View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Cavaillé, B. Joyeux, N. Saffon, N. Nebra, M. Fustier-Boutignon and N. Mézailles, *Chem. Commun.*, 2018, DOI: 10.1039/C8CC07466F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

COPAL SOCIETY

nemComm Accepted Manuscript

Journal Name

COMMUNICATION

Triphos-Fe Dinitrogen and Dinitrogen-Hydride Complexes: Relevance to Catalytic N₂ Reductions.

Received 00th January 20xx, Accepted 00th January 20xx

Anthony Cavaillé,^a Benjamin Joyeux,^a Nathalie Saffon-Merceron,^b Noel Nebra,^a Marie Fustier-Boutignon,^a Nicolas Mézailles.^{*,a}

DOI: 10.1039/x0xx00000x

www.rsc.org/

The two electron reduction of the iron complexes $[(P^R P_2^{Cy})Fe(Cl)_2]$ (R = Ph or tBu) 2a-b afforded complexes $[(P^R P_2^{Cy})Fe(N_2)_2]$ 4a-b. Protonation of 4a at the metal center and subsequent reduction to Fe(I)-H species leads to complex $[(P^{Ph}P_2^{Cy})Fe(N_2)(H)_2]$ 6a *via* spontaneous disproportionation reaction. Complex 4a behaves as one of the most efficient monometallic Fe-catalysts reported to date for the N₂-to-N(SiMe₃)₃ under atmospheric pressure.

Nitrogen is an essential element for our biosphere and is introduced in the living chain through ammonia. In nature, NH₃ is synthesized by a family of bacteria possessing a nitrogenase enzyme (Fe, FeV or FeMoco active center) via N2 reduction involving electron and proton transfer sequences.¹ On the other hand, and only after decades of fundamental research, a handful of synthetic models capable of performing catalytic reduction of N₂ into ammonia (or hydrazine) have been developed.² In overwhelming majority, they rely on Mo³⁻⁴ or Fe⁵⁻⁷ complexes.⁸ A closer look at the structures of the known catalysts for NH₃ formation reveals that neutral tridentate "PEP" ligands (E = N, P, C) occupy a prominent position for Mo catalysts⁴, (best TON for NH₃ formation :415)^{4e} whereas the tetradentate " EP_3 " ligands (E = B, C) are currently the most efficient Fe systems⁵ (best TON: 89).^{5e} Mechanistically, the initial steps for the Mo-promoted N₂-to-NH₃ transformation have been studied for Mo dinitrogen complexes featuring bidentate, tridentate and tetradentate ligands, for which protonation at the distal N to form the Mo(N=NH) and Mo=N-NH₂ intermediates is favored.⁹ In sharp contrast, there was not much information about the site of protonation for catalytically active Fe systems until very recently (Scheme 1). Nishibayashi and co-workers isolated the thermodynamic, dead-end complex I by protonation at the pyrrole backbone instead of the kinetically favored, catalytically-competent

isomer II.⁶ Since 2015, Peters spectroscopically identified the key intermediates III and IV, thus unequivocally providing a clear picture on the site of protonation at the distal N-atom for the "EP₃" ligated complexes.¹⁰ Interestingly, the same group identified the hydride-borohydride $[(BP_3)(\mu-H)Fe(N_2)(H)]$ complex ${\bf V}$ under turnover conditions, pointing favorable protonation at the Fe center rather than at the N_2 .¹⁴ It is also the case for Fe-N₂ complexes which are not catalytically active in N₂-to-NH₃ transformation.¹¹ This selectivity can be switched by adding strong Lewis acid, but stoichiometric formation of NH₃ from N₂ has yet to be reported.¹² To date, studies covering protonation of low-valent Fe-N2 species at Fe within catalytically active systems are very limited,⁷ yet the evaluation of such (N₂)Fe-H species in N₂-functionalization events is critical to understanding N₂ reduction catalysis, and what may limit its efficacy.

This work: protonation at Fe, and role of (N2)Fe-H species in N2-functionalization

 $\mbox{Scheme 1}$ Protonation of low-valent Fe-N $_2$ complexes that are catalytically-competent in the N $_2$ -to-NH $_3$ conversion.

^{a.} Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France.

^{b.} Institut de Chimie de Toulouse ICT-FR2599, Université Paul Sabatier, CNRS, 31062 Toulouse Cedex, France.

Electronic Supplementary Information (ESI) available: Complete experimental details, full characterization of isolated complexes, DFT-Analysis and crystallographic data. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Published on 28 September 2018. Downloaded by University of Sussex on 9/28/2018 9:33:45 AM

DOI: 10.1039/C8CC07466F Journal Name

In addition to these mechanistic studies, we have evaluated the performances of our Fe complexes in the related N_2 to $N(SiMe_3)_3$ reduction process and show them to be efficient catalysts. These results are presented herein.

Our group demonstrated that the P^{Ph}P₂^{Cy} ligand in conjunction with Mo promotes the stepwise functionalization of N₂ in the $[(P^{Ph}P_2^{Cy})Mo(N_2)_2]_2(\mu-N_2)$ complex by SiMe₃Cl and electrons.¹³ In the present work the P^RP₂^{Cy} (R = Ph, *t*Bu) ligands are used for the synthesis of rare bis-N₂ species of Fe^{(0),14} $[(P^RP_2^{Cy})Fe(N_2)_2]$ complexes **4a-b**. The $[(P^RP_2^{Cy})Fe(N_2)(H)_2]$ complexes **6a-b** were obtained upon a protonation/reduction sequence from complexes **4a-b** through a facile dismutation process from a Fe¹ hydride intermediate. These complexes showed activity in the reduction of N₂ into NH₃ and **4a** emerged as one of the most efficient monometallic Fecatalysts reported to date for the N₂ into N(SiMe₃)₃ functionalization.

The bulky, strongly donating alkyl ligands $P^{R}P_{2}^{CY}$ ($P^{R}P_{2}^{CY} = RP(CH_{2}CH_{2}PCY_{2})_{2}$, R = Ph, **1a**; tBu, **1b**) were reacted with [FeCl₂(THF)_{1.5}] in THF to afford the expected Fe complexes [($P^{R}P_{2}^{CY}$)Fe(Cl)₂] **2a-b** (light purple for **2a**, and white powder for **2b**) in excellent isolated yields (96%¹⁵ and 83% yield, respectively, Scheme 2). Complexes **2a-b** are paramagnetic and exhibit Mössbauer spectra with isomer shift of 0.767 mm.s⁻¹ and 0.730 mm.s⁻¹ expected for Fe^{II} in a quintuplet state (ESI). The magnetic moment of 5.2 μ_{B} for both **2a** and **2b** was measured in solution using the Evans' method, in agreement with the Mössbauer (4.90 μ_{B} is expected for a spin-only S = 2 magnetic moment).¹⁶ X-Ray diffraction analysis of complex **2b**.

Reduction of **2a-b** to form Fe-N₂ complexes **3a-b** and **4a-b**. Reduction by one electron using Na/Hg lead to the formation of the corresponding $[(P^{R}P_{2}^{CV})Fe(CI)]$ complexes **3a-b** in excellent isolated yield (92% and 85%, respectively). Complexes **3a-b** are paramagnetic, and **3a** exhibits a Mössbauer spectrum with isomer shift of 0.697 mm.s⁻¹ expected for Fe¹ in a quartet state (ESI).^{10a} Identical magnetic moment of 4.1 µ_B was measured in solution for **3a** and **3b** using the Evans' method (3.87 µ_B is expected for a spin-only S = 3/2 magnetic moment).¹⁶ IR spectra of complexes **3a-b** showed that N₂ does not coordinate at the Fe¹ center, which was confirmed by a X-ray diffraction study of complex **3a** (ESI). Reduction to Fe⁰ was thus studied. It can be achieved, either from **2a-b** or **3a-b** at -80 °C with the stoichiometric amount of KC₈, followed by slow warming up to room temperature over 15 h (Scheme 2). Complexes 4a (4b resp.), formed quantitatively vs internal standard, are characterized by a triplet at 120.1 ppm (J_{P-P} = 69.2 Hz) (150.5 ppm, J_{P-P} = 48.0 Hz resp.) and a doublet at 102.4 ppm (J_{P-P} = 69.2 Hz) (97.0 ppm, J_{P-P} = 48.0 Hz resp.) in the ³¹P{¹H} NMR spectrum (ESI), as well as by two NN stretching bands in the IR spectrum at 2047 and 1982 cm⁻¹ (2048 and 1981 cm⁻¹ resp.). Together, this data suggested the formation of the expected $[(P^{R}P_{2}^{Cy})Fe(N_{2})_{2}]$ complexes. Isolation of these complexes proved difficult as loss of N₂ appeared to be a facile process under vacuum and complexes are thereby stored in THF solutions of known concentration at -30 °C for further reactivity. Nonetheless, slow evaporation of THF to dryness via N2 bubbling and extraction of the complexes into pentane allowed crystallization of complex 4b (Fig. 1). The X-ray study confirmed the formation of 4a-b as rare examples of Fe bis-N₂ complexes.¹⁴ $[(P^{tBu}P_2^{Cy})Fe(N_2)_2]$ features a square based pyramid geometry at Fe, with the three P-atoms located at equatorial positions. As a consequence, the two N₂-ligands occupy the remaining equatorial position and one apical position. In particular, the N-N bond lengths of 1.118(3) and 1.128(3) Å indicate weak back-donation from the Fe center to the dinitrogen ligands, in accord to previous reports.^{14a}

The catalytic performance of complexes 4a-b in the N₂-to-NH₃ transformation was then addressed. The reactions were performed using 200 equiv. of KC₈ and 200 equiv. of HBAr^F₄ $(HBAr_{4}^{F} = [H(Et_{2}O)_{2}][BAr_{4}^{F}]; BAr_{4}^{F} = tetrakis(3,5$ bis(trifluoromethyl)-phenyl)borate) at –80°C in Et_2O for 1 h. $^{\rm 14}$ Complexes 4a and 4b lead to 3.6±0.3 and 3.3±0.4 equiv. of NH₃, while negligible amounts of NH₃ were achieved in absence of reducing agent (less than 0.1 equiv.), in accord with literature precedence.¹⁷ These observations indicate that, although the performance is rather limited, the reaction occurs via a catalytic process and not only via stoichiometric protonation of the two N₂ coordinated to the Fe center. It was thus of importance to understand the initial stages of the functionalization of coordinated N₂ along with the factors influencing catalytic turnover. In the more efficient catalytic systems, the possible formation of an anionic Fe complex (either formally Fe^{0} or Fe^{-1}) has been shown.^{5a,6} Cyclic voltammetry studies showed that no reduction wave corresponding for the Fe^{0}/Fe^{-1} couple was observed down to – 3.0 V vs Fc/Fc^+ for complex **4a**. Confirmation was experimentally obtained as no reaction occurred between complexes 4a-b with excess KC_8 at low temperature. The first step under catalytic conditions has thus to imply protonation of the Fe⁰ species. Reaction between complex 4a and one equivalent of HBAr^F₄ was therefore performed (-78°C or R.T., THF). It resulted in the formation of a paramagnetic complex characterized by a single v_{NN} stretch at 2092 cm⁻¹, only consistent with protonation at Fe and not at the distal N, as previously observed,¹⁷ leading to a $Fe^{II}(H)(N_2)^+$ complex **5a**. DFT calculations were carried out to probe the preferred site for protonation of the $Fe(N_2)_2$ complex 4a (ESI). Solvent effects were taken into account using the pcm method (solvent = THF), and HBArF₄ was modeled as $H(OEt_2)_2^+$. The desirable Published on 28 September 2018. Downloaded by University of Sussex on 9/28/2018 9:33:45 AM

Journal Name

protonation at a distal N to form $[(PP_2)Fe(N_2)(N_2H)]^{\dagger}$ (triplet state) is only marginally exergonic (-2.1 kcal/mol) because of the entropic gain generated by the liberation of two Et₂O molecules from $H(OEt_2)_2^+$. Indeed, the reaction is calculated to be endothermic ($\Delta H = +10.7$ kcal/mol), and at best protonation at terminal N would be in equilibrium with starting material. On the other hand, protonation at Fe is both exothermic (ΔH = -1.6 kcal/mol) and strongly exergonic (-24.9 kcal/mol), leading to the formation of the $[(PP_2)Fe^{II}(H)(N_2)]^+$ complex (triplet state), via spontaneous elimination of the N2 ligand trans to the incoming H ligand. Accordingly, further experimental evidence of the protonation at Fe was given by the subsequent reduction by one equivalent of KC_8 starting at low temperature. Instead of forming the expected $[(P^{Ph}P_2^{Cy})Fe^{I}(H)(N_2)]$ complex (paramagnetic, doublet state), a novel diamagnetic complex was formed in ca 50% (vs internal standard). This species is characterized by a broad triplet at 120.2 ppm (J_{P-P} = 6.7 Hz) and a doublet at 111.1 ppm (J_{P-P} = 6.7 Hz) in the ³¹P{¹H} NMR spectrum. Two highly coupled hydride signals resonate at -9.8 ppm and -20.9 ppm in the ¹H NMR spectrum (ESI) and a v_{NN} stretch at 2051 $\text{cm}^{\text{-1}}$ was measured by IR spectroscopy. Together, this data pointed to the formation of the Fe^{II} complex $[(P^{Ph}P_2^{Cy})Fe(N_2)(H)_2]$ complex **6a** (Scheme 3).

Scheme 3 Multiple synthetic routes of access to the complex $(N_2)\mathsf{Fe}(\mathsf{H})_2\,\mathsf{6a}.$

Alternatively, this complex can be synthesized in a selective manner from the reaction between complex 2a and two equivalents of LiBEt₃H. Unlike complexes 4a-b, 6a does not release coordinated N₂ under vacuum, and was crystallized in a very good 79% yield. The solid state Mössbauer spectrum gives rise to a quadrupole doublet for a $Fe^{II} S = 0$ species ($\delta = 0.063$ mm.s⁻¹ and $\Delta E_{0} = 0.673$ mm.s⁻¹; see ESI). The X-ray structure of the complex corroborated the NMR data, and confirmed the two different hydride environments, one being trans to the central P atom and the second *trans* to N₂.¹⁸ The N–N bond distance of 1.085(2) Å in **6a** is comparable to the one found for **4b** despite a less electron rich Fe center ($Fe^{II} vs Fe^{0}$), this observation being attributed to the strong trans influence of the hydride ligand. The reactivity we observed from either Fe^{II} or Fe¹ is in sharp contrast with the most recent report by Peters and co-workers who obtained the Fe^l complex $[P_2^{P'Ph}Fe(H)]_2(\mu-N_2)$ $(P_2^{P'Ph} = PhP(2-(iPr_2P)C_6H_4)_2)$ from the hydride reduction of the $Fe^{II}X_2$ precursor featuring a tridentate

phosphine ligand.⁷ In the present case, formation of complex **6a** from **5a** appears to involve reduction to the $Fe^{1}(N_{2})(H)$ intermediate which is not stable toward dismutation. In order to verify this assumption, the reaction between Fe^{1} complex **3a**

Fig. 1 Molecular structure of **4b** (left) and **6a** (right). Hydrogen atoms (except metallic hydrides) and solvent molecules are omitted for clarity; thermal ellipsoids are drawn with 50% probability.

and one equivalent of LiBEt₃H was conducted under N₂ and followed by ³¹P{¹H} NMR spectroscopy. Within minutes of mixing, a mixture of diamagnetic complexes was observed, among which complex **6a**. After 2 h at room temperature, complex **6a** is formed in *ca* 50% yield, confirming the favorable dismutation reaction of the Fe¹ intermediate. The thermodynamic stability of the hydride-dinitrogen complexes of Fe¹ vs Fe¹¹ in this series therefore depends to the highest extent on the tridentate neutral phosphine ligand.

The $[(P^{Ph}P_2^{Cy})Fe(N_2)(H)_2]$ complex **6a** was then subjected to the model catalytic conditions (*i.e.* 200 equiv. of KC₈ and 200 equiv. of HBAr^F₄ at -80°C in Et₂O for 1h), leading to the formation of 2.7±0.3 equiv. of NH₃. One should note that this result is almost identical to the one obtained by Peters and coworkers with their $[(P_2^{P'Ph})Fe(N_2)(H)_2]$ complex (2.6±0.1 equiv. NH₃).

The aforementioned mechanistic aspects derived from the protonation of the low-valent Fe-N2 complex 4a indicate that addition of electrophiles at the distal N-atom is of utmost importance to reach good turnover numbers when dealing with Fe-catalyzed N₂ functionalization. Given the high affinity of Si moieties for N_2 ligands bonded to transition metals, we turned our attention toward the N_2 -silylation with ClSiMe₃.^{2,19} To date, the most efficient catalytic systems are based on Mo (best TON : 220)^{19a} and Co (best TON: 195).¹⁹ⁱ Concerning Fe, several Fe-hydride clusters have been shown to be very active (TON: 160 for a Fe₄ cluster, *i.e.* 40 per Fe center; 183 for Fe₆ cluster, *i.e.* 31 per Fe center)^{19e} while the most efficient monometallic Fe complex was reported while our work was under evaluation (TON: 121).^{19h} Having in hands several Fe-N₂ complexes, 4a, 4b and 6a, their efficiency in this process was tested. Optimization of the model reaction conditions was done with complex 4a. As often observed, THF appears critical, as well as the use of 600 equiv. of K as reducing agent. $^{\rm 13,19f}$ Under these conditions, complex 4a provides a TON of 32.0±0.8 in the range of the more efficient monometallic Fe catalysts for the synthesis of silylamines from N_2 .²⁰ It corresponds to an efficiency in the formation of the N-Si bond of 16% (17%, ref 19f, 15.5% and 20%, ref 19e; 24% ref 19h). Complex 4b performs slightly less with a TON of 27.0±0.5,

Yage (iew Article Online

DOI: 10.1039/C8CC07466F Journal Name

whereas the dihydride complex **6a** is about half as efficient (entry 7, TON 14.5).

Table 1. Cata	lytic investi	gations
---------------	---------------	---------

and in caractering attended							
TMSCI + Red. 600 600 equiv. equiv.		Cat. (0.01 mmol) solvent, N₂ r.t., 2 days		N(TMS) ₃	observed by ²⁹ Si NMR		
					quan meth	quantified <i>via</i> indophenol method after hydrolysis	
Entry ^a	Cat		Solvent	Re	d.	Equiv. N(TMS) ₃	
1	4a		THF	Na	1	15.8	
2	4a		THF	К		32.0±0.8 ^b	
3	4a		1,4-dioxan	e K		7.7	
4	4a		2-MeTHF	К		6.5	
5	4a		Et ₂ O	К		< 2.0	
6	4b		THF	К		27.0±1.0 ^b	
7	6a		THF	К		14.5	
-				L.			

^{*a*}Equiv. **N(TMS)**₃ = equiv. amine/Cat. ^b: done in duplicate In conclusion, we show here that the tridentate ligand P^RP^{Cy}₂ is able to stabilize rare Fe⁰ *bis*-N₂ complexes **4a-b**. These complexes expand the small field of iron species able to perform N₂ reduction into NH₃ under mild conditions in homogeneous phase. Their weak activity can be explained by kinetically favored protonation at the metallic center rather than at a nitrogen atom as well as the *in situ* formation of the Fe^{II} species $[(P^{Ph}P_2^{CY})Fe(N_2)(H)_2]$ **6a** from transient Fe^I(H)(N₂) species. The use of the bulkier, softer electrophile CISiMe₃ precluded such a reactivity at the Fe center and thereby complex **4a** rises up as one of the most competent catalysts for N(TMS)₃ production from N₂. These results provide further guidance toward the development of more efficient Fe complexes in the N₂ catalyzed reduction.

CNRS and Université de Toulouse are acknowledged for financial support. We are grateful to CalMip (CNRS, Toulouse, France) for access to calculation facilities. We also thank Jean-François Meunier for Mössbauer analyses, and Solvay for a generous gift of phosphines.

Conflicts of interest

Published on 28 September 2018. Downloaded by University of Sussex on 9/28/2018 9:33:45 AM

There are no conflicts to declare.

Notes and references

- (a) J. B. Howard, D. C. Rees, *Chem. Rev.*, 1996, **96**, 2965; (b)
 B. K. Burgess, D. J. Lowe, *Chem. Rev.*, 1996, **96**, 2983; (c) B.
 M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. Seefeldt, *Chem. Rev.*, 2014, **114**, 4041.
- (a) M. D. Walter, in *Adv. Organomet. Chem.*, Elsevier Inc.,
 2016, pp. 261; (b) Y. Tanabe, Y. Nishibayashi, *Chem. Rec.*,
 2016, 16, 1549.
- 3 D. V. Yandulov, R. R. Schrock, Science, 2003, 301, 76.
- 4 (a) K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem., 2011,
 3, 120; (b) H. Tanaka, K. Arashiba, S. Kuriyama, A. Sasada, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun., 2014, 5, 3737; (c) K. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka, K. Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc., 2015, 137, 5666; (d) A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Nat. Commun., 2017, 8, 14874. (e) K. Arashiba, A. Eizawa, H. Tanaka, K.

Nakajima, K. Yoshizawa, Y. Nishibayashi, Bull. Chem. Soc. Jpn., 2017, 90, 1111.

- 5 (a) J. S. Anderson, J. Rittle, J. C. Peters, *Nature*, 2013, 501, 84;
 (b) S. E. Creutz, J. C. Peters, *J. Am. Chem. Soc.*, 2014, 136, 1105;
 (c) T. J. Del Castillo, N. B. Thompson, J. C. Peters, *J. Am. Chem. Soc.*, 2016, 138, 5341;
 (d) P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers, A. E. Ashley *J. Am. Chem. Soc.*, 2016, 138, 13521.
 (e) M. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. P. Roddy, J. C. Peters, *ACS Cent. Sci.*, 2017, 3, 217.
- S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K. Yoshizawa, Y. Nishibayashi, *Nat. Commun.*, 2016, 7, 12181.
- 7 T. M. Buscagan, P. H. Oyala, J. C. Peters, Angew. Chem. Int. Ed., 2017, 56, 6921.
- Co complexes: (a) T. J. Del Castillo, N. B Thompson, D. L. M. Suess, G. Ung, J. C. Peters, *Inorg. Chem.*, 2015, 54, 9256; (b) S. Kuriyama, K. Arashiba, H. Tanaka, Y. Matsuo, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Angew. Chem. Int. Ed.*, 2016, 55, 14291.
- 9 (a) M. Hidai, Y. Mizobe, *Chem. Rev.*, 1995, **95**, 1115; (b) N. Khoenkhoen, B. de Bruin, J. N. H. Reek, W. I. Dzik, *Eur. J. Inorg. Chem.*, 2015, **2015**, 567.
- 10 (a) J. S. Anderson, G. E. Cutsail, J. Rittle, B. A Connor, W. A. Gunderson, L. Zhang, B. M. Hoffman, J. C. Peters, *J. Am. Chem. Soc.*, 2015, **137**, 7803; (b) J. Rittle, J. C. Peters, *J. Am. Chem. Soc.*, 2016, **138**, 4243.
- 11 L. D. Field, L. D.; N. Hazari, H. L. Li, *Inorg. Chem.*, 2015, **54**, 4768.
- 12 J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc., 2017, **139**, 5952.
- 13 Q. Liao, N. Saffon-Merceron, N. Mézailles, *ACS Catal.*, 2015, 5, 6902.
- 14 (a) J. L. Crossland, D. R. Tyler, Coord. Chem. Rev., 2010, 254, 1883; (b) N. Hazari, Chem. Soc. Rev., 2010, 39, 4044.
- 15 A. Cavaillé, N. Saffon-Merceron, N. Nebra, M. Fustier-Boutignon, N. Mézailles, Angew. Chem. Int. Ed., 2018, 57, 1874.
- 16 (a) D. F. Evans, J. Chem. Soc., 1959, 2003; (b) G. A. Bain, J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- 17 L. D. Field, R. W. Guest, P. Turner, *Inorg. Chem.*, 2010, **49**, 9086.
- 18 Z. Ouyang, J. Cheng, L. Li, X. Bao, L. Deng, Chem. Eur. J., 2016, 22, 14162.
- 19 Selected representative articles Mo: (a) H. Tanaka, A. Sasada, T. Kouno, M. Yuki, Y. Miyake, H. Nakanishi, Y. Nishibayashi, K. Yoshizawa, J. Am. Chem. Soc., 2011, 133, 3498; (b) Q. Liao, N. Saffon-Merceron, N. Mézailles, Angew. Chem. Int. Ed., 2014, 53, 14206. Fe: (c) A. D. Piascik, P. J. Hill, A. D. Crawford, L. R. Doyle, J. C. Green, A. E. Ashley Chem. Commun., 2017, 53, 7657; (d) G. Ung, J. C. Peters, Angew. Chem. Int. Ed., 2015, 54, 532; (e) R. Araake, K. Sakadani, M. Tada, Y. Sakai, Y. Ohki, J. Am. Chem. Soc., 2017, 139, 5596; (f) M. Yuki, H. Tanaka, K. Sasaki, Y. Miyake, K. Yoshizawa, Y. Nishibayashi, Nat. Commun., 2012, 3, 1254. (g) R. B. Ferreira, B. J. Cook, B. J. Knight, V. J. Catalano, R. García-Serres, L. J. Murray ACS Catal., 2018, 8, 7208. (h) A. D. Piascik, R. Li, H. J. Wilkinson, J. C. Green, A. E. Ashley, J. Am. Chem. Soc., 2018, DOI: 10.1021/jacs.8b06999 Co: (i) R. B. Siedschlag, V. Bernales, K. D. Vogiatzis, N. Planas, L. J. Clouston, E. Bill, L. Gagliardi, C. C. Lu, J. Am. Chem. Soc., 2015, 137, 4638. (j) Y. Gao, G. Li, L. Deng J. Am. Chem. Soc., 2018, 140, 2239.
- 20 A (P₂P₂)Fe(N₂) complex is reported to give 5.4 equiv. of N(SiMe₃)₃ under 1 atm of N₂, and 65 equiv. under 100 atm.:
 D. E. Prokopchuk, E. S. Wiedner, E. D. Walter, C. V. Popescu, N. A Piro, W. S. Kassel, R. M. Bullock, M. T. Mock J. Am. Chem. Soc., 2017, **139**, 9291.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Published on 28 September 2018. Downloaded by University of Sussex on 9/28/2018 9:33:45 AM.

Table of Contents entry

Mechanistic investigations of the catalyzed reduction of N_2 with a rare (tridentate phosphine)Fe(0) bis dinitrogen complex.