

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 15 (2004) 3587-3590

Tetrahedron: Asymmetry

Enzymatic desymmetrization of meso-1a,4a-dihydroxy-cis-decalins

Robert Chênevert,* Gabriel Courchesne and Frédéric Jacques

Département de Chimie, CREFSIP, Faculté des Sciences et de Génie, Université Laval, Québec, Canada G1K 7P4

Received 18 August 2004; accepted 7 October 2004

Abstract—The stereoselective acetylation of *meso*-decalindiols 1 and 2 by vinyl acetate in the presence of *Candida antarctica* lipase gave monoester (1R,4S,4aR,8aS)-5 and (1R,4S,4aR,8aS)-6 in high enantiomeric excess (ee $\ge 98\%$). The hydrolysis of the corresponding *meso*-diacetates 3 and 4 in the presence of porcine liver esterase in phosphate buffer provided the opposite enantiomers. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The decalin ring system is an important structural feature often encountered in many natural products especially in terpenoid compounds.^{1–5} Decalins exist in two stereoisomeric configurations; *cis*-decalin in which the substituents are on the same side of the ring junction, and *trans*-decalin in which they are on the opposite sides. The *trans* junction is more common but the *cis* junction is found in a significant number of natural products. Given the importance of the *cis*-decalin ring systems, the development of their synthesis has been the subject of considerable interest.^{6–20} Herein we report the enzymatic desymmetrization of *meso*-1 α , 4α -dihydroxy-*cis*-decalins.

2. Results and discussion

2.1. Substrate preparation

Diol **1** was prepared in three steps from *cis*-1,3-butadiene and *p*-benzoquinone according to a known procedure.²¹ Hydrogenation of **1** in ethyl acetate over palladium on carbon gave the saturated diol **2** (Scheme 1).²² Corresponding diacetates **3** and **4** were prepared by the acetylation of **1** and **2** with acetic anhydride in pyridine.

2.2. Enzymatic desymmetrizations

Initially, a wide range of lipases and esterases were screened for activity with the *meso*-substrates 1–4. First,

Scheme 1. Reagents and conditions: (a) H_2 , Pd/C, EtOAc; (b) Ac_2O , pyridine.

diols 1 and 2 were subjected to the enzyme-catalyzed esterification by treatment with *Pseudomonas cepacia* lipase (PCL) in vinyl acetate (solvent and acyl donor) to give optically active esters (1R,4S,4aR,8aS)-5 and (1R,4S,4aR,8aS)-6 in high yield (85%) and high enantiomeric excess (\geq 98%) along with traces of the corresponding achiral diesters 3 and 4 (Scheme 2). Only one enantiomer of monoacetate 5 or 6 was detected by chiral GC but the reaction was slow (~3 days). The use of *Candida antarctica* lipase B (CAL-B) as catalyst at 40 °C gave the same yields and enantiomeric excesses in a shorter reaction time (1 day).

In general, the esterification (transesterification) of *meso*-diols and the hydrolysis of the corresponding *meso*-diesters are complementary and give the opposite enantiomers. Unexpectedly, many enzymes including

^{*}Corresponding author. Tel.: +1 418 656 3283; fax: +1 418 656 7916; e-mail: robert.chenevert@chm.ulaval.ca

^{0957-4166/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2004.10.004

Scheme 2. Reagents and conditions: (a) *Pseudomonas cepacia* lipase, vinyl acetate, rt or *Candida antarctica* lipase B, vinyl acetate, 40 °C.

PCL and CAL-B showed no or very little hydrolytic activity in the presence of diesters **3** and **4**. Hydrolysis of diesters **3** and **4** by pig liver esterase (PLE) in a phosphate buffer provided enantiomerically pure (ee $\ge 98\%$) monoesters (1*S*,4*R*,4a*S*,8a*R*)-**5** and (1*S*,4*R*,4a*S*,8a*R*)-**6** (60–70% yield) and the corresponding achiral diols **1** and **2** (30–40% yield) indicating that monoacetates were also substrates (Scheme 3).

