

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 41 (2006) 176-191

Original article

http://france.elsevier.com/direct/ejmech

3-Bromo-4-(1*H*-3-indolyl)-2,5-dihydro-1*H*-2,5-pyrroledione derivatives as new lead compounds for antibacterially active substances

Siavosh Mahboobi ^{a,*}, Emerich Eichhorn ^a, Alfred Popp ^a, Andreas Sellmer ^a, Sigurd Elz ^a, Ute Möllmann ^b

^a Department of Pharmaceutical Chemistry I, University of Regensburg, D-93040 Regensburg, Germany ^b Hans Knöll Institut für Naturstofforschung, Abtlg. Mikrobielle Infektionsbiologie, D-07745 Jena, Germany

Received 18 July 2005; received in revised form 26 September 2005; accepted 6 October 2005 Available online 10 January 2006

Abstract

A number of new compounds containing 3-bromo-2,5-dihydro-1*H*-2,5-pyrroledione and indole substructures were found to have antibacterial activity against resistant strains of *Staphylococcus aureus*, *Mycobacterium smegmatis* and some other Gram positive bacteria. The investigated compounds exhibit minimal inhibition concentrations (*MIC*'s) lower than those of ciprofloxacin, vancomycin and doxycycline resp. A different spectrum of activity, suggests a mechanism of action different to vancomycin and doxycycline. This might be important in circumventing existing resistance mechanisms. Here we report about the synthesis and on the antibacterial activity in a structure activity relationship study. © 2005 Elsevier SAS. All rights reserved.

Keywords: SAR-study; Antibacterial; Indole derivatives; Resistant Staphylococcus aureus; Mycobacterium smegmatis

1. Introduction

The emergence of bacterial resistance to the available antibiotics of various structural classes has become a problem in the medical world. While use of antibiotics allowed physicians to successfully treat numerous diseases over the last decades, almost all bacteria treated with antibiotics have developed at least some degree of resistance against these drugs [1]. In many countries, an increasing number of clinical isolates of multiresistant *Staphylococcus aureus* strains has been observed [2] and the pathogenetic potential in nosocomial and community acquired infections is well known [3]. Substituted 2,5-dihydro-1*H*-2,5-pyrrolediones and their reduced derivatives 1a-g have interesting biological activities. For example, arcyriarubin A (1a) (Fig. 1) and related compounds, in which one indole substituent can be replaced by various heterocycles, show high antimicrobial [4] and antiviral [5–8] activity and are potent protein kinase C (PKC)-inhibitors [9]. Recently we reported on the antimicrobial activity of pyrrole-substituted 2,5-dihydro-1H-2,5-pyrrolediones (e.g. **1h**, **1i**), developed by our group [10].

As announced, we carried out further investigations that led to indole-substituted 2,5-dihydro-1*H*-2,5-pyrrolediones exhibiting even higher antimicrobial activities. These compounds are derivatives of 3-bromo-4-(1*H*-3-indolyl)-2,5-dihydro-1*H*-2,5pyrroledione with variable substituents in indole 2-position (\mathbb{R}^1) (Fig. 2).

In the present work we demonstrate the results of a structureactivity investigation of this new class of compounds.

2. Chemistry

2.1. Synthesis of the compounds

The preparation of compounds comprises two main steps. The first part leads to a 2-substituted indole, using 2-methylaniline and carboxylic acid derivatives as starting materials. In the second part we linked a 3,4-dibromo-2,5-dihydro-1*H*-2,5-pyrro-

^{*} Corresponding author. Tel.: +49 941 943 4824; fax: +49 941 943 1737. *E-mail address:* siavosh.mahboobi@chemie.uni-regensburg.de

⁽S. Mahboobi).

^{0223-5234/\$ -} see front matter © 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.ejmech.2005.10.006

Fig. 1. Chemical structure of arcyriarubin A (1a) and related biological active compounds.

Fig. 2. General structure of 3-bromo-4-(1*H*-3-indolyl)-2,5-dihydro-1*H*-2,5-pyrrolediones investigated.

ledione derivative to the indole-3-position to give the title compounds.

One series of compounds consists of simple 2-alkylindoles. We prepared the indoles $3\mathbf{a}-\mathbf{h}$ in analogy to the protocols of Smith et al. (Scheme 1) [11,12]. Thus, *N*-trimethylsilyl-2-toluidine (TMSOT) was lithiated with two equivalents of *n*-BuLi leading to metallation at the NH–Si– and the methyl group. This product acts as a strong nucleophile. We reacted the Li₂TMSOT suspension, after cooling to -78 °C, with carboxylic acid esters to give the desired 2-substituted indoles. Analogously 2-phenylindoles were available using substituted benzoic acid esters.

We got another series of compounds by linking a 2-methylanilide substructure to the indole-2-position by an alkyl spacer. We had to modify Smith's [11,12] method to prepare the spacer linked indole-2-methylanilides 6a-f. We prepared the ester 2-

Scheme 1. Formation of the 2-alkyl- and 2-methoxyphenyl indoles according to Smith [11,12].

methylanilides from the dicarboxylic acid monoesters or monoester halides **4a–f** and 2-methylaniline. These ester 2methylanilides **5** had to be *N*-metallated with *n*-BuLi before being reacted with Li₂TMSOT. Otherwise, the amide H protonates the Li₂TMSOT, regenerating its methyl group and so is preventing the indole formation. Therefore, we added one equivalent of *n*-BuLi at –78 °C before we added the Li₂TMSOT suspension. Using this procedure, we got the desired indoles **6a–f** in yields of about 10–20%.

Several authors described the introduction of 3,4-dibromo-2,5-dihydro-1*H*-2,5-pyrroledione 7 at the indole-3-position (Scheme 3) in the lit. According to Brenner [13], the indole was metallated by Grignard's reagent to form a nucleophile at C-3 position. This nucleophile can undergo a S_N reaction with 7

Scheme 2. Conditions: (i) X = Cl: 2-methylaniline, NEt₃, Δ , **12h**; for X = OH: 2-methylaniline, dicyclohexylcarbodiimide, *p*-TosOH, pyridine, **12h**; (ii) *n*-BuLi, Li₂TMSOT,-78 °C > RT.

13a - 13e

Scheme 3. Conditions: (I) TBSCl, NaH, THF; (II) DMS, acetone, K_2CO_3 ; (III) indole derivative (for R^1 and *n* see Table 1), LiHMDS, THF, -20 °C; (IV) NBu₄F, THF; (V) DMS, BuLi, THF.

substituting one bromide to form the final product. In our hands, however, this method led to low yields and products that were difficult to purify. We got better results using a modified method, described by Murase et al. [14]: First we protected the N of 7 by a *tert*-butyl-dimethylsilyl group (TBS) and got the product 8 [14]. The indole reactant was metallated with lithium hexamethyldisilazane LiHMDS [15] (Scheme 3). The reaction of the lithiated indole and 8 led to silyl-protected products, which we could only isolate as raw materials containing remaining indoles. After removal of the silyl protecting group by tetrabutylammonium fluoride [14], we could easily isolate the final products.

In order to study the effects of the N-hydrogen bond on its biological effect, we masked the imide NH as well as the indole NH by methylation. We accomplished the formal methylation of the imide NH by reacting the substituted indoles with 1-methyl-3,4-dibromo-2,5-dihydro-1*H*-2,5-pyrroledione (9) [16]. For the methylation of the indole NH, the silyl-protected raw materials were reacted with dimethylsulfate (DMS) prior to re-

moving the silyl protecting group. The main formation pathways are shown in Scheme 3. A survey of the final products is presented in table 1.

To show the importance of the bromine substituent, we hydrogenated the double bond of the 2,5-dihydro-1*H*-2,5-pyrroledione core of **12a**. The reaction was accompanied by loss of the bromine substituent to give the indole substituted pyrrolidinedione **14**. This we further processed to **15**, regenerating the former double bond by an oxidative dehydrogenation with DDQ in the presence of a catalytic amount of 4-toluenesulfonic acid (Scheme 4).

3. Pharmacology

3.1. General antimicrobial properties

The compounds **12a** and **12l** are two typical substances of the synthesized series. Their antibacterial activities against some Gram positive and Gram negative bacteria are shown in

Table 1								
Substituents	for	the	com	pounds,	described	in	Scheme	3

Compound	\mathbb{R}^1	Compound	N^{a}	Compound	\mathbb{R}^1	Compound	R ¹
$R^2 = H$		$R^2 = H$		$R^2 = H$		$R^2 = CH_3$	
$R^3 = CH_3$		$R^3 = H$		$R^3 = H$		$R^3 = H$	
10a	Н	11a	2	12a	Н	13a	Methyl
10b	Methyl	11b	3	12b	Methyl	13b	Butyl
10c	Ethyl	11c	4	12c	Ethyl	13c	Hexyl
10d	Propyl	11d	5	12d	Propyl	13d	Phenyl
10e	Butyl	11e	6	12e	Butyl	13e	Ph-4-OMe
10f	Pentyl	11f	7	12f	Pentyl		
10g	Hexyl			12g	Hexyl		
10h	Heptyl			12h	Heptyl		
10i	Phenyl			12i	Phenyl		
10j	ph-2-OMe			12j	Ph-2-OMe		
10k	ph-3-OMe			12k	Ph-3-OMe		
101	ph-4-OMe			121	Ph-4-OMe		

^a For \mathbb{R}^1 and N see scheme 3.

Scheme 4. Conditions: (i) Pd/C, H₂ CH₃OH; (ii) 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), 4-toluenesulfonic acid, benzene, RT.

Table 2 in comparison to the activities of therapeutically used antibiotics in terms of minimal inhibitory concentrations (*MIC*) (determination see Section 6).

Among the Gram positive bacteria the epidemic strain *S. aureus* 134/93 strain is resistant to ciprofloxacin (**Cip**) and methicillin (**Meth**). *S. aureus* SG 511 is a laboratory strain, sensitive to all compounds used. *Enterococcus faecalis* 1528 and *Mycobacterium smegmatis* SG 987 are resistant to **Meth**. *E. faecalis* 1528 additionally to vancomycin (**Vanc**). The Gram negative bacteria *Escherichia coli* SG 458 and *Pseudomonas*

aeruginosa SG are resistant to Meth, Vanc, 12a, and 12l, *P. aeruginosa* SG 137 additionally to doxycycline (Dox).

Against the multiresistant *S. aureus* 134/93 **12a** is in the activity range of **Dox** and **Vanc**. **12l** and some other compounds of the synthesized series (see Tables 3 and 4) were more active against *S. aureus* 134/93 than **Dox** and **Vanc**. The synthesized compounds show lower activities against other Gram positive bacteria and unlike **Dox** they are inactive against Gram negative bacteria. **12a** has the simplest structure within the group of synthesized and tested compounds, showing characteristic ac-

Table 2

Antimicrobial activity of **12a** and some of its derivatives against various Gram positive and Gram negative bacteria. MIC values for Ciprofloxacin (Cip), Methicillin (Meth), Docycycline (Dox) and Vancomycine (Vanc) are given for comparison

$MIC \ (\mu g \ ml^{-1})$								
Compound	S. aureus	S. aureus	E. faecalis	M. smegma-	E. coli	P. aeruginosa		
	134/93	SG.511	1528	tis SG 987	SG 458	SG 137		
12a ^a	3.12	1.56	12.5	12.5	> 50	50		
12l ^a	0.13	< 0.05	12.5	13.1	> 50	50		
Cip ^a	25	< 0.05	0.4	0.2	< 0.05	0.1		
Meth ^a	> 100	0.8	50	> 100	50	> 100		
Dox ^a	6.25	< 0.05	12.5	< 0.05	0.4	> 100		
Vanc ^a	1.56	0.4	> 100	25	100	> 100		
		MIC	[10 ⁻⁶ M]					
12a ^b	10.6	5.3	42.6	42.6	> 170	170		
12l ^b	0.33	< 0.12	31.3	30.0	> 125	125		
Cip ^b	82.6	< 0.16	1.3	0.66	< 0.16	0.33		
Meth ^b	> 265	2.12	133	> 265	133	265		
Dox ^b	13.7	< 0.11	27.5	< 0.11	0.88	> 220		
Vanc ^b	1.1	0.28	70	17.5	70	> 70		

0.193

6.7

-0.1

Activity of compounds 12b-12h against S. aureus 134/93								
Compound	\mathbb{R}^1	$MIC \ \mu g^{-1} \ ml^{-1}$	MIC per 10^{-6} M	p <i>MIC</i>	Δ			
12b	Methyl	0.39	1.28	5.8	0.1			
12c	Ethyl	1.09	3.41	5.5	-0.3			
12d	Propyl	0.32	0.96	6.0	0.1			
12e	Butyl	0.235	0.68	6.2	0.1			
12f	Pentyl	0.14	0.38	6.3	0.0			
12g	Hexyl	0.095	0.253	6.6	0.1			

Table 3 Activity of compounds **12b–12h** against *S. aureus* 134/9

Heptyl

Table 4

12h

Antibacterial activities of compounds 10a-l, 11a-f, 12a, 12i-l and 13a-e against S. aureus 134/93

0.075

Compound	R ¹	$MIC \ \mu g^{-1} \ ml^{-1}$	<i>MIC</i> per 10 ⁻⁶ M	p <i>MIC</i>	Δ	$\log(P)$
10a	Н	0.76	2.49	5.6	-0.6	2.94
10b	Methyl	12.5	39.16	4.4	-1.6	2.73
10c	Ethyl	6.25	18.76	4.7	-1.4	2.87
10d	Propyl	3.125	9.00	5.1	-1.2	3.06
10e	Butyl	0.4	1.11	6.0	-0.5	3.35
10f	Pentyl	0.8 ^b	2.13	5.7	-1.1	3.63
10g	Hexyl	0.8^{b}	2.05	5.7	-1.2	3.84
10h	Heptyl	1.6 ^b	3.97	5.4	-1.8	4.19
10i	Phenyl	0.39	1.02	6.0	-0.3	3.03
10j	ph-2-OMe	0.4	0.93	6.0	-0.1	2.86
10k	ph-3-OMe	0.4	0.93	6.0	-0.2	2.99
101	ph-4-OMe	0.156	0.38	6.4	0.1	3.03
13a	Methyl	12.5	39.16	4.4	-1.6	2.69
13b	Butyl	0.1	0.28	6.6	0.1	3.28
13c	Hexyl	0.312	0.80	6.1	-0.8	3.84
13d	Phenyl	0.20	0.51	6.3	0.0	3.11
13e	ph-4-OMe	0.156	0.38	6.4	0.1	3.15
11a	$N = 2^{a}$	0.49	1.08	6.0	0.1	2.58
11b	$N = 3^{a}$	0.15	0.32	6.5	0.6	2.60
11c	$N = 4^{a}$	0.13	0.28	6.6	0.6	2.65
11d	$N = 5^{\mathrm{a}}$	0.23	0.47	6.3	0.3	2.74
11e	$N = 6^{a}$	0.56	1.10	6.0	-0.2	2.91
11f	$N = 7^{a}$	0.2	0.38	6.4	0.1	3.07
12a	Н	3.12	10.7	5.0	-0.7	2.34
12i	Phenyl	0.35	0.95	6.0	0.1	2.58
12j	ph-2-OMe	0.4	0.96	6.0	0.3	2.34
12k	ph-3-OMe	0.1	0.24	6.6	0.7	2.54
121	ph-4-OMe	0.13 ^c	0.33	6.5	0.6	2.59

^a For \mathbb{R}^1 and N see scheme 3.

^b The compounds haven't been completely soluble in the testing procedure.

tivities against the different strains of microorganisms. Therefore, we selected **12a** as a lead for a structure activity study.

3.2. Structure activity relationship for S. aureus 134/93

The compounds 14 and 15 and all indoles, which we prepared according to Scheme 2, are inactive against *S. aureus* 134/93. Therefore, we regard 12a to be the simplest active principle, the bromine substituent in pyrrole-3-position seems to be necessary for the activity. Table 3 shows the *MIC*'s for the homologous series of the 2-alkylated derivatives of 12a (12b– 12h). The activity of the compounds increases with the length of the alkyl substituent. If we define

$$pMIC = -\log(MIC/moll^{-1})$$
(1)

we find a linear correlation between pMIC and log(P). *P* is the partition coefficient of the compound in the *n*-octanol/water

system and describes the hydrophobic properties of a compound. Linear regression led to the function

log(P)

2.26

2.41

2.58

2.84

3.08

3.35

3.65

$$pMIC = 0.79 \log(P) + 3.87$$
(2)

with a correlation coefficient of 94%. The experimental error, estimated from the dilution steps used in the antimicrobial tests (see Section 6), is

$$\Delta p \text{MIC} = \pm .3 \tag{3}$$

The results of multiple *MIC*-determinations with the same compounds were all within that limit. Δ describes the deviation of an observed p*MIC* (p*MIC*(obs)) to the value, expected from the log(*P*)-function (2) (p*MIC*(cal)), that is

$$\Delta = pMIC(obs) - pMIC(cal)$$
(4)

The MIC's of the other compounds are listed in Table 4.

Compounds 10b-10h are a homologous series of 2-alkyl-derivatives, which are all methylated at the imide-N-position $(R^3 = CH_3)$. With the only exception that **10a** shows a greater activity than 12a, this methylation usually reduces the activity of the materials. The activity of **10b–10h** is on average 10 times smaller than expected from eq. (2). The effect of imide-Nmethylation is much smaller in the case of the phenyl substituted derivatives 10i-10l. If we compare the MIC's of the compounds 10i-10l with the MIC's of the corresponding non methylated compounds 12i-12l, we observe a reduction in activity only in the case of 10k. The methylated compounds, however, are more hydrophobic than the non methylated ones. If we take the different log(P) values into account and compare the Δ values instead of the MIC's, the compounds 10i, 10j and 10l show a reduction in activity slightly above the limit of experimental error.

The compounds 13a-13e are methylated at the indole N-position ($R^2 = CH_3$). The effect of this derivatization is not uniform. With 13b and 13d the methylation shows no effect. The alkyl derivatives 13a and 13c show low activity, and the 4methoxyphenyl-derivative 13e shows a reduction in activity only in Δ (relative to Δ of 12l) but not in *MIC*. From these results we can only draw the conclusion that the indole-Nmethylation usually does not improve the activity.

Compound 11d was a side product of a target compound in another study and we tested it as a mater of routine. Because we have found 11d to be an active material, we synthesized the homologous series 11a-11f in which we varied the length of the alkyl spacer (expressed by n, see scheme 3). The *MIC*'s do not strongly depend on the spacer length. If we use the Δ 's for analysis, however, we found the compounds 11b and 11c more active than expected from eq. (2) while all other compounds of this series have pMIC's fitting to the log(P) function. Obviously, we observe a maximum in Δ , if the alkyl spacer consists of three or four methylene units. We find a similar dependence in the series of the 2-methoxyphenyl derivatives. The distance of the methoxy group from the indole-2-position increases in the sequence 12j < 12k < 12l. The compounds 12kand 121 are more active than 12i, but 12j is not. In this series, the activity depends also on the distance of a polar substituent to the indol-2-position. This dependence is still, but only partly recognizable in the series of the imide-N-methylated methoxyphenyl derivatives 10j-10l. 10l is more active than 10i, but 10j and 10k are not. Finally, the effect of the methoxy group is extinguished in the indole-N-methylated derivative 13e. 13e shows the same MIC as 13d and the methoxy group does not improve the activity in this case.

3.3. Structure activity relationship for M. smegmatis SG 987

The compounds **12a** and **12l** show only moderate activities against the Gram positive bacteria *E. faecalis* 1528 and *M. smegmatis* SG 987 (see Table 2). In the case of *M. smegmatis* SG 987, however, we have found also a linear correlation between pMIC of the compounds **12b–12h** and log (*P*) as we have observed with *S. aureus* 134/93. Linear regression led to the function

$$pMIC = 1.63 \log(P) + 0.57$$
(5)

with a correlation coefficient of 95%. The activity increases of about 100 times if we vary the alkyl group to make the materials more hydrophobic (see Table 5).

Consequently, we have included *M. smegmatis* SG 987 in our study, and we give the results of the other compounds in Table 6.

Methylation of the imid-N-position led on average to a 10fold reduction in activity. This effect is considerably strong with the indole-2-alkylated derivatives 10a-10h. With the phenyl substituted compounds 10i-10l we find a reduction in activity only in Δ but not in *MIC*. Methylation of the indole-Nposition (13a-13e) led in all cases to a reduction in activity if we use Δ for analysis. The compounds 13a and 13e, however, show the same MIC's as their non methylated derivatives 12b and 12l, respectively. In the homologous series 11a-11f the 2methylanilide substructure also increases the activity against M. smegmatis SG 987 relative to the expected values of eq. (5) in some cases. We found this effect with 11e (N=6) and **11f** (N = 7). Compound **11b** (N = 3) shows also a slightly larger activity than the compounds 11a, 11c and 11d. Among the compounds 12j-12l, compound 12k shows a larger activity than 12i. Among the compounds 10j-10l, compound 10k shows a larger activity than 10i.

4. Discussion

The results, shown in Table 2, demonstrate that the derivatives of 12a are antibacterial principles, showing selective activity against different bacterial strains. The fact that they have a spectrum of activity against the investigated bacteria different to **Dox** and **Vanc** indicates a different mechanism of action. This might be important in circumventing existing resistance mechanisms. The activities of the compounds 12b-12h depend on their hydrophobicities. Correlation between log(P) and biological activity has been frequently observed [17]. One possible

Table 5

Activity of compounds 12b-12h against M. smegmatis SG 987

Compound	\mathbb{R}^1	$MIC \ \mu g^{-1} \ ml^{-1}$	MIC per 10^{-6} M	PMIC	Δ	$\log(P)$	
12b	Methyl	25.0	82	4.1	-0.1	2.26	
12c	Ethyl	7.95	25	4.6	0.1	2.41	
12d	Propyl	8.3	25	4.6	-0.2	2.58	
12e	Butyl	2.17	6.25	5.2	0.0	2.84	
12f	Pentyl	0.56	1.55	5.8	0.2	3.08	
12g	Hexyl	0.14	0.37	6.4	0.4	3.35	
12h	Heptyl	0.30	0.77	6.1	-0.4	3.65	

Table 6			
Antibacterial activities of compounds 10a-1 11	a_f 12a	12i_l and 13a_a against M	smeamatis SG 987

Compound	\mathbb{R}^1	$MIC \ \mu g^{-1} \ ml^{-1}$	MIC per 10 ⁻⁶ M	p <i>MIC</i>	Δ	$\log(P)$
10a	Н	6.25	20.5	4.7	-0.6	2.89
10b	Methyl	50	157	3.8	-1.2	2.73
10c	Ethyl	50	150	3.8	-1.4	2.87
10d	Propyl	25	72	4.1	-1.4	3.06
10e	Butyl	25	69	4.2	-1.8	3.35
10f	Pentyl	12 ^b	33	4.5	-2.0	3.63
10g	Hexyl	3.12 ^b	8.0	5.1	-1.7	3.84
10h	Heptyl	No activity ^b	-	_	_	4.19
10i	Phenyl	12.5	32.8	4.5	-1.0	3.03
10j	ph-2-OMe	6.25	15.0	4.8	-0.4	2.86
10k	ph-3-OMe	3.125	7.5	5.1	-0.3	2.99
101	ph-4-OMe	12.5	30.4	4.5	-1.0	3.03
13a	Methyl	12.5	39	4.4	-0.5	2.69
13b	Butyl	6.25	17	4.8	-1.1	3.28
13c	Hexyl	No activity	-	_	_	3.84
13d	Phenyl	No activity	_	_	_	3.11
13e	ph-4-OMe	12.5	30.3	4.5	-1.2	3.15
11a	$N = 2^{a}$	25.0	55.3	4.3	-0.5	2.58
11b	$N = 3^{a}$	8.0	17.1	4.8	-0.1	2.60
11c	$N = 4^{a}$	25	52.0	4.3	-0.6	2.65
11d	$N = 5^{a}$	12.5	25.3	4.6	-0.4	2.74
11e	$N = 6^{a}$	0.25	0.49	6.3	1.0	2.91
11f	$N = 7^{a}$	0.41	0.78	6.1	0.5	3.07
12a	H ^c	12.5	43	4.4	0.0	2.34
12i	Phenyl	18.4	50	4.3	-0.5	2.58
12j	ph-2-OMe	12.5	33	4.5	0.1	2.34
12k	ph-3-OMe	3.125	7.5	5.1	0.4	2.54
121	ph-4-OMe	13.1	30.0	4.5	-0.3	2.59

^a For \mathbb{R}^1 and N see Scheme 3.

^b The compounds haven't been completely soluble in the testing procedure.

explanation is that the active materials have to permeate the hydrophobic double layer of a cell membrane to reach their target inside the cell [18]. In the case of M. smegmatis SG 987, the slope of the log(P) function (eq. (5)) is two times larger than in the case of S. aureus 134/93 (eq.(2)). This indicates that hydrophobic materials can invade the cells of *M. smegmatis* SG 987 easier than those of S. aureus 134/93. This result is easy to understand, because pathogenic mycobacteria are wrapped by a high amount of mycolic acid esters [19], making their cell surface more hydrophobic than those of most other bacteria. Therefore, the experimental observations are in good agreement with the hypothesis that the permeation properties of the active materials are reflected by the observed log(P) functions indicating a predominant lipid pathway [20]. In this case, however, the hydrophobicity of the active materials should influence the activity of all investigated compounds and the effect should not be limited to the compounds 12a-12h. If we want to take into account the effect of the different hydrophobicities of our compounds, we can use the Δ 's for analysis instead of the pMIC's. Although the most important conclusions of our study do not strongly depend on it, there are some indications that the use of the Δ 's is justified. The pMIC's of **10a–10h** also depend on log (P) but the limited solubility of some of this compounds in the testing procedure affects the quantitative correlation in this series. Finally, compounds 11a, 11d-11f, 12i and 12j have activities against S. aureus 134/93 fitting to eq. (2) although they are not 2-alkylated derivatives of 12a.

If a derivatization causes a deviation of $\Delta > +/-0.3$ from the log(*P*) function (or from Δ of a fitting reference, if more than one derivatization is made) in several derivatives, it is very unlikely that only different permeation properties cause this effect. We have to suspect a special effect on physiological processes inside the bacterial cell.

We have observed two of such derivatization effects in our study, which we consider to be important. One of them is the reduction of activity in the case of imide-N-methylation. It is observed with S. aureus 134/93 and M. smegmatis SG 987 to approximately the same extent. Therefore, the imide NH is important for the activity against both microorganisms. Another derivatization effect is the increase of activity by polar substituents linked by a spacer to the indole-2-position. The compounds 11b, 11c, 12k and 12l show higher activities against S. aureus 134/93 than expected from eq. (2). All these compounds have hydrogen-bond-acceptors (CO in the case of 11b, 11c and OCH₃ in the case of 12k, 12l) linked in a distance of three (11b, 12k) or four (11c, 12l) C-C bond lengths to the indole-2-position. Possibly the carbonyl and methoxy-groups produce the observed effect by a similar interaction inside the bacteria cell. In the case of M. smegmatis SG 987, the compounds 11e and 11f have shown higher pMIC's than expected from eq. (5). Their 2-methylanilide substructures are situated at larger distances from the indole-2-position than in the case of S. aureus 134/93. On the other hand, 11b shows a slightly larger activity than 11a and 11c, and 10k as well as 12k show

larger activities against *M. smegmatis* SG 987 than the simple phenyl derivatives **10i** and **12i**, respectively. All this compounds have their hydrogen bond acceptors in nearly the same distance from the indole-2-position and most of them show an improved activity also against *S. aureus* 134/93. Also in the case of *M. smegmatis* SG 987, we could improve the activity by linking hydrogen bond acceptors by spacers to the indol-2-position. In this respect, both microorganisms have shown again similar results in the structure activity relationship, presented here.

5. Conclusion

The new compounds described were found to have antibacterial activity against resistant strains of *S. aureus*, *M. smegmatis* and some other Gram positive bacteria whereas they are inactive against Gram negative bacteria.

Some of our new compounds show minimal inhibition concentrations (*MIC*'s) against resistant strains lower than those of ciprofloxacin, vancomycin and doxycycline resp., which are widely used in antiinfective therapy. Furthermore, they show a different spectrum of activity against the investigated bacteria suggesting a mechanism of action different to vancomycin and doxycycline. This might be important in circumventing existing resistance mechanisms.

In most cases, the activity of our compounds against *S. aureus* and *M. smegamtis* improves by increasing hydrophobic properties as well as by hydrogen bond acceptors, depending on their distance from the indole-2-position. Methylation of the imide-NH reduces the activity. The extent depends on the nature of the substituent in indole-2-position, which we consider to be important.

6. Experimental

6.1. Biological testing procedure

The in vitro antibacterial activities were assessed by determination of minimal inhibitory concentrations (MIC's) using a standard micro broth dilution method in Mueller Hinton medium (DIFCO) according to the NCCLS-guidelines [21]. The test and reference compounds were stepwise diluted in the culture medium in a range from 100 to 0.05 μ g ml⁻¹. In every dilution step the concentration was reduced to half of the amount before. The Gram positive (S. aureus SG 511, M. smegmatis SG 987) and Gram negative (E. coli SG 458, P. aeruginosa SG 137) test organisms were obtained from the stock of the Hans Knöll Institute or were clinical isolates (S. aureus 134/93, E. faecalis 1528), kindly provided by W. Witte (Robert Koch-Institute, Werningerode Branch, Germany). Inocula of test organisms were adjusted to approximately 10^5 CFU ml⁻¹ (CFU = colony forming units). After strains were incubated for 18-20 h (M. smegmatis SG 987 for 48 h) at 37 °C, the MIC's were read as the lowest concentration of compound allowing no visible growth.

6.2. Chemistry

Melting points were recorded on a Büchi 512 heating stage and are not corrected. Proton Nuclear magnetic resonance spectra were recorded on a Bruker AC 250 (250 MHz) spectrometer. DMSO-d₆ was used as solvent if not stated otherwise. FT-IR-spectroscopy was performed on a Nicolet 410 FT-IRspectrometer. Microanalyses were performed by Analytisches Lab. Univ. Regensburg and were within $\pm 0.4\%$ of the theoretical values. Thin layer chromatography (TLC) was carried out on Al-sheets coated with 60 F₂₄₅ silica. Column chromatography (CC) was carried out using Merck 60 (70–230 mesh ASTM) silica. Solvents and commercially available reagents were dried and purified before use according to standard procedures.

log(*P*)-values were determined using HPLC retention data [17]. All compounds were dissolved in methanol and subjected to HPLC:

column: LiChrospher 100 RP-18 (5 µm) 250×4 mm, Merck Art. 50983; eluent: methanol/water/acetic acid (80 + 20 + 0.1), adjusted with ammonia to pH 5.5; flow: 1.00 ml min⁻¹; detection: 254 nm; temperature: 25 °C. From the retention data, the capacity factor k' is calculated according to eq. (6):

$$k' = \log ((t_R/t_o) - 1)$$
(6)

with t_R = retention time of the compound, and t_o = retention time of methanol. From k' we have determined log(P) using a linear function which was calibrated with the following reference substances: 4-nitrophenole (log(P) = 1.91 [22]), 4-chlorophenole (log(P) = 2.39 [22]), benzophenone (log(P) = 3.18 [23]), naphthalene (log(P) = 3.44 [24]) and anthracene (log(P) = 4.49 [24]). We have carried out two series of determinations, using two different specimen of columns and separately mixed eluents. Every log(P) value, given in tables, is an average value of two estimations. The deviation was on average \pm 0.03 and in no time larger than \pm 0.1 log(P) units.

6.2.1. Formation of ester-amides from carboxylic acid chlorides and 2-methylaniline (**5a**; **5b**; **5e**)

We dissolved 2-methylaniline (0.066 mol) and triethylamine (0.066 mol) in dry CH_2Cl_2 (200 ml). The solution was cooled with ice, and the acid chloride (0.066 mol) was carefully added dropwise. Then the solution was heated to reflux for 12 h, cooled, the precipitated triethylammonium chloride was filtered off, and the residue was purified by CC (CH_2Cl_2 /ethyl acetate 6:1). The products were obtained as colorless powders.

6.2.1.1. Methyl 4-(2-methylphenyl)amino-4-oxobutanoate (*5a*) *[25].* Yield: 13.8 g (62 mmol; 94% from methyl 4-chloro-4-oxo-butanoate); m.p. 72 °C (Lit. 78 °C [25]); IR (KBr) V: 3355, 2929–2857, 1705, 1659, 1588, 1493, 1458; 747 cm⁻¹.

6.2.1.2. Methyl 5-(2-methylphenyl)amino-5-oxopentanoate (**5b**). Yield: 13.52 g (57 mmol; 86% from methyl 5-chloro-5-oxopentanoate); m.p. 60 °C; ¹H-NMR δ 1.84 (m, 2 H), 2.18 (s; 3 H, CH₃), 2.37 (t; J = 7.4 Hz, 2 H), 2.38 (t, J = 7.4 Hz, 2 H), 3.60 (s; 3 H, OCH₃), 7.06 (m; 1 H, 4-H), 7.15 (m; 1 H, 5-H), 7.19 (d; $J_o = 7.1$ Hz, 1 H, 3-H), 7.35 (d; $J_o = 7.5$ Hz, 1 H, 6-H), 9.26 (s; 1 H, NH); IR (KBr) v: 3450, 3245–2960, 1736, 1651, 1613, 1584, 1541, 750 cm⁻¹. Anal. (C₁₃H₁₇NO₃) C, H, N.

6.2.1.3. Methyl 8-(2-methylphenyl)amino-8-oxooctanoate (5e). Yield: 5.93 g (21 mmol; 64% from 33 mmol methyl 8-chloro-8-oxo-octanoate); m.p. 68 °C; R_f 0.21 (CH₂Cl₂/ethyl acetate 9: 1); ¹H-NMR δ 1.30 (m; 4 H), 1.56 (m; 4 H), 2.18 (s; 3 H, CH₃), 2.30 (t; J = 7.5 Hz, 4 H), 3.58 (s; 3 H, OCH₃), 7.06 (m; 1 H, 4-H), 7.14 (m; 1 H, 5-H), 7.19 (d; J_o = 7.9 Hz, 1 H, 3-H), 7.34 (d; J_o = 7.1 Hz, 1 H, 6-H), 9.21 (s; 1 H, NH); IR (KBr) v: 3295, 3023–2853, 1734, 1659, 1611, 1588, 1524; 758 cm⁻¹. Anal. (C₁₆H₂₃NO₃) C, H, N.

6.2.2. Formation of ester amides from dicarboxylic acid monomethyl esters and 2-methylaniline (5c; 5f)

Dicarboxylic acid monomethyl ester (0.03 mol), 2-methylaniline (0.03 mol), N,N'-dicyclohexylcarbodiimide (0.03 mol) and *p*-toluenesulphonic acid monohydrate (0.003 mol) were dissolved in pyridine (50 ml) and stirred for 12 h. Precipitated N,N-dicyclohexylurea was filtered off, the solvent was removed in vacuo, and the remaining oil was dissolved in CH₂Cl₂ and purified by CC (CH₂Cl₂/ethyl acetate 6:1). The products were obtained as colorless powders.

6.2.2.1. Methyl 6-(2-methylphenyl)amino-6-oxohexanoate (5c). Yield: 6.1 g (24 mmol; 80% from methyl 6-methoxy-6-oxohexanic acid; m.p. 61 °C; R_f 0.38 (CH₂Cl₂/ethyl acetate 6:1); ¹H-NMR δ 1.60 (m; 4 H), 2.18 (s; 3 H, CH₃), 2.35 (m; 4 H), 3.59 (s; 3 H, OCH₃), 7.07 (m; 1 H, 4-H), 7.14 (m; 1 H, 5-H), 7.19 (d; J_0 = 7.9 Hz, 1 H, 3-H), 7.35 (d; J_0 = 7.5 Hz, 6-H), 9.24 (s; 1 H, NH); IR (KBr) v: 3287, 3027–2851, 1736, 1651, 1588, 1533, 760 cm⁻¹. Anal. (C₁₄H₁₉NO₃) C, H, N.

6.2.2.2. Methyl 9-(2-methylphenyl)amino-9-oxononanoate (5f). Yield: 12.8 g (44 mmol; 73% from 60 mmol 8-methoxy-9-oxononanoic acid; m.p. 45 °C; R_f 0.6 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.30 (m; 6 H), 1.55 (m; 4 H), 2.18 (s; 3 H, CH₃), 2.30 (m; 4 H), 3.58 (s; 3 H, OCH₃), 7.07 (m; 1 H, 4-H), 7.13 (m; 1 H, 5-H), 7.19 (d; $J_o = 7.5$ Hz, 1 H, 3-H), 7.34 (d; $J_o = 7.5$ Hz, 1 H, 6-H), 9.21 (NH); IR (KBr) v: 3288, 2935–2854, 1738, 1652, 1588, 1532, 754 cm⁻¹. Anal. (C₁₇H₂₅NO₃) C, H, N.

6.2.3. Preparation of methyl 7-(2-methylphenyl)amino-7oxoheptanoate (5d)

Triethylamine (0.26 mol) and 2-methylaniline (0.13 mol) were dissolved in 100 ml of methanol. Pimeoylchloride (0.13 mol) was carefully added and the mixture was refluxed overnight, than the solvent was removed in vacuo. Water (100 ml) was added to the residue, than the products were extracted with ethyl acetate, dried with Na₂SO₄ and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (50 ml). Most of the bis toluyl side product precipitated and was filtered off. The solution was purified by CC on SiO₂; CH₂Cl₂.

Yield: 7.0 g (27 mmol; 20%); m.p. 60 °C; R_f 0.23 (CH₂Cl₂/ ethylacetate 9:1); ¹H-NMR: δ 1.31 (m; 2 H), 1.57 (m; 4 H), 2.17 (s; 1 H, CH₃), 2.30 (t; J = 7.3 Hz, 4 H), 3.57 (s; 3 H, OCH₃), 7.04 (m; 1 H, 4-H), 7.13 (m; 1 H, 5-H), 7.17 (d; J_o = 7.5 Hz, 1 H, 3-H), 7.33 (d; J_o = 7.35 Hz, 1 H, 6-H), 9.21 (s; 1 H, NH); IR (KBr) v: 3295, 2929–2361, 1732, 1651, 1588, 1530, 1258, 1175; 756 cm⁻¹. Anal. (C₁₅H₂₀NO), C, H, N.

6.2.4. Formation of the 2-alkyl- and 2-methoxyphenyl indoles according to Smith [11,12] (**3a**–**3h**)

Trimethylsilyl-o-toluidine (TMSOT, 0.0145 mol) [11] was dissolved in dry hexane (60 ml). Under N_2 n-BuLi (0.029 mol, 1.6 M solution in hexane) was added dropwise at RT. Then the solution was heated to reflux for 4 h. During the reaction a red precipitate occurred, and the solution turned orange. The metallated TMSOT might burn when it is exposed to air.

The obtained suspension was cooled to -78 °C, and then a solution of 0.014 mol of ester in 30 ml THF was added slowly, so that the temperature did not rise above -70 °C. After stirring overnight, while slowly warming up to RT, the solution was refluxed for 2 h, poured on ice (200 g) and stirred until most of the ice was molten. The mixture was extracted with ethyl acetate (4 × 100 ml), the extract was dried over Na₂SO₄ and concentrated in vacuo. The indole spot on TLC acquires a yellow color after several h. The raw material was purified by CC (CH₂Cl₂). We separated the alkylindoles as oils and processed them without further purification. References are given for the characterization of the products.

6.2.4.1. 2-Ethyl-1H-indole (3a) [26]. Yield: 0.64 g (4.4 mmol; 30% from 2a); R_f 0.83 (CH₂Cl₂).

6.2.4.2. 2-Propyl-1H-indole (3b) [27]. Yield: 0.62 g (3.9 mmol; 27% from **2b**); R*f* 0.81 (CH₂Cl₂).

6.2.4.3. 2-Buthyl-1H-indole (3c) [28]. Yield: 0.43 g (2.5 mmol; 18% from **2c**); R_f 0.88 (CH₂Cl₂).

6.2.4.4. 2-Pentyl-1H-indole (3d) [*29*]. Yield: 0.28 g (1.5 mmol; 10% from **2d**); R_f 0.90 CH₂Cl₂).

6.2.4.5. 2-Hexyl-1H-indole (3e) [29]. Yield: 0.65 g (3.2 mmol; 22% from 2e); R_f 0.95 (CH₂Cl₂).

6.2.4.6. 2-Heptyl-1H-indole (3f) [*30*]. Yield: 0.78 g (3.6 mmol; 25% from **2f**); R_f 0.88 (CH₂Cl₂).

6.2.4.7. 2-(2-Methoxyphenyl)-1H-indole (**3g**). Yield: 0.77 g (3.45 mmol; 24% from methyl-2-methoxybenzoate); R_f 0.7 (CH₂Cl₂); m.p. 83 °C; ¹H-NMR δ 3.37 (s; 3 H, OCH₃), 6.94 (d; J = 2 Hz, 1 H, ind 3-H), 6.97–7.15 (m; 4 H, ind 5-H, ph 4-H, ph 5-H, ph 6-H), 7.30 (m; 1 H, ind 6-H), 7.44 (d; J_o = 8.3 Hz, 1 H, ind 7-H), 7.52 (d; J_o = 7.5 Hz, 1 H, ind 4-H), 7.80 (m; 1 H, ph 3-H), 11.18 (s; 1 H, NH); IR (KBr) v:

3446, 3041–2842, 1476, 1464, 1451, 1435, 1360, 1342, 1310, 1236 $\rm cm^{-1}.$ Anal. (C15H13NO) C, H, N.

6.2.4.8. 2-(3-Methoxyphenyl)-1H-indole (3h). Yield: 0.60 g (2.7 mmol; 18% from methyl-3-methoxybenzoate); R_f 0.83 (CH₂Cl₂); m.p. 136 °C; ¹H-NMR & 3.83 (s; 3 H, OCH₃), 6.85–6.90 (m; 1 H, ind 5-H), 7.09 (m; 1 H, ind 6-H), 7.35–7.45 (m; 4 H, ph 2-H, ph 4-H, ph 5-H, ind 7-H), 7.52 (d; $J_o = 7.5$ Hz, 1 H, ind 4-H), 12.51 (s; 1 H, NH); IR (KBr) v: 3396, 1601, 1482, 1464, 1454, 1435, 1350, 1304, 1263, 1235, 1219, 1177, 1165, 1036, 852, 785, 758, 677 cm⁻¹. Anal. (C₁₇H₁₃NO) Calc. 80.69 C, H 5.87, N 6.27. Found C 80.08, H 5.59, N 6.09.

6.2.5. Formation of the indole-amides from the dicarboxylic acid methyl ester amides (**6a–6f**)

In one flask, TMSOT (0.014 mol) was lithiated according to the procedure described above for **3a-h**. In a second flask, a solution of dicarboxylic acid mono esteramide (0.014 mol) in dry THF (50 ml) was cooled under N₂ to -80 °C, then *n*-butyllithium (0.014 mol, 1.6 M solution in hexane) was added slowly, so that the temperature in the solution did not rise above -70 °C. Then the Li₂TMSOT suspension was added in the same way. The mixture was stirred overnight while slowly warming up to RT. Then it was poured onto ice (200 g) and stirred until most of the ice was molten. The mixture was extracted with ethyl acetate (4 \times 100 ml), the extract was dried over Na₂SO₄ and concentrated in vacuo yielding a dark oil. The raw material was purified by CC (CH₂Cl₂/ethyl acetate mixtures, which are cited below following the R_f values of the compounds). The products precipitate as colorless crystals after removing most of the solvent under reduced pressure and adding pentane to promote precipitation.

6.2.5.1. 3-(1H-2-Indolyl)-N-(o-methylphenyl)propionylamide

(6a). Yield: 0.36 g (1.29 mmol; 9% from 5a [24]); m.p. 173 °C; R_f 0.47 (CH₂Cl₂/ethyl acetate 6:1); ¹H-NMR δ 2.15 (s; 3 H, CH₃); 2.78 (t; J = 7.5 Hz, 2 H), 3.05 (t; J = 7.5 Hz, 2 H), 6.19 (s; 1 H, ind 3-H), 6.91 (m; 1 H, ind 5-H), 6.99 (m; 1 H, ind 6-H), 7.05 (m; 1 H, tol 4-H), 7.14 (m; 1 H, tol 5-H), 7.19 (d; J_o = 7.1 Hz, 1 H, tol 3-H), 7.28 (d; J_o = 7.9 Hz, 1 H, ind 7-H), 7.38 (d; J_o = 7.0 Hz, 1 H, tol 6-H), 7.41 (d; J_o = 7.5 Hz, 1 H, ind 4-H), 9.34 (s; 1 H, NH), 10.92 (s; 1 H, NH); IR (KBr) v: 3355, 3291, 2950–2700, 1663, 1501, 754, 741 cm⁻¹ Anal. (C₁₈H₁₈N₂O) C, H, N.

6.2.5.2. 4-(1H-2-Indolyl)-N-(o-methylphenyl)butanoylamide

(6b). Yield: 1.13 g (3.86 mmol; 27% from 5b); m.p. 107 °C; R_f 0.51 (CH₂Cl₂/ethyl acetate 6:1); ¹H-NMR δ 2.04 (m; 2 H), 2.18 (s; 3 H, CH₃), 2.40 (t; J_o = 7.5 Hz, 2 H), 2.78 (t; J_o = 7.5 Hz, 2 H), 6.16 (s; 1 H, ind 3-H), 6.92 (m; 1 H, ind 5-H), 6.99 (m; 1 H, ind 6-H), 7.07 (m; 1 H, tol 4-H), 7.13 (m; 1 H, tol 5-H), 7.19 (d; J_o = 7.5 Hz, 1 H, tol 3-H), 7.27 (d; J_o = 8.3 Hz, 1 H, ind 7-H), 7.36 (d; J_o = 7.5 Hz, 1 H, tol 6-H), 7.41 (d; J_o = 7.5 Hz, 1 H, tol 7.19 (m; 1 H, tol 4-H), 7.19 (m; 1 H, tol 7.17 (m; 1 H, tol 7.1

3395, 3295, 3054–2800, 1653, 1588, 1530; 752 $\rm cm^{-1}.$ Anal. (C19H20N2O) C, H, N.

6.2.5.3. 5-(1H-2-Indolyl)-N-(o-methylphenyl)pentanoylamide

(6c). Yield: 0.79 g (2.58 mmol; 18% from 5c); m.p. 153 °C; R_f 0.33 (CH₂Cl₂/ethyl acetate 8:1); ¹H-NMR δ 1.71 (m; 4 H), 2.17 (s; 3 H, CH₃), 2.38 (t; $J_o = 6.7$ Hz, 2 H), 2.75 (t; J = 6.7 Hz, 2 H) 6.13 (s; 1 H, ind 3-H), 6.91 (m; 1 H, ind 5-H), 6.98 (m; 1 H, ind 6-H), 7.06 (m; 1 H, tol 4-H), 7.14 (m; 1 H, tol 5-H), 7.19 (d; $J_o = 7.5$ Hz, 1 H, tol 3-H), 7.27 (d; 7.9 Hz, 1 H, ind 7-H), 7.36 (d; $J_o = 7.7$ Hz, 1 H, tol 6-H), 7.39 (d; $J_o = 7.0$ Hz, 1 H, ind 4-H), 9.24 (s; 1 H, NH), 10.89 (s; 1 H, NH); IR(KBr) v: 3363, 3276, 3052–2861, 1663, 1501; 752 cm⁻¹. Anal. (C₂₀H₂₂N₂O) C, H, N.

6.2.5.4. 7-(1H-2-Indolyl)-N-(o-methylphenyl)hexanoylamide

(6d). Yield: 1.1 g (3.43 mmol; 24% from 5d); m.p. 93 °C; R_f 0.41 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.39 (m; 2 H), 1.68 (m; 4 H), 1.68 (m; 4 H), 2.15 (s; 3 H, CH₃), 2.32 (t; J = 7.3 Hz, 2 H), 2.71 (t; J = 7.3 Hz, 2 H), 6.11 (s; 1 H, ind. 3-H), 6.89 (m; 1 H, ind 5-H), 6.97 (m; 1 H, ind 6-H), 7.05 (m; 1 H, tol 4-H), 7.12 (m; 1 H, tol 5-H), 7.17 (d; J = 7.9 Hz, 1 H, tol 3-H), 7.24 (d; J = 7.9 Hz, 1 H, ind 7-H), 7.32 (d; J = 7.5 Hz, 1 H, tol 6-H), 7.37 (d; J = 7.5 Hz, 1 H, ind 4-H), 9.20 (s; 1 H, NH), 10.86 (s; 1 H, NH); IR (KBr) v: 3405, 3307, 2934, 2863, 1653, 1588, 1528, 783, 748 cm⁻¹. Anal. (C₂₁H₂₄N₂O) C, H, N.

6.2.5.5. 7-(1H-2-Indolyl)-N-(o-methylphenyl)heptanoylamide

(*6e*). Yield: 0.45 g (1.35 mmol; 12% from **5e**); m.p. 123–125 ° C; R_f 0.22 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.38 (m; 4 H), 1.61 (m; 2 H), 1.70 (m; 2 H), 2.17 (s; 3 H, CH₃), 2.35 (t, J = 7.0 Hz, 2 H), 2.71 (t, J = 7.5 Hz, 2 H), 6.11 (s, 1 H, ind 3-H), 6.90 (m; 1 H, ind 5-H), 6.97 (m; 1 H, ind 6-H), 7.05 (m; 1 H, tol 4-H), 7.14 (m; 1 H, tol 5-H), 7.19 (d, J_o = 7.5 Hz, 1 H, tol 3-H), 7.26 (d, J_o = 8.3 Hz, 1 H, ind 7-H), 7.35 (d, J_o = 8.7 Hz, 1 H, tol 6-H), 7.38 (d, J_o = 8.3 Hz, 1 H, ind 4-H) 9.20 (s; 1 H, NH), 10.87 (s, 1H, NH); IR (KBr) v: 3425, 3253, 2927–2861, 1649, 1607, 1584, 1541, 764, 748 cm⁻¹. Anal. (C₂₂H₂₆N₂O) C, H, N.

6.2.5.6. 8-(1H-2-Indolyl)-N-(o-methylphenyl)octanoylamide

(*6f*). Yield: 0.85 g (2.44 mmol; 17% from **5f**); m.p. 95 °C; R_f 0.7 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.35 (m; 6 H), 1.66 (m; 4 H), 2.17 (s; 3 H, CH₃), 2.32 (t; J = 7.3 Hz, 2 H), 2.70 (t; J = 7.5 Hz, 2 H), 6.11 (s; 1 H, ind 3-H), 6.90 (m; 1 H, ind 5-H), 6.97 (m; 1 H, ind 6-H), 7.06 (m; 1 H, tol 4-H), 7.13 (m; 1 H, tol 5-H), 7.18 (d; J_o = 7.5 Hz, 1 H, tol 3-H), 7.25 (d; J_o = 7.9 Hz, 1 H, ind 7-H), 7.34 (d; J_o = 9.1 Hz, 1 H, tol 6-H), 7.38 (d; J_o = 8.7 Hz, 1 H, ind 4-H), 9.21 (s; 1 H, NH), 10.86 (s; 1 H, NH); IR (KBr) v: 3394, 3052–2853, 1651, 1586, 1530, 1485; 748 cm⁻¹. Anal. (C₂₃H₂₈N₂O) C, H, N.

6.2.6. Condensation of 8 or 9 with indole derivatives—general procedure A

The indole derivative (2 mmol) was dissolved in dry THF (10 ml) and cooled under N_2 to -20 °C. Then 4 ml of LiHMDS

(1 M in THF) were slowly added. After stirring the solution for 45 min, 2 mmol of TBS-dibromomaleinimide (8) or N-methyldibromomaleinimide (9) in 10 ml of THF were added within 3 h. The solution was stirred for 15 min, poured into sat. aq. NH₄Cl (100 ml), extracted with ethyl acetate (4 × 50 ml), dried over Na₂SO₄, concentrated in vacuo and purified by CC (CH₂Cl₂/ ethyl acetate; mixtures cited below following every R_f value).

6.2.6.1. *1-Methyl-3-bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-*2,5-pyrroledione (**10a**) [13]. Yield: 0.46 g (1.5 mmol; 75% from indole and **9**); m.p. 145 °C (dec.) (Lit. 145 °C [13]); R_f 0.22 (CH₂Cl₂); ¹H-NMR δ 3.01 (s; 3 H, CH₃), 7.18–7.72 (m; 5 H, aromat.), 12.33 (s; 1 H, NH); IR (KBr) v: 3270, 3115–2985, 1760, 1710, 1595, 1495, 1460, 1430 cm⁻¹.

6.2.6.2. 1-Methyl-3-bromo-4-(2-methyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (**10b**). Yield: 0.38 g (1.19 mmol; 59% from 2-methyl indole and **9**); m.p. 160 °C (dec.); R_f 0.33; ¹H-NMR δ 2.40 (s; 3 H, CH₃), 3.00 (s; 3 H, NCH₃), 7.01 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.35 (d; $J_o = 7.1$ Hz, 1 H, 7-H), 7.37 (d; $J_o = 7.1$ Hz, 1 H, 4-H), 11.75 (s; 1 H, NH); IR (KBr) v: 3361, 2925, 1771, 1705, 1624, 1613, 1422, 1379, 752, 735 cm⁻¹. Anal. (C₁₄H₁₁BrN₂O₂) C, H, N.

6.2.6.3. 1-Methyl-3-bromo-4-(2-ethyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (10c). Yield: 0.23 g (0.69 mmol; 34% from **3a** and **9**); m.p. 140 °C (dec.); R_f 0.53 (CH₂Cl₂); ¹H-NMR δ 1.28 (t; J = 7.5 Hz, 3 H, CH₃), 2.73 (q; J_o = 7.5 Hz, 2 H, CH₂), 3.00 (s; 3 H, CH₃), 7.02 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.34 (d; J_o = 7.5 Hz, 1 H, 7-H), 7.37 (d; J_o = 7.15 Hz, 1 H, 4-H), 11.71 (s; 1 H, NH); IR (KBr) v: 3378, 2979, 1771, 1705, 1626, 1433, 1385, 1140, 1001, 748, 735 cm⁻¹. Anal. (C₁₅H₁₃BrN₂O₂) C, H, N.

6.2.6.4. 1-Methyl-3-bromo-4-(2-propyl-1H-3-indolyl)-2,5-di-

hydro-1H-2,5-pyrrole-dione (**10***d*). Yield: 0.33 g (0.95 mmol; 47% from **3b** and **9**), m.p. 155 °C; R_f 0.65 (CH₂Cl₂); ¹H-NMR δ 0.86 (t; J = 7.25 Hz, 3 H, CH₃), 1.73 (m; 2 H, CH₂), 2.70 (t; J = 7.3 Hz, 2 H, CH₂), 3.00 (s; 3 H, CH₃), 7.02 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.33 (d; J_o = 7.5 Hz, 1 H, 7-H), 7.36 (d; J_o = 7.5 Hz, 1 H, 4-H), 11.68 (s; 1 H, NH); IR (KBr) v: 3378, 2965, 1771, 1707, 1624, 1431, 1383, 749 cm⁻¹. Anal. (C₁₆H₁₅BrN₂O₂) C, H, N.

6.2.6.5. 1-Methyl-3-bromo-4-(2-butyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (**10e**). Yield: 0.48 g (1.3 mmol; 66% from **3c** and **9**), m.p. 115 °C; R_f 0.6 (CH₂Cl₂); ¹H-NMR δ 10.16 (t; J = 7.3 Hz, 3 H, CH₃), 1.27 (m; 2 H, CH₂), 1.66 (m; 2 H, CH₂), 2.73 (t; J = 7.3 Hz, 2 H, CH₂), 3.00 (s; 3 H, CH₃), 7.01 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.33 (d; J_o = 7.5 Hz, 1 H, 4-H), 7.36 (d; J = 7.9 Hz, 1 H, 4-H), 11.68 (s; 1 H, NH); IR (KBr) v: 3373, 2964, 1773, 1709, 1624, 1460, 1439, 1385, 1192, 1138, 995, 735 cm⁻¹. Anal. (C₁₇H₁₇BrN₂O₂) C, H, N. 6.2.6.6. 1-Methyl-3-bromo-4-(2-pentyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (10f). Yield: 0.41 g (1.09 mmol; 55% from 3d and 9); m.p. 80 °C; R_f 0.72 (CH₂Cl₂); ¹H-NMR δ 0.83 (t; J = 6.6 Hz, 3 H, CH₃), 1.23 (m; 4 H, CH₂), 1.67 (m; 2 H, CH₂), 2.72 (t; J = 7.8 Hz, 2 H, CH₂), 3.00 (s; 3 H, NCH₃), 7.01 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.33 (d; J_o = 8.3 Hz, 1 H, 7-H), 7.36 (d; J_o = 7.5 Hz, 1 H, 4-H), 11.69 (s; 1 H, NH); IR (KBr) v: 3361, 2954, 2930, 1173, 1707, 1626, 1613, 1460, 1439, 1338, 737 cm⁻¹. Anal. (C₁₈H₁₉BrN₂O₂) C, H, N.

6.2.6.7. 1-Methyl-3-bromo-4-(2-hexyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (**10g**). Yield: 0.32 g (0.82 mmol; 56% from **3e** and **9**); m.p. 100 °C; R_f 0.74 (CH₂Cl₂); ¹H-NMR (CDCl₃) δ 0.87 (t; J = 6.6 Hz, 3 H, CH₃), 1.30 (m; 6 H, CH₂), 1.70 (m; 2 H, CH₂), 2.82 (t; J = 7.4 Hz, 2 H, CH₂), 3.18 (s; 3 H, NCH₃), 7.16 (m, 1 H, 5-H), 7.21 (m; 1 H, 6-H), 7.36 (m; 1 H, 7-H), 7.43 (m; 1 H, 4-H), 8.38 (s; 1 H, NH); IR (KBr) v: 3351, 1773, 1707, 1460, 1437, 1385, 989, 739 cm⁻¹. Anal. (C₁₉H₂₁BrN₂O₂) C, H, N.

6.2.6.8. *1-Methyl-3-bromo-4-(2-heptyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione* (10*h*). Yield: 0.28 g (0.69 mmol; 46% from **3f** and **9**); m.p. 75 °C; R_f 0.77 (CH₂Cl₂); ¹H-NMR δ 0.82 (t; J = 6.4 Hz, 3 H, CH₃), 1.21 (m; 6 H, CH₂), 1.66 (m; 2 H, CH₂), 2.72 (t; J = 7.3 Hz, 2 H, CH₂), 3.00 (s; 3 H, NCH₃), 7.01 (m, 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.33 (d; $J_o = 7.9$ Hz, 1 H, 7-H), 7.36 (d; $J_o = 7.9$ Hz, 1 H, 4-H), 11.68 (s; 1 H, NH); IR (KBr) v: 3361, 2929, 1773, 1705, 1613, 1460, 1439, 1383, 987, 808, 737 cm⁻¹. Anal. (C₂₀H₁₃BrN₂O₂) C, H, N.

6.2.6.9. 1-Methyl-3-bromo-4-(2-phenyl-1H-3-indolyl)-2,5-di-

hydro-1H-2,5-pyrrole-dione (10i). Yield: 0.65 g (1.7 mmol; 56% from 2-phenylindole and 9); m.p. 225 °C; R_f 0.59 (CH₂Cl₂); ¹H-NMR (CDCl₃) δ 3.11 (s; 3 H, CH₃), 7.22 (m; 1 H, ind 5-H), 7.29 (m; 1H, ind 6-H), 7.41 (m; 1 H, ph 4-H), 7.42–7.50 (m; 4 H, ind 4-H, ind 7-H, ph 3-H, ph 5-H), 7.58 (d; $J_o = 7.15$ Hz, 2 H, ph 2-H, ph 6-H), 8.68 (s; 1 H, NH); IR (KBr) v: 3444, 2925, 1771, 1705, 1624, 1451; 752, 737, 696 cm⁻¹. Anal. (C₁₉H₁₃BrN₂O₂) C, H, N.

6.2.6.10. 1-Methyl-3-bromo-4-(2-(2-methoxyphenyl)-1H-3-in-

dolyl)-2,5-dihydro-1H-2,5-pyrroledione (10j). Yield: 0.56 g (1.36 mmol; 68% from 3g and 9); m. p. 185 °C; R_f 0.36 (CH₂Cl₂); ¹H-NMR δ 2.95 (s; 3 H, NCH₃), 3.68 (s, 3 H, NCH₃), 7.00–7.11 (m; 3 H, ind 5-H, ph 4-H, ph 5-H), 7.18 (m; 1 H, ind 6-H), 7.34–7.41 (m; 2 H, ph 3-H, ph 6-H), 7.46 (d; J₀ = 6.7 Hz, 1 H, ind 7-H), 7.48 (d; J₀ = 6.3 Hz, 1 H, ind 4-H), 11. 91 (s; 1 H, NH); IR (KBr) v: 3351, 3062–2834, 1775, 1709, 1620, 1466, 1439, 1379, 1298, 1250, 1180, 1155, 1101, 980, 850, 741, 733 cm⁻¹. Anal. (C₂₀H₁₅BrN₂O₃) C, H, N.

6.2.6.11. 1-Methyl-3-bromo-4-(2-(3-methoxyphenyl)-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (10k). Yield: 0.515 g (1.25 mmol; 63% from **3h** and **9**); m.p. 162 °C; R_f 0.33 (CH₂Cl₂); ¹H-NMR δ 2.97 (s; 3 H, NCH₃), 3.80 (s; 3 H, OCH₃), 6.95 (m; 1 H, ph 6-H), 7.07–7.17 (m: 3 H, ind 5-H, ph 2-H, ph 4-H); 7.22 (m; 1 H, ind 6-H), 7.34 (m; 1 H, ph 5-H), 7.47 (d; $J_o = 7.9$ Hz, 1 H, ind 7-H), 7.49 (d; $J_o = 7.9$ Hz, 1 H, ind 4-H), 12.14 (s; 1 H, NH); IR (KBr) v: 3378, 2954, 1775, 1711, 1626, 1611, 1491, 1437, 1379, 1229, 1204, 987, 789, 737 cm⁻¹. Anal. (C₂₀H₁₅BrN₂O₃) C, H, N.

6.2.6.12. 1-Methyl-3-bromo-4-(2-(4-methoxyphenyl)-1H-3-in-

dolyl)-2,5-dihydro-1H-2,5-pyrroledione (101). Yield: 0.63 g (1.5 mmol; 51% from 2-(4-methoxyphenyl)-1*H*-indole [31] and 9); m.p. 227 °C; R_f 0.64 (CH₂Cl₂); ¹H-NMR δ 2.98 (s; 3 H, NCH₃), 3.80 (s; 3 H, OCH₃), 7.02 (d; $J_o = 8.7$ Hz, 2 H, ph 3-H, ph 5-H), 7.08 (m; 1 H, ind H-5), 7.19 (m; 1 H, ind 6-H), 7.44 (d; $J_o = 3.6$ Hz, 1 H, ind H-7), 7.47 (d; $J_o = 4.0$ Hz, 1 H, ind H-4), 7.53 (d, $J_o = 8.7$ Hz, 2 H, ph 2-H, ph 6-H), 12.04 (s, 1H, ind NH); IR (KBr) v: 3397, 1767, 1707, 1622, 1495, 1441, 914, 746 cm⁻¹. Anal. (C₂₀H₁₅BrN₂O₃) C, H, N.

6.2.7. Removal of the silyl-protecting group [14]—general procedure B

The raw silyl-protected indole-maleinimide (1 mmol), obtained from the procedure described in general Procedure A, was dissolved in THF (100 ml) under N₂, tetrabutylammonium fluoride trihydrate (1.2 mmol) was added, and the mixture was stirred for 2 h, poured on to ice, mixed with saturated NH₄Cl solution (200 ml) and extracted with ethyl acetate (2 × 100 ml). The extract was dried over Na₂SO₄, the solvent was removed in vacuo and the remaining oil was purified by CC (CH₂Cl₂/ethyl acetate, mixtures are cited below, following the R_f value of the compounds). The solution was concentrated in vacuo in order to obtain a nearly saturated solution of the product in ethyl acetate. A small amount of CH₂Cl₂ was added, and the product precipitated in small red crystals.

6.2.7.1. 3-(3-(4-Bromo-2,5-dihydro-1H-2,5-pyrroledione-3-

yl)-1H-2-indolyl)-N-(2-methylphenyl)propionylamide (11a). Yield: 0.09 g (0.2 mmol; 10% from 2 mmol **6a** and **8**); m.p. 195 °C (dec.); R_f 0.17 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 2.12 (s; 3 H, CH₃), 2.78 (t; J = 7.5 Hz, 2 H), 3.09 (m; 2 H), 7.04 (m; 1 H, ind 5-H), 7.05 (m; 1 H, tol 4-H), 7.07 (m; 1 H, ind 6-H), 7.13 (m; 1 H, tol 5-H), 7.17 (d; J_o = 7.1 Hz, 1 H, tol 3-H), 7.34 (d; J_o = 6.3 Hz, 1 H, tol 6-H), 7.36 (d; J_o = 7.2 Hz, 1 H, ind 7-H), 7.39 (d; J_o = 7.5 Hz, ind 4-H), 9.27 (s; 1 H, NH), 11.37 (s; 1 H, NH), 11.74 (s; 1 H, NH); IR (KBr) v: 3338, 3228, 3060–2650, 1771, 1755, 1719, 1707, 1672, 1640, 1539, 740 cm⁻¹. Anal. (C₂₂H₁₈BrN₃O₃) Calc. C 58.42, H 4.01, N 9.29. Found C 58.96, H 4.40, N 8.75.

6.2.7.2. 4-(3-(4-Bromo-2,5-dihydro-1H-2,5-pyrroledione-3-

yl)-1H-2-indolyl)-N-(2-methylphenyl)butanoylamide (11b). Yield: 0.15 g (0.32 mmol; 16% from 2 mmol **6b** and **8**); m. p. 135 °C (dec.); R_f 0.13 (CH₂Cl₂/ethyl acetate 6:1); ¹H-NMR δ 2.03 (m; 2 H), 2.15 (s; 3 H, CH₃), 2.33 (t; J = 7.2 Hz, 2 H), 2.83 (m; 2 H), 7.03 (m; 1 H, ind 5-H), 7.07 (m; 1 H, tol 4-H), 7.09 (m; 1 H, ind 6-H), 7.13 (m; 1 H, tol 5-H), 7.18 (d; $J_o = 7.5$ Hz, 1 H, tol 3-H), 7.32 (d; $J_o = 8.7$ Hz, 1 H, tol 6-H), 7.35 (d; $J_o = 8.7$ Hz, 1 H, ind 7-H), 7.39 (d; $J_o = 7.5$ Hz, 1 H, ind 4-H), 9.25 (s; 1 H, NH), 11.38 (s; 1 H, NH), 11.76 (s; 1 H, NH); IR (KBr) v: 3345, 3235, 3060–2500, 1771, 1757, 1725, 1642, 1530, 743 cm⁻¹. Anal. (C₂₃H₂₀BrN₃O₃) Calc. C, H, N.

6.2.7.3. 5-(3-(4-Bromo-2,5-dihydro-1H-2,5-pyrroledione-3-

yl)-1H-2-indolyl)-N-(2-methylphenyl)pentanoylamide (11c). Yield: 0.16 g (0.33 mmol; 16% from 2 mmol **6c** and **8**); m. p. 185 °C (dec.); R_f 0.12 (CH₂Cl₂/ethyl acetate 9:1). ¹H-NMR δ 1.61 (m; 2 H), 1.74 (m; 2 H), 2.15 (s; 3 H, CH₃), 2.33 (t; J = 7.1 Hz, 2 H), 2.77 (t; J₀ = 6.7 Hz, 2 H), 7.03 (m; 1 H, ind 5-H), 7.05 (m; 1 H, tol 4-H), 7.12 (m; 1 H, ind 6-H), 7.13 (m; 1 H, tol 5-H), 7.18 (d; J₀ = 7.1 Hz, 1 H, tol 3-H), 7.34 (d; J₀ = 8.3 Hz, 2 H, tol 6-H, ind 7-H), 7.37 (d; J₀ = 7.9 Hz, 1 H, ind 4-H), 9.21 (s; 1 H, NH), 11.37 (s; 1 H, NH), 11.712 (s; 1 H, NH); IR (KBr) v: 3390, 3300; 3054–2857, 1734, 1701, 1665, 1524, 748 cm⁻¹. Anal. (C₂₄H₂₂BrN₃O₃) C, H, N.

6.2.7.4. 6-(3-(4-Bromo-2,5-dihydro-1H-2,5-pyrroledione-3-

yl)-1H-2-indolyl)-N-(2-methylphenyl)hexanoylamide (11d). Yield: 0.08 g (0.16 mmol; 16% from 1 mmol 6d and 8); m. p. 186–188 °C (dec.); R_f 0.11 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.31 (m; 2H), 1.60 (m; 2 H), 1.72 (m; 2 H), 2.14 (s; 3 H, CH₃), 2.29 (t; J = 7.1 Hz, 2 H), 2.74 (t; J = 7.0 Hz, 2 H), 7.02 (m; 1 H, ind 5-H), 7.05 (m; 1 H, tol 4-H), 7.11 (m, 1 H, ind 6-H), 7.12 (m; 1 H, tol 5-H), 7.20 (d; J_o = 7.5 Hz, 1 H, tol 3-H), 7.33 (d, J_o = 8.3 Hz, 2 H, tol 6-H, ind 7-H), 7.36 (d, J_o = 7.9 Hz, 1 H, ind 4-H), 9.18 (s; 1 H, NH), 11.36 (s; 1 H, NH), 11.68 (s, 1 H, NH); IR (KBr) v: 3370, 2932–2363, 1773, 1725, 1653, 1624, 1522, 1458; 740 cm⁻¹. Anal. (C₂₅H₂₄BrN₃O₃) C, H, N.

6.2.7.5. 7-(3-(4-Bromo-2,5-dihydro-1H-2,5-pyrroledