Accepted Manuscript

Design and Synthesis of 3,4-Dihydro-2*H*-benzo[*h*]chromene Derivatives as Potential NF- κ B Inhibitors

Minho Choi, Young-Sik Hwang, Arepalli Sateesh Kumar, Hyeju Jo, Yeongeun Jeong, Yunju Oh, Joonkwang Lee, Jieun Yun, Youngsoo Kim, Sang-bae Han, Jae-Kyung Jung, Jungsook Cho, Heesoon Lee

PII:	S0960-894X(14)00401-6
DOI:	http://dx.doi.org/10.1016/j.bmc1.2014.04.053
Reference:	BMCL 21546
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	11 March 2014
Revised Date:	11 April 2014
Accepted Date:	12 April 2014

Please cite this article as: Choi, M., Hwang, Y-S., Kumar, A.S., Jo, H., Jeong, Y., Oh, Y., Lee, J., Yun, J., Kim, Y., Han, S-b., Jung, J-K., Cho, J., Lee, H., Design and Synthesis of 3,4-Dihydro-2*H*-benzo[*h*]chromene Derivatives as Potential NF-κB Inhibitors, *Bioorganic & Medicinal Chemistry Letters* (2014), doi: http://dx.doi.org/10.1016/j.bmcl.2014.04.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bioorganic & Medicinal Chemistry Letters

Design and Synthesis of 3,4-Dihydro-2*H*-benzo[*h*]chromene Derivatives as Potential NF-κB Inhibitors

Minho Choi^a, Young-Sik Hwang^a, Arepalli Sateesh Kumar^a, Hyeju Jo^a, Yeongeun Jeong^a, Yunju Oh^a, Joonkwang Lee^a, Jieun Yun^b, Youngsoo Kim^a, Sang-bae Han^a, Jae-Kyung Jung^a, Jungsook Cho^c and Heesoon Lee^{a*}

^aDepartment of Pharmacy, Chungbuk National University, Chungbuk 361-763, Republic of Korea. ^bKorea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Republic of Korea. ^cCollege of Pharmacy, Dongguk University, Goyang 410-773, Republic of Korea.

ARTICLE INFO

Article history:

ABSTRACT

Received Revised Accepted Available online *Keywords:* NF-kB inhibitors Cytotoxic activity *N*-aryl-3,4-dihydro-2*H*-benzo[*h*]chromene-2carboxamide derivatives A novel class of NF- κ B inhibitors were designed and synthesized based on KL-1156 (6-Hydroxy-7-methoxychroman-2-carboxylic acid phenyl amide) which is unambiguously considered to be a promising inhibitor for the translocation step of NF- κ B. Especially in this study we focused on the modifying the chroman moiety of KL-1156 into four parts for exploring the SAR studies linked with physical properties of substituents resulted the development of novel **1a-k**, **2a-f**, **3a-d** and **4a-d** derivatives of 3,4-dihydro-2*H*-benzo[*h*]chromene. From the SAR studies we were very delightfully identified that several new *N*-aryl-3,4-dihydro-2*H*-benzo[*h*]chromene-2-carboxamide derivatives (**1a-k**) exhibited good inhibitory activity and anti-proliferative activity than parent lead compound KL-1156, among them **1i** exhibited outstanding inhibitory effect on LPS-induced NF- κ B transcriptional activity and anti-proliferative activity on NCI-H23 lung cancer cell lines than KL-1156.

2014 Elsevier Ltd. All rights reserved.

In 1986 Baltimore et al., discovered NF-kB as a factor in the nucleus of B cells that binds to the enhancer of the kappa light chain of immunoglobulin and it also has been characterized as a lymphoid specific protein.¹ Since then an intensive research have been dedicated to the study of NFκB signaling, approximately more than 25,000 publications have been reported so far. NF-kB is also found in almost all animal cell types and is involved in cellular responses to stimuli such as stress cytokines, oxidized LDL, ultraviolet irradiation, free radical, and viral or bacterial antigens.²⁻⁶ NFκB is constitutively active in most tumor cell lines, whether derived from solid tumors or hematopoietic tumors. It is infrequently established to be constitutively active in normal cells except for proliferating T cells, thymocytes, B cells, monocytes, and astrocytes.⁷ Constitutively active NF-kB has been identified not only in human cell lines but also in tumor tissues derived from patients with multiple myeloma, chronic myelogenous leukemia, acute lymphocyte leukemia, and acute myelogenous leukemia, breast and prostate cancers.8-11

Consequently, it has been suggested and very useful that inhibitors of NF- κ B function both as anti-inflammatory agents and as antitumor agents.¹² Over the years, having interest on developing the novel inhibitors of NF- κ B, our group reported a

multiplicity of chroman derivatives having inhibitory activity of NF- κ B¹³⁻¹⁶ based on compound KL-1156 (6-hydroxy-7methoxychroman-2-carboxylic acid phenyl amide) (Figure 1), an inhibitor of translocation to the nucleus in LPS-stimulated macrophage RAW 264.7 cells.¹³ In the investigation studies of inhibitors of NF- κ B, we had been recognized that the parent lead compound KL-1156 having phenolic -OH group and short alkyl groups of the chroman moiety have no significant effect for enhancement of inhibitory activity of NF- κ B. Therefore we synthesized a series of indoline-2-carboxylic acid *N*-(substituted) phenylamide derivatives and they were also evaluated for cytotoxicity against various cancer cell lines.¹⁷

* Corresponding author. Tel.: +82-43-261-32; fax: +82-43-268-27; e-mail: medchem@chungbuk.ac.kr (H. Lee)

Scheme 1. General methods to prepare 1 series. Reagents and conditions: (a) diethyloxalate, NaOEt, EtOH, reflux, 3 h (b) EtOH, HCl (c) H₂, 10% Pd/C, EtOH, 24 h (d) KOH, isopropylalcohol/H₂O, reflux, 3h (after 4 steps yield 50%) (e) CDI, THF, 12 h, 52-75%

Furthermore, chroman (benzopyran) scaffold also frequently found in various biologically active molecules as shown in **Figure 1**. Hence these scaffolds are also traditionally valuable and to establish a systematic SAR of pyranyl moiety in chroman scaffolds, expansion of aromatic core of chroman to benzo[*h*]chromene could be considered. Furthermore we have introduced amide, carboxamide, aryl and alkyl amine functionalities to the core structure of benzo[*h*]chromene which could provide high-water solubility and exert beneficial pharmacokinetic effects. Thus, as part of our ongoing efforts to develop novel NF-kB inhibitory agents, herein we reported the synthesis of various amide, amine derivatives of 3,4dihydro-2*H*-benzo[*h*]chromene and their structure-activity relationship (SAR).

As shown in **Scheme 1**, we commenced our synthesis with commercially available **5** which involved in tandem cyclization with diethyl oxalate, sodium ethoxide and ethanol in acidic medium provided **6**. The reduction of **6** with Pd/C obtained **7**. Hydrolysis of ester **7** which is on treatment with KOH in aqueous isopropyl alcohol was accomplished to acid **8** in 50% overall yield. After obtaining acid **8**, we furnished amidation reaction with various substituted anilines **9** using coupling reagent such as 1,1'-carbonyldiimidazole (CDI) in tetrahydrofuran (THF) afforded eleven compounds of *N*-aryl-3,4-dihydro-2*H*-benzo[*h*]chromene-2-carboxamide derivatives (**1a-k**). After synthesis of these derivatives we noticed that in

evaluation of inhibitory studies some of these derivatives have low solubility so that to overcome the obstacle we modified the amide functionality to amine functionality without disturbing the core structure of 3,4-dihydro-2H-benzo[h]chromene as depicted in Scheme 2. To introduce the amine functionality to the core of 3,4-dihydro-2*H*-benzo[*h*]chromene we initiated our synthetic plan from acid $\mathbf{8}$ which is on reduction with lithium aluminum hydride (LiAlH₄) in tetrahydrofuran (THF) afforded 99% of alcohol 10 which is good precursor for the synthesis of aryl amine and alkyl amine derivatives of 3,4-dihydro-2Hbenzo[h]chromene as shown in scheme 2. Alcohol 10 on treatment with 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and triphenylphosphine (PPh₃) in acetonitrile at reflux N-((3,4-dihydro-2Htemperature obtained six benzo[h]chromen-2-yl)methyl)-2-methylaniline derivatives 2af as depicted in scheme 2. We have also synthesized various 3,4-dihydro-2*H*-benzo[*h*]chromene derivatives **3a-d** and **4a-d** from the precursor 10 which is at first involved in tosylation reaction with TsCl/DMAP/Et₃N in DCM at 0°C provided 76% of tosylated product which is also converted to azide functionality in 97% yield by treatment with NaN₃/DMF at 60° C. Further the azide compound involved in Staudinger reaction¹⁸ with triphenylphosphine (PPh₃) in tetrahydrofuran (THF) obtained 88% of 11 as shown in Scheme 2. We have derived four methyl amide derivatives 3a-d and four alkyl amine derivatives 4a-d from 11 as depicted in Scheme 2.