Scheme 3. Reagents and conditions: (a) pig liver esterase, phosphate buffer, pH7.

The absolute configurations of monoesters **5** and **6** were determined by chemical correlation with compounds **9** and **10** of known absolute configurations (Scheme 4). Hydrogenation of **5** in the presence of 10% Pd/C gave the saturated compound **6**, which was then treated with mesyl chloride in pyridine to yield **7**. Treatment of **7** with LiAlH₄ reduced the acetyl and mesylate groups to give **8**.²³ Hydrogenation of **8** in the presence of 10% Pd/C gave the saturated compounds **9**, $[\alpha]_D^{22} = -35.3$ (*c* 0.22, EtOH); lit.²⁴ $[\alpha]_D^{25} = -34.5$ (*c* 1.1, EtOH) for the (1*R*)-enantiomer, and **10**, $[\alpha]_D^{22} = +24.0$ (*c* 1.25, CHCl₃); lit.²⁵ $[\alpha]_D^{21} = -22.0$ (*c* 1.0, CHCl₃) for the (1*S*)-enantiomer.

3. Experimental

3.1. General

NMR spectra were recorded on a Varian Inova AS400 spectrometer (400 MHz). Infrared spectra were recorded

Scheme 4. Reagents and conditions: (a) (i) H_2 , Pd/C, EtOAc; (ii) MsCl, Et_3N , CH_2Cl_2 ; (b) $LiAlH_4$, THF; (c) H_2 , Pd/C, EtOAc.

on a Bomem MB-100 spectrometer. Optical rotations were measured using a JASCO DIP-360 digital polarimeter (*c* as gram of compound per 100 mL). Flash column chromatography was carried out using 40–63 μ m (230–400 mesh) silica gel. Lipase PS from *P. cepacia* was a gift from Amano International Enzyme Co. *C. antarctica* lipase B (chirazyme L-2) was obtained from Boehringer Mannheim and pig liver esterase from Sigma Chem. Co. The enantiomeric excesses (ee) were determined by GC analysis on a Chiraldex B-DM (β -cyclodextrin dimethyl) capillary column (30 m × 0.25 mm) using racemic compounds as references.

3.2. (1R,4S,4aR,8aS)-Decahydronaphthalene-1,4-diol 2

A solution of *meso*-diol **1** (417 mg, 2.48 mmol) in ethyl acetate (10 mL) was stirred at rt with 10% Pd-on-carbon (125 mg) under hydrogen (40 psi) for 4h. The catalyst was removed by filtration on Celite and the solvent evaporated to give **2** (417 mg, quantitative yield) as a white solid: mp 93–94 °C; lit.²² mp 93–94 °C; IR (KBr) 3456, 2945, 1726, 1448, 1027, 949 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.40 (m, 14H), 2.79 (s, 2H), 3.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 26.0, 27.4, 39.2, 72.6.

3.3. Preparation of diacetates 3 and 4: general procedure

To a stirred solution of diol 1 or 2 (3.8 mmol) in pyridine (5mL) was added acetic anhydride (3 equiv) and the solution stirred overnight at rt. The solvent was co-evaporated with hexanes and CH₂Cl₂. The crude product was purified by flash chromatography (hexanes/EtOAc, 6:1) to give diester 3 or 4 (87–90%).

3.3.1. (1*R*,4*S*,4*aR*,8*aS*)-4-(Acetyloxy)-1,2,3,4,4a,5,8,8aoctahydronaphthalen-1-yl acetate 3. White solid: mp 56–57 °C; lit.²¹ mp 56–57 °C; IR (KBr) 3449, 2933, 1735, 1234, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.52 (m, 2H), 1.80 (m, 14H), 4.93 (m, 2H), 5.52 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 25.0, 27.4, 35.0, 73.6, 125.4, 170.7. **3.3.2.** (1*R*,4*S*,4*aR*,8*aS*)-4-(Acetyloxy)-decahydronaphthalen-1-yl acetate 4. Colorless oil; IR (NaCl) 3449, 2933, 1735, 1375, 1234, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.50 (m, 14H), 1.92 (m, 6H), 4.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 25.2, 26.1, 29.2, 39.0, 72.5, 170.3; HRMS (CI, NH₃) calcd for C₁₄H₂₆NO₄ (M+NH₄)⁺: 272.1862. Found: 272.1865.

3.4. Enzymatic acylation of diols 1 and 2: general procedure

To a stirred solution of diol 1 or 2 (0.63 mmol) in vinyl acetate (5mL) was added the lipase (50mg, PCL at rt or CAL-B at 40 °C). The reaction course was monitored by TLC and when the substrate had disappeared (\sim 3 days with PLC, \sim 1 day with CAL-B), the mixture was filtered and the solvent evaporated. The crude product was purified by flash chromatography (CH₂Cl₂/acetone, 98:2) to give 5 or 6 (85%) as colorless oils.

3.4.1. (1*R*,4*S*,4*aR*,8*aS*)-4-Hydroxy-1,2,3,4,4*a*,8,8*a*-octahydronaphthalen-1-yl acetate **5.** $[\alpha]_D^{22} = +44.7$ (*c* 2.1, CHCl₃); IR (NaCl) 3371, 3020, 2917, 1732, 1435, 1375, 1248, 1038 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.44 (m, 2H), 1.70 (m, 2H), 1.87 (s, 3H), 2.01 (m, 6H), 2.41 (s, 1H), 3.74 (m, 1H), 4.86 (m, 1H), 5.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 24.3, 25.8, 26.7, 28.2, 34.8, 36.7, 72.1, 74.3, 126.0, 126.9, 170.9; HRMS (CI, NH₃) calcd for C₁₂H₁₈O₃ (M+H)⁺: 211.1334. Found: 211.1338.

3.4.2. (1*R*,4*S*,4*aR*,8*aS*)-4-Hydroxydecahydronaphthalen-1-yl acetate 6. $[\alpha]_D^{22} = -26.5 (c \ 4.0, \text{CHCl}_3); \text{ IR (NaCl)}$ 3448, 2864, 1734, 1447, 1376, 1251, 1024 cm⁻¹; ¹H NMR (400 MHz, CDCl_3): δ 1.32 (m, 2H), 1.60 (m, 13H), 2.03 (s, 3H), 3.80 (m, 1H), 4.91 (m, 1H); ¹³C NMR (100 MHz, CDCl_3): δ 22.0, 24.1, 25.1, 27.0, 38.1, 40.6, 72.7, 74.7, 170.8; HRMS (CI, NH₃) calcd for C₁₂H₂₀O₃ (M+NH₄)⁺: 230.1756. Found: 230.1760.

3.5. Enzymatic hydrolysis of diesters 3 and 4: general procedure

In a typical experiment, a suspension of ester **3** or **4** (0.40 mmol) was hydrolyzed with PLE (10 mg) in a phosphate buffer (5mL, pH7) at 38 °C. The reaction was monitored by TLC, and terminated when the substrate had disappeared (~48 h). The mixture was extracted with CH₂Cl₂ (3 × 25 mL), and the combined organic phases dried over MgSO₄ and evaporated. The crude product was purified by flash chromatography (hexanes/EtOAc, 3:1) to give monoesters **5** and **6** (57–63%) as colorless oils and diols **1** and **2** (25–35%). Monoester **5**: $[\alpha]_{D}^{22} = -44.7$ (*c* 1.3, CHCl₃), ee $\ge 98\%$, spectral data as above. Monoester **6**: $[\alpha]_{D}^{22} = +26.5$ (*c* 1.2, CHCl₃), ee $\ge 98\%$, spectral data as above.

