[4,5-b]indole-12(5H)-carboxylate 4 ae and N -(2-indol-2-yl-phenyl)-acrylamide 4aa. Following the general procedure for N -cyclization-Heck reaction, the reaction of compound $5 \mathbf{5 e}$ ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.002 \mathrm{~g}, 0.003 \mathrm{mmol})$, KI ($0.005 \mathrm{~g}, 0.028 \mathrm{mmol}$), and MA ($5 \mathrm{mg}, 0.055 \mathrm{mmol}$) in DMF $(1.4 \mathrm{~mL})$ at $110{ }^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $70: 30$ hexane-EtOAc), 4.3 mg (22%) of 4ae and 11.1 mg (78\%) of 4aa as a white solid.

Data for 4ae. m.p.: $>150{ }^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.75 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.32 (dd, $J=11.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.13 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 6.39(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Csp}^{2}-\mathrm{H}\right), 5.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 1.41\left(\mathrm{~s}, J=12.8 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7(\mathrm{~s}), 150.8(\mathrm{~s}), 139.4$ (s), 135.0 (s), 133.8 (s), 133.3 (s), 130.8 (d), 128.9 (d), 127.7 (s), 126.4 (d), 125.6 (t), 124.1 (s$), 124.0$ (d), 124.0 (d), 122.2 (d), 121.8 (s), 119.5 (d), 115.3 (d), 84.6 (s), 27.4 (q) ppm. MS (ESI): $m / z(\%) 361\left(\mathrm{M}^{+}\right)$, 331, 305, 287, 233. HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ 361.15467; found, 361.15474. FTIR (NaCl): $\nu 3403$ ($\mathrm{w}, \mathrm{N}-\mathrm{H}$), 3311 (w, C-H), 2980 (w, C-H), 1726 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1689 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Ethyl (Z)-7-(2-tert-butoxy-2-oxoethylene)-6-oxo-6,7-dihydrobenzo[2,3] azepino[4,5-b]indole-12(5H)-carboxylate 4be and (Z)-7-(2-ethoxy-2-oxoethylene)-6-oxo-6,7-dihydrobenzo[b]azepino-[4,5-b]indole 4ba. Following the general procedure for N -cycli-zation-Heck reaction, the reaction of compound 5 be (34 mg , $0.078 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{mg}, 0.004 \mathrm{mmol})$, KI $(6 \mathrm{mg}$, 0.039 mmol), and MA ($8 \mathrm{mg}, 0.078 \mathrm{mmol}$) in DMF (2 mL) at $120^{\circ} \mathrm{C}$ afforded, after purification by column chromatography (silica gel, $60: 40$ hexane-EtOAc), 7.44 mg (22\%) of 4be and 20.3 mg (78\%) of 4ba.

Data for 4be. m.p.: $>250{ }^{\circ} \mathrm{C}$ (dec.) $\left(\mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400.16 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.81 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}$), 7.39 (m, $5 \mathrm{H}, \operatorname{ArH}$), $7.24-7.19(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Csp}^{2}-\mathrm{H}\right), 4.23(\mathrm{q}, J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}) ppm. ${ }^{13} \mathrm{C}$ NMR ($100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,165.5$, 150.4, 139.8, 139.4, 134.6, 133.4, 130.6, 129.0, 126.6 (2×), 125.1, 124.5, 124.2, 124.2, 123.3, 121.6, 119.4, 115.5, 84.8, 61.1, 27.4, 13.7. MS (ESI ${ }^{+}$): $m / z(\%) 433\left([M+H]^{+}\right), 387,331,287 . ~ H R M S ~$ (ESI^{+}): Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 433.17580$; found, 433.17562. IR (NaCl): $~<3190$ (w, N-H), 2979 (w, C-H), 1735 $(\mathrm{s}, \mathrm{C}=\mathrm{O}), 1666(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.

Biology

Cell lines. Human leukemia U937 cells were grown in RPMI medium with 10% fetal bovine serum (FBS) (Sigma), 2 mM L-glutamine (Euroclone) and antibiotics ($100 \mathrm{U} \mathrm{mL}^{-1}$ penicillin, $100 \mu \mathrm{gL}^{-1}$ streptomycin and $250 \mathrm{ng} \mathrm{mL}{ }^{-1}$ amphotericinB). Human breast cancer MCF7 cells were propagated in DMEM medium with 10% fetal bovine serum (FBS) (Sigma),

2 mM l-glutamine (Euroclone) and antibiotics ($100 \mathrm{U} \mathrm{mL}^{-1}$ penicillin, $100 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ streptomycin and $250 \mathrm{ng} \mathrm{mL}{ }^{-1}$ ampho-tericin-B) as previously reported. ${ }^{35}$

Cell cycle and cell death analysis. These assays were performed as described. ${ }^{36}$

Sirt1 assay. The Sirt1 assay was performed following the manufacturer's indications (Millipore). Briefly, this assay uses nicotinamidase to measure the nicotinamide produced upon cleavage of NAD^{+}during the sirtuin-mediated deacetylation of a substrate providing a direct assessment of the activity. The use of an untagged acetylated peptide can eliminate part of the potential artifacts. Sirt1 recombinant human enzyme was produced in house following standard procedures.
Protein extraction. After the wash, cell pellets were resuspended in lysis buffer (50 mM Tris-HCl $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$, 1% NP40, 10 mM NaF, 1 mM PMSF and protease inhibitor cocktail). The lysis reaction was carried out for 15 min at $4^{\circ} \mathrm{C}$. Finally, the samples were centrifuged at 13000 rpm for 30 min at $4^{\circ} \mathrm{C}$ and the protein concentration was quantified by the Bradford assay (Bio-Rad).
Western blot. $50 \mu \mathrm{~g}$ of proteins were loaded on 10% polyacrylamide gels. The nitrocellulose filters were stained with Ponceau red (Sigma) as the additional control for equal loading. ERK1 antibody was from Santa-Cruz and P53K382ac antibody was from Millipore.

Acknowledgements

The authors thank the Spanish Ministerio de Economía y Competitividad (MINECO) (FEDER, grant number CTQ201237734, SAF201348397-R, and SAF2010-17935, FPI fellowship to J. G. Denis) and Ministero Italiano dell'Istruzione Università e Ricerca (PRIN 2012ZHN9YH).

Notes and references

1 For CDK's, see: (a) E. A. Sausville, D. Zaharevitz, R. Gussio, L. Meijer, M. Louarn-Leost, C. Kunick, R. Schultz, T. Lahusen, D. Headlee, S. Stinson, S. G. Arbuck and A. Senderowicz, Pharmacol. Ther., 1999, 82, 285-292; (b) C. Schultz, A. Link, M. Leost, D. W. Zaharevitz, R. Gussio, E. A. Sausville, L. Meijer and C. Kunick, J. Med. Chem., 1999, 42, 2909-2919; (c) C. Kunick, C. Schultz, T. Lemcke, D. W. Zaharevitz, R. Gussio, R. K. Jalluri, E. A. Sausville, M. Leost and L. Meijer, Bioorg. Med. Chem. Lett., 2000, 10, 567-569; (d) C. Kunick, Z. Zeng, R. Gussio, D. Zaharevitz, M. Leost, F. Totzke, C. Schächtele, M. H. G. Kubbutat, L. Meijer and T. Lemcke, ChemBioChem, 2005, 6, 541-549; (e) D. P. Power, O. Lozach, L. Meijer, D. H. Grayson and S. J. Connon, Bioorg. Med. Chem. Lett., 2010, 20, 4940-4944. For PLK1 and VEGF-R2 kinases, see: (f) A.-M. Egert-Schmidt, J. Dreher, U. Dunkel, S. Kohfeld, L. Preu, H. Weber, J. E. Ehlert, B. Mutschler, F. Totzke,
C. Schächtele, M. H. G. Kubbutat, K. Baumann and C. Kunick, J. Med. Chem., 2010, 53, 2433-2442. For glycogen synthase kinase-3 (GSK-3), see: (g) M. Leost, C. Schultz, A. Link, Y.-Z. Wu, J. Biernat, E.-M. Mandelkow, J. A. Bibb, G. L. Snyder, P. Greengard, D. W. Zaharevitz, R. Gussio, A. M. Senderowicz, E. A. Sausville, C. Kunick and L. Meijer, Eur. J. Biochem., 2000, 267, 5983-5994; (h) C. Kunick, K. Lauenroth, M. Leost, L. Meijer and T. Lemcke, Bioorg. Med. Chem. Lett., 2004, 14, 413-416; (i) H. Stukenbrock, R. Mussmann, M. Geese, Y. Ferandin, O. Lozach, T. Lemcke, S. Kegel, A. Lomow, U. Burk, C. Dohrmann, L. Meijer, M. Austen and C. Kunick, J. Med. Chem., 2008, 51, 2196-2207.
2 A. Becker, S. Kohfeld, A. Lader, L. Preu, T. Pies, K. Wieking, Y. Ferandin, M. Knockaert, L. Meijer and C. Kunick, Eur. J. Med. Chem., 2010, 45, 335-342.
3 J. Trapp, A. Jochum, R. Meier, L. Saunders, B. Marshall, C. Kunick, E. Verdin, P. Goekjian, W. Sippl and M. Jung, J. Med. Chem., 2006, 49, 7307-7316.

4 C. A. Lyssiotis, R. K. Foreman, J. Staerk, M. Garcia, D. Mathur, S. Markoulaki, J. Hanna, L. L. Lairson, B. D. Charette, L. C. Bouchez, M. Bollong, C. Kunick, A. Brinker, C. Y. Cho, P. G. Schultz and R. Jaenisch, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 8912-8917.
5 G. Muehlgassner, C. Bartel, W. F. Schmid, M. A. Jakupec, V. B. Arion and B. K. Keppler, J. Inorg. Biochem., 2012, 116, 180-187.
6 X. Xie, T. Lemcke, R. Gussio, D. W. Zaharevitz, M. Leost, L. Meijer and C. Kunick, Eur. J. Med. Chem., 2005, 40, 655661.

7 D. W. Zaharevitz, R. Gussio, M. Leost, A. M. Senderowicz, T. Lahusen, C. Kunick, L. Meijer and E. A. Sausville, Cancer Res., 1999, 59, 2566-2569.
8 (a) W. F. Schmid, S. Zorbas-Seifried, R. O. John, V. B. Arion, M. A. Jakupec, A. Roller, M. Galanski, I. Chiorescu, H. Zorbas and B. K. Keppler, Inorg. Chem., 2007, 46, 36453656; (b) W. F. Schmid, R. O. John, G. Mühlgassner, P. Heffeter, M. A. Jakupec, M. Galanski, W. Berger, V. B. Arion and B. K. Keppler, J. Med. Chem., 2007, 50, 6343-6355; (c) A. Dobrov, S. Goeschl, M. A. Jakupec, A. Popovic-Bijelic, A. Graeslund, P. Rapta and V. B. Arion, Chem. Coттип., 2013, 49, 10007-10009; (d) M. F. Primik, S. Göschl, M. A. Jakupec, A. Roller, B. K. Keppler and V. B. Arion, Inorg. Chem., 2010, 49, 11084-11095.

9 (a) J. Ryczak, M.-A. Papini, A. Lader, A. Nasereddin, D. Kopelyanskiy, L. Preu, C. L. Jaffe and C. Kunick, Eur. J. Med. Chem., 2013, 64, 396-400; (b) C. Reichwald, O. Shimony, U. Dunkel, N. Sacerdoti-Sierra, C. L. Jaffe and C. Kunick, J. Med. Chem., 2008, 51, 659-665.

10 T. Lahusen, A. De Siervi, C. Kunick and A. M. Senderowicz, Mol. Carcinog., 2003, 36, 183-194.
11 D. H.-C. Chou, N. E. Bodycombe, H. A. Carrinski, T. A. Lewis, P. A. Clemons, S. L. Schreiber and B. K. Wagner, ACS Chem. Biol., 2010, 5, 729-734.

12 J. B. Bremner and W. Sengpracha, Tetrahedron, 2005, 61, 5489-5498.

13 Z. Li, N. Lu, L. Wang and W. Zhang, Eur. J. Org. Chem., 2012, 1019-1024.
14 (a) J. G. Avila-Zárraga, A. Lujan-Montelongo, A. N. Covarrubias-Zuñiga and M. Romero-Ortega, Tetrahedron Lett., 2006, 47, 7987-7989; (b) L. Joucla, F. Popowycz, O. Lozach, L. Meijer and B. Joseph, Helv. Chim. Acta, 2007, 90, 753-763.
15 D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326-18339.
16 O. Baudoin, M. l. Cesario, D. Guénard and F. O. Guéritte, J. Org. Chem., 2002, 67, 1199-1207.

17 M. Tobisu, H. Fujihara, K. Koh and N. Chatani, J. Org. Chem., 2010, 75, 4841-4847.
18 N. Henry, J. R. M. Blu, V. R. Bénéteau and J.-Y. Mèrour, Synthesis, 2006, 3895-3901.
19 H. F. Roth, M. Li, J. Jiang, D. K. Dulan and M. B. Brendan, J. Labelled Compd. Radiopharm., 2011, 54, 272-277.