Scheme 2. General methods to prepare 2,3 & 4 series. Reagent and condition: (f) LAH, THF, reflux, 3 h, 99% (g) DDQ, PPh₃, MeCN, reflux, 12 h, 9-22% (h) DMAP, Et₃N, TsCl, CH₂Cl₂, 0 °C to rt, 3 h, 76% (i) NaN₃, DMF, 60 °C, 97% (j) TPP, H₂O, THF, rt, 88% (k) Et₃N, THF, 0 °C to rt, 30 min, 34-91%, (l) LAH, THF, 3 h, 32-42%

Fable 1. Inhibitory	y effect on LPS-induced	NF-KB transcriptiona	activity for 3,4-dih	ydro-2H-benzo[h]chromen	e derivatives
---------------------	-------------------------	----------------------	----------------------	-------------------------	---------------

NO	Substituents (R group)				% inhibition	IC ₅₀ ^a	NO	Substituents (R group))	% inhibition	IC ₅₀ ^a
110.	R_1	\mathbf{R}_2	R_3	\mathbf{R}_4	- at 100 µM	(µM)	1.0.	R_1	\mathbf{R}_2	R_3	R_4	at 100 µM	(µM)
PDTC	Ref					37.2	2a	Н	Н	Н	Н	49	-
KL-1156	Ref					40.1	2b	Н	Н	OCH ₃	Н	88	44.5
1 a	Н	Н	Н	Н	62	43.5	2c	Н	Н	Cl	Н	94	26.5
1b	OH	Н	Н	Н	91	12.3	2d	Н	Cl	Н	Н	36	-
1c	Н	Н	OH	Н	>100	5.0	2e	Н	Н	CF ₃	Н	42	
1d	Н	Н	OCH_3	Н	>100	12.9	2f	Н	CF_3	Н	CF_3	96	56.3
1e	Н	Н	Cl	Н	>100	5.8	3a	phenyl				>100	48.6
1f	Н	Cl	Н	Н	87	27.9	3b	methyl				35	-
1g	Н	Cl	Cl	Н	40	-	3c	isoprop	yl			31	-
1h	Н	Cl	Н	Cl	52	96.7	3d	isobutyl				77	56.3
1i	CF_3	Н	Н	Н	>100	2.4	4a	phenyl				>100	14.6
1j	Н	Н	CF ₃	Н	>100	12.9	4b	methyl				39	-
1k	Н	CF ₃	Н	CF_3	66	63.8	4c	isoprop	yl			>100	27.1
							4 d	isobutyl				>100	25.9

^a IC₅₀ values are taken as a mean from three experiments and exhibiting 50% inhibition of LPS-induced NF-κB transcriptional activity.

As shown in **Table 1**, a total twenty five compounds of 3,4dihydro-2H-benzo[h]chromene derivatives were evaluated for inhibitory effect on LPS-induced NF-kB transcriptional activity19 and also compared to parent lead compound KL-1156 and reference compound pyrrolidine dithiocarbamate (PDTC), which acts as an antioxidant and potent inhibitor of NF-kB activation.²⁰ Among all evaluated twenty five compounds when compared to KL-1156 (IC₅₀: 40.1 µM) and **PDTC** (IC₅₀: 37.2 μ M); **1b** (IC₅₀: 12.3 μ M), **1c** (IC₅₀: 5.0 μ M), 1d (IC_{50}: 12.9 μM), 1e (IC_{50}: 5.8 μM), 1f (IC_{50}: 27.9 μM), 1i (IC₅₀: 2.4 µM), 1j (IC₅₀: 12.9 µM), 2c (IC₅₀: 26.5 µM), 4a (IC₅₀: 14.6 μ M), 4c (IC₅₀: 27.1 μ M) and 4d (IC₅₀: 25.9 μ M), exhibited more good potent activity. In particular N-(2-(trifluoromethyl)phenyl)-3,4-dihydro-2H-benzo[h]chromene-2-carboxamide 1i (IC50: 2.4 µM) exhibited excellent inhibitory activity synthesized among 3,4-dihydro-2Hall benzo[h]chromene derivatives (1a-k) and it was found to be about 16 and 15 times more potent than parent lead and reference compounds KL-1156 and PDTC respectively. Not only above compounds but also 1c (IC₅₀: 5.0 μ M) and 1e (IC₅₀: 5.8 µM) also exhibited better inhibitory activities than KL-1156 and PDTC as shown in Table 1. From Table 1, we concluded that **1a-k** derivatives exhibited outstanding inhibitory activities than 2a-f, 3a-d and 4a-d derivatives when evaluated in LPS-stimulated macrophage RAW 264.7 cells.

To explore the structure-activity relationship of Nnhenvi)-3 4_dihvdro_7H-benzo[h]chromene-?-(substituted carboxamide derivatives (1a-k) toward NF-KB inhibition, we substituted different groups at planar phenyl ring and also been observed that the substitutions at ortho (R₁ substitution) and para (R₃ substitution) positions of phenyl ring exhibited good inhibitory activities than compared to meta (R4 substitution) in evaluation of LPS-stimulated macrophage RAW 264.7 as shown in Table 1. For instance ortho and para substitution analogs 1b, 1i, 1d, 1e, 1j exhibited good inhibitory activities than meta substitution analogs 1f, 1h, 1k. But in the case of 4a-d derivatives we could not find any structure-activity relationship (SAR) since they have also exhibited better inhibitory activity of NF-KB. Among them bulky substitutions benzyl, isobutyl, isopropyl containing analogs 4a (IC₅₀: 14.6 μ M), **4c** (IC₅₀: 27.1 μ M) and **4d** (IC₅₀: 25.9 μ M) respectively exhibited better activity than parent lead compound KL-1156 and reference PDTC as depicted in **Table 1**.

 Table 2. In vitro anti-proliferative activity against NCI-H23 cancer cell lines²¹

No.	^a GI ₅₀ (µM)	No.	^a GI ₅₀ (µM)	No.	^a GI ₅₀ (µM)
	NCI-H23		NCI-H23		NCI-H23
ADR	0.178	1h	>30	2f	14.62
KL-1156	9.316	1i	0.521	3a	11.38
1a	>30	1j	3.482	3b	>30
1b	>30	1k	11.18	3c	>30
1c	11.28	2a	25.78	3d	>30
1d	3.977	2b	12.77	4a	10.43
1e	2.794	2c	29.76	4b	>30
1f	>30	2d	17.17	4c	11.72
1g	23.47	2e	>30	4d	11.3

 a GI₅₀ values are taken as a mean from three experiments and correspond to the agent's concentration causing a 50% decrease in net cell growth.

For finding the correlation between the inhibitory activities of NF- κ B and anti-proliferative activities (cytotoxicity) a total twenty-five compounds were also evaluated for antiproliferative activity against NCI-H23 human lung cancer cell line (**Table 2**). The results of anti-proliferative activity in NCI-H23 cell line was not directly proportional to NF- κ B inhibitory activities. However, compounds exhibiting good inhibitory activities of NF- κ B also exhibited better anti-proliferative activities in NCI-H23 cell line. Among them interestingly **1i** exhibited the outstanding NF- κ B inhibitory activity as well as excellent anti-proliferative activity than other compounds against NCI-H23 cell line and which is also found to have comparable anti-proliferative activity of doxorubicin (**ADR**) (GI₅₀: 0.178 μ M). From the **Table 2**, we concluded that the **1a-k** derivatives exhibited more potent activities and maintained a

good correlation between their NF- κ B inhibition and antiproliferative activities than **2a-f**, **3a-d** and **4a-d** derivatives in NCI-H23 lung cancer cell line.

In conclusion, a total twenty-five compounds of 3,4dihydro-2*H*-benzo[*h*]chromene have been synthesized and evaluated their inhibitory effects on LPS-induced NF- κ B transcriptional activity. Among them **1a-k** derivatives exhibited good inhibitory activities than **2a-f**, **3a-k** and **4a-g** series. Structure-activity relationship of **1a-k** analogs appears to be essential for its NF- κ B transcriptional activities and slight substitution variation at *ortho* position (R₁) like **1i**²² (IC₅₀: 2.4 μ M) surprisingly exhibited excellent inhibitory activity on LPS-induced NF- κ B transcriptional activity than parent lead compound KL-1156 and reference compound PDTC and it is also exhibiting good anti-proliferative activity than KL-1156. This might indicate that 3,4-dihydro-2*H*-benzo[*h*]chromene core could be the lead scaffold for investigating new anticancer agent through inactivation of NF- κ B.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2009381), Medical Research Center Program (2008-0062275) and the research grant of Chungbuk National University in 2012.

Supplementary data

Supplementary data (general preparation procedures and analytical data) associated with this article can be found in online version at http://dx.doi.org/

References and notes

- 1. Sen, R.; Baltimore, D. Cell 1986, 46, 705-716.
- 2. Gilmore, T. D. Oncogene 1999, 18, 6842-6844.
- 3. Braiser, A.R. Cardivasc. Toxicol. 2006, 6, 111-130.
- 4. Perkins, N. D. Nat. Rev. Mol. Cell Biol. 2007, 8, 49-62.
- 5. Gilmore, T. D. Oncogene 2005, 25, 6680-6684.
- Tian, B.; Brasier A. R. Recent Prog. Horm. Res. 2003, 58, 95– 130.
- Feinman, R.; Koury, J.; Thames, M.; Barlogie, B.; Epstein, J.; Siegel, D.S. *Blood* 1999, 93, 3044–3052.
- 8. (a) Griffin, J.D. *Blood* **2001**, *98*, 2291–2292. (b) Bharat, B.A. *Cancer Cell* **2004**, *6*, 203-208
- Kordes, U.; Krappmann, D.; Heissmeyer, V.; Ludwig, W.D.; Scheidereit, C. Leukemia 2000, 14, 399–402.
- Palayoor, S.T.; Youmell, M.Y.; Calderwood, S.K.; Coleman, C.N.; Price, B.D. *Oncogene* **1999**, *18*, 7389–7394.
- Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J. Jr.; Sledge, G.W. Jr. *Mol. Cell. Biol.* **1997**, *17*, 3629–3639.
- (a) Hayden, M. S.; Ghosh, S. *Gene Dev.* 2004, *18*, 2195–2224.
 (b) Perkins, N. D.; Gilmore, T. D. *Cell Death Differ.* 2006, *13*, 759–772.
- (a) Kim, B. H.; Reddy, A. M.; Lee, K. H.; Chung, E. Y.; Cho, S. M.; Lee, H.; Min, K. R.; Kim, Y. *Biochem. Biophys. Res. Commun.* 2004, 325, 223–228. (b) Kwak, J. H.; Jung, J. K.; Lee, H. *Expert Opin. Ther. Patents* 2011, 21, 1897–1910
- 14. Kwak, J. H.; Kim, B. H.; Jung, J. K.; Kim, Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2007, 30, 1210–1215.

- Kwak, J. H.; Won, S. W.; Kim, T. J.; Roh, E.; Kang, H. Y.; Lee, H. W.; Jung, J. K.; Hwang, B. Y.; Kim, Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2008, 31, 133–141.
- Kwak, J. H.; Won, S. W.; Kim, T. J.; Yi, W.; Choi, E. H.; Kim, S. C.; Park, H.; Roh, E.; Jung, J. K.; Hwang, B. Y.; Hong, J. T.; Kim, Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2009, 32, 167– 175.
- Kwak, J. H.; Kim, Y.; Park, H.; Jang, J. Y.; Lee, K.K.; Yi, W.; Kwak, J. A.; Park, S.G.; Kim, H.; Lee, K.; Kang, J. S.; Han, S.B.; Hwang, B.Y.; Hong, J.T.; Jung, J.K.; Kim, Y.; Cho, J.; Lee, H. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4620–4623.
- (a) Tian, W.; Wang, Q. Y. A. J. Org. Chem. 2004, 69, 4299– 4308. (b) Lin, F. L.; Hoyt, H. M.; Halbeek, H. V.; Bergman, R. G.; Bertozzi, C. R. J. Am. Chem. Soc, 2005, 127, 2686–2695.
- 19. Measurement of NF-κB transcriptional activity: RAW 264.7 macrophages were stably transfected with NF-κB-SEAP-NPT plasmid and then treated with 1 µg/mL LPS plus sample for 16 h. Aliquots of the cell-free media were heated at 65°C for 5 min, and then reacted with SEAP assay buffer (500 µM 4-methylumbelliferyl phosphate, 2 M diethanolamine, and 1 mM MgCl₂) in the dark at room temperature for 1 h. As a reporter, SEAP activity was measured as relative fluorescence units (RFU) with emission 449 nm and excitation 360 nm.
- (a) Nurmi, A.; Vartiainen, N.; Pihlaja, R.; Goldsteins, G.; Yrjaenheikki, J.; Koistinaho, J. J. Neurochem. 2004, 91, 755– 765. (b) Hayakawa, M.; Miyashita, H.; Sakamoto, I.; Kitagawa, M.; Tanaka, H.; Yasuda, H.; Karin, M.; Kikugawa, K. EMBO J. 2003, 22, 3356–3366. (c) Liu, S. F.; Ye, X.; Malik, A. B. J. Immunol. 1997, 159, 3976–3983. (d) Ziegler-Heitbrock, H. W.; Sternsdorf, T.; Liese, J.; Belohradsky, B.; Weber, C.; Wedel, A.; Schreck, R.; Bauerle, P.; Strobel, M. J. Immunol. 1993, 51, 6986–6993. (e) Schreck, R.; Meier, B.; Mannel, D. N.; Droge, W.; Baeuerle, P. A. J. Exp. Med. 1992, 175, 1181–1194.
- 21. In vitro anti-proliferative activity (cytotoxicity) assay was performed using the number of cells was measured indirectly using the sulforhodamine B (SRB) method according to the NCI (USA) protocol (see ref. 13a). Briefly, the cells were plated into a 96 well plate at a density of 2×103 cells per well. On the next day (day 0), the compounds of interest dissolved in DMSO/media were added in quadruplicate. The final concentration of each compound ranged from 1 nM - 10 µM and the final concentration of DMSO was < 0.1%. Seventy-two hours later, the cells were fixed with 10% trichloroacetic acid (TCA) overnight at 4°C. The TCA-treated cells were washed extensively with distilled water and dried in air. A SRB solution (0.4% in 1% acetic acid) was then added to the well at room temperature for one hour. The bound dye was dissolved in 10 mM Tris after washing the wells with 1% acetic acid. The absorbances were measured at 690 nm using a micro plate reader. The absorbance of the day 0 sample was subtracted from the absorbance of the day 3 sample.
- N-(2-(trifluoromethyl)phenyl)-3,4-dihydro-2H-benzo[h]chromene-2carboxamide (Ii): IR (neat): 3307, 2946, 1661, 1320, 1023, 652 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ 9.10 (s, 1H, <u>NH</u>), 8.42 (d, J = 8.3 Hz, 1H, Ar-<u>H</u>), 8.23 (d, J = 8.3 Hz, 1H, Ar-<u>H</u>), 7.79 (d, J = 7.4 Hz, 1H, Ar-<u>H</u>), 7.65 - 7.47 (m, 5H, Ar-<u>H</u>), 7.26 (t, J = 7.6 Hz, 1H, Ar-<u>H</u>), 7.19 (d, J = 8.4 Hz, 1H, Ar-<u>H</u>), 4.85 (dd, J =9.9 Hz, 2.9 Hz, 1H, O<u>CHCH₂CH₂</u>), 3.14 - 2.93 (m, 2H, OCHCH₂<u>CH₂</u>), 2.67 - 2.60 (m, 1H, OCH<u>CH₂CH₂</u>), 2.31 - 2.21 (m, 1H, OCH<u>CH₂CH₂)</u>. ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 146.9, 138.4, 133.4, 132.7, 132.4, 128.0, 127.5, 126.2, 126.1, 124.6, 124.4, 121.5, 120.2, 119.8, 119.8, 118.1, 116.4, 75.8, 24.9, 24.0. HRMS Calcd. For C₂₁H₁₆F₃NO m/z 371.11 found [M+Na]⁺ 394.27.

Design and Synthesis of 3,4-Dihydro-2*H*benzo[*h*]chromene Derivatives as Potential NF-кВ Inhibitors

Leave this area blank for abstract info.

Minho Choi^a, Young-Sik Hwang^a, Arepalli Sateesh Kumar^a, Hyeju Jo^a, Yeongyun Jeong^a, Yunju Oh^a, Joonkwang Lee^a, Jieun Yun^b, Youngsoo Kim^a, Sang-bae Han^a, Jae-Kyung Jung^a, Jungsook Cho^c and Heesoon Lee^{a*}

IC 50: 2.4 LIM