3.6. Determination of absolute configuration by chemical correlation

3.6.1. Reduction of 5 to 6. A solution of **5** (459 mg, 2.18 mmol; from CAL-B or PCL acylation) in ethyl ace-

tate (10mL) was stirred at rt with 10% Pd-on-carbon (160mg) under hydrogen (40psi) for 4h. The catalyst was then removed by filtration on Celite and the solvent evaporated. The crude product was purified by flash chromatography (hexanes/EtOAc, 3:1) to give **6** (519mg, 87%) as a colorless oil: $[\alpha]_{D}^{22} = -26.5$ (*c* 2.1, CHCl₃).

(1R,4S,4aR,8aS)-4-[(Methylsulfonyl)oxy]-deca-3.6.2. hydronaphthalen-1-yl acetate 7. To a stirred solution of 6 (243 mg, 1.14 mmol) and triethylamine (796 μ L, 5.70 mmol) in anhydrous CH_2Cl_2 (20 mL) under a dry atmosphere at 0°C was added dropwise a solution of mesyl chloride (352 µL, 4.56 mmol) in CH₂Cl₂ (3 mL). The mixture was stirred overnight at rt, diluted with ethyl acetate (25mL), then washed with 3M HCl $(2 \times 20 \text{ mL})$, saturated NaHCO₃ (25 mL), brine $(2 \times 20 \text{ mL})$, dried over MgSO₄, and evaporated. The crude product was purified by flash chromatography (hexanes/EtOAc, 1:1) to yield 7 (301 mg, 91%) as a colorless oil: $[\alpha]_{D}^{22} = -17.2$ (*c* 2.1, CHCl₃); IR (NaCl) 3017, 2869, 1730, 1448, 1372, 1254, 1029, 930 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.28 (m, 2H), 1.55 (m, 10H), 1.88 (m, 2H), 1.98 (s, 3H), 2.94 (s, 3H), 4.71 (m, 1H), 4.85 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.8, 23.8, 27.7, 28.4, 38.1, 38.9, 73.5, 83.2, 170.5; HRMS (CI, NH₃) calcd for $C_{13}H_{22}O_5S$ (M+NH₄)⁺: 308.1532. Found: 308.1536.

3.6.3. (1*R*,8a*S*)-1,2,3,5,6,7,8,8a-Octahydronaphthalen-1ol 8. To a solution of 7 (103 mg, 0.35 mmol) in anhydrous THF (4mL) was added dropwise a solution of LiAlH₄ (1 M in THF, 1,79 mL, 1.79 mmol) and the mixture was stirred at rt under dry atmosphere for 4 h. The mixture was cooled to 0°C and carefully quenched by dropwise addition of water (100 µL), followed by a 0.15 M NaOH solution (100 µL). The white inorganic precipitate was filtered off and washed with ethyl ether. The combined filtrates were dried (MgSO₄) and evaporated. The crude product was purified by flash chromatography (hexanes/EtOAc, 2:1) to give 8 (47 mg, 88%) as a colorless oil:²³ $[\alpha]_D^{22} = +22.0 (c 1.0, CHCl_3);$ IR (NaCl) 3361, 2927, 2851, 1457, 1374, 1258, 1043, 947 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.15–2.17 (m, 14H), 3.86 (m, 1H), 5.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 22.1, 26.4, 28.1, 28.2, 28.7, 35.7, 43.0, 69.4, 118.4, 139.1.

3.6.4. Reduction of olefin 8. A solution of **8** (40 mg, 0,26 mmol) in diethyl ether (10 mL) was stirred at rt with 10% Pd-on-carbon (50 mg) under hydrogen (55 psi) for 2h. The catalyst was removed by filtration on Celite and the solvent evaporated. The crude product was purified by flash chromatography (hexanes/Et₂O, 3:1) to give **9** (11 mg, 27%) and **10** (25 mg, 62%) as white solids.

3.6.5. (1*R*,4a*S*,8a*S*)-Decahydronaphthalen-1-ol 9. Mp 72–73 °C; $[\alpha]_D^{22} = -35.3$ (*c* 0.22, EtOH); lit.²⁴ $[\alpha]_D^{25} = -34.5$ (*c* 1.1, EtOH); IR (KBr) 3374, 2924, 2841, 1445, 1319, 1057, 1011, 942 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 0.92–1.85 (m, 17H), 3.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 20.0, 26.4, 26.8, 29.7, 33.7, 33.9, 34.4, 35.6, 47.2, 70.7. **3.6.6.** (1*R*,4*aR*,8*aS*)-Decahydronaphthalen-1-ol 10. Mp 67–69 °C; $[\alpha]_D^{22} = +24.0$ (*c* 1.25, CHCl₃); lit.²⁵ $[\alpha]_D^{21} = -22.0$ (*c* 1.0, CHCl₃); IR (KBr) 3318, 2926, 2856, 1448, 1089, 1061, 1030, 938 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 1.06–1.84 (m, 17H), 3.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.1, 21.8, 24.5, 24.6, 26.5, 29.6, 32.0, 36.0, 43.1, 73.8.

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. G.C. was the holder of a NSERC postgraduate scholarship.

References

- 1. Fraga, B. M. Nat. Prod. Rep. 2001, 18, 650-673.
- Connolly, J. D.; Hill, R. A. Nat. Prod. Rep. 2001, 18, 131– 147.
- 3. Hanson, J. R. Nat. Prod. Rep. 2001, 18, 88-94.
- 4. Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243–287.
- 5. Glasby, J. S. *Encyclopedia of the Terpenoids*; Wiley: Chichester, 1982.
- 6. Guiry, P. J.; Kiely, D. Curr. Org. Chem. 2004, 8, 781-794.
- Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W. *Tetrahedron* 2003, 59, 737–745.
- Kiely, D.; Guiry, P. J. Tetrahedron Lett. 2003, 44, 7377– 7380.

- Anderson, J. C.; Blake, A. J.; Graham, J. P.; Wilson, C. Org. Biomol. Chem. 2003, 1, 2877–2885.
- Fleming, F. F.; Zhang, Z. Y.; Wang, Q. Z.; Steward, O. W. J. Org. Chem. 2003, 68, 7646–7650.
- 11. Jung, M. E.; Piizzi, G. J. Org. Chem. 2003, 68, 2572-2582.
- Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945–2963.
- 13. Guay, B.; Deslongchamps, P. J. Org. Chem. 2003, 68, 6140–6148.
- Abd Rahman, N.; Landais, Y. Curr. Org. Chem. 2002, 6, 1369–1395.
- 15. Singh, V.; Iyer, S. Chem. Commun. 2001, 2578-2579.
- Tsai, Y. F.; Peddinti, R. K.; Liao, C. C. Chem. Commun. 2000, 475–476.
- 17. Melekhov, A.; Forgione, P.; Legoupry, S.; Fallis, A. G. Org. Lett. 2000, 2, 2793–2796.
- 18. Tokoroyama, T. Synthesis 2000, 611-633.
- 19. Liu, H. J.; Yip, J. Synlett 2000, 1119-1122.
- Sutherland, J. K. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, pp 341–377.
- 21. Girotra, N. N.; Wendler, N. L. Tetrahedron Lett. **1982**, 23, 5501–5504.
- 22. Hückel, W.; Kraus, W. Chem. Ber. 1962, 95, 233-241.
- Kim, S. H.; Cho, S. Y.; Cha, J. K. Tetrahedron Lett. 2001, 42, 8769–8772.
- Dutler, H.; Van der Baan, J. L.; Hochuli, E.; Kis, Z.; Taylor, K. E.; Prelog, V. *Eur. J. Biochem.* 1977, 75, 423– 432.
- Hodgson, D. M.; Lee, G. P.; Marriott, R. E.; Thompson, A. J.; Wisedale, R.; Witherington, J. J. Chem. Soc., Perkin Trans. 1 1998, 2151–2161.