20 S. Soto, E. Vaz, C. Dell'Aversana, R. Alvarez, L. Altucci and A. R. de Lera, Org. Biomol. Chem., 2012, 10, 2101-2112.

21 (a) C. Martínez, R. Álvarez and J. M. Aurrecoechea, Org. Lett., 2009, 11, 1083-1086; (b) C. Martínez, J. M. Aurrecoechea, Y. Madich, J. G. Denis, A. R. de Lera and R. Álvarez, Eur. J. Org. Chem., 2012, 99-106; (c) Y. Madich, J. G. Denis, A. Ortega, C. Martínez, A. Matrane, L. Belachemi, A. R. de Lera, R. Alvarez and J. M. Aurrecoechea, Synthesis, 2013, 2009-2017.

22 R. Álvarez, C. Martínez, Y. Madich, J. G. Denis, J. M. Aurrecoechea and Á. R. de Lera, Chem. - Eur. J., 2010, 16, 12746-12753.
23 Y. Madich, R. Álvarez and J. M. Aurrecoechea, Eur. J. Org. Chem., 2014, 6263-6271.
24 (a) T. C. T. Ho and K. Jones, Tetrahedron, 1997, 53, 82878294; (b) R. Grigg, E. L. Millington and M. Thornton-Pett, Tetrahedron Lett., 2002, 43, 2605-2608.
25 Using control experiments with DMF-d ${ }_{6}$ we discarded the possibility that indoles 9 were obtained by the reduction of
palladium intermediate II through reaction with the solvent; see: J. A. Molina de la Torre, P. Espinet and A. C. Albéniz, Organometallics, 2013, 32, 5428-5434.

26 (a) V. H. Rawal and M. P. Cava, Tetrahedron Lett., 1985, 26, 6141-6142; (b) V. H. Rawal, R. J. Jones and M. P. Cava, J. Org. Chem., 1987, 52, 19-28.

27 K. Hiroya, S. Itoh and T. Sakamoto, J. Org. Chem., 2004, 69, 1126-1136.
28 I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 2000, 100, 3009-3066.
29 The Mizoroki-Heck Reaction, ed. M. Oestreich, John Wiley \& Sons, Chichester, 2009.
30 B. Laursen, M.-P. Denieul and T. Skrydstrup, Tetrahedron, 2002, 58, 2231-2238.
31 B. P. Hubbard, A. P. Gomes, H. Dai, J. Li, A. W. Case, T. Considine, T. V. Riera, J. E. Lee, S. Y. E. D. W. Lamming, B. L. Pentelute, E. R. Schuman, L. A. Stevens, A. J. Y. Ling, S. M. Armour, S. Michan, H. Zhao, Y. Jiang, S. M. Sweitzer, C. A. Blum, J. S. Disch, P. Y. Ng, K. T. Howitz, A. P. Rolo, Y. Hamuro, J. Moss, R. B. Perni, J. L. Ellis, G. P. Vlasuk and D. A. Sinclair, Science, 2013, 339, 1216-1219.

32 Y. Tang, W. Zhao, Y. Chen, Y. Zhao and W. Gu, Cell, 2008, 133, 612-626.
33 J. L. Avalos, I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke and C. Wolberger, Mol. Cell, 2002, 10, 523-535.

34 D. V. Kadnikov and R. C. Larock, J. Org. Chem., 2004, 69, 6772-6780.
35 A. Nebbioso, N. Clarke, E. Voltz, E. Germain, C. Ambrosino, P. Bontempo, R. Alvarez, E. M. Schiavone, F. Ferrara, F. Bresciani, A. Weisz, A. R. de Lera, H. Gronemeyer and L. Altucci, Nat. Med., 2005, 11, 77-84.

36 A. Nebbioso, R. Pereira, H. Khanwalkar, F. Matarese, J. García-Rodríguez, M. Miceli, C. Logie, V. Kedinger,
F. Ferrara, H. G. Stunnenberg, A. R. de Lera, H. Gronemeyer and L. Altucci, Mol. Cancer Ther., 2011, 10, 2394-2404.

[^0]: ${ }^{a}$ Departamento de Quimica Orgánica, Facultad de Quimica (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-
 Marcosende, 36310 Vigo, Spain. E-mail: rar@uvigo.es, qolera@uvigo.es;
 Fax: +34 986 811940; Tel: +34 986812316
 ${ }^{b}$ Seconda Università degli Studi di Napoli, Dipartimento di Biochimica, Biofisica e Patologia generale, Vico L. De Crecchio 7, 80138 Napoli, Italy
 ${ }^{\text {c Departamento de Quimica Orgánica II, Facultad de Ciencia y Tecnología, }}$ Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
 \dagger Electronic supplementary information (ESI) available: ESI contains general experimental procedures, copies of the NMR spectra of the new compounds and X-ray diffraction data for 4ab and 4bb. CCDC 1036521 and 1036522. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c4ob02493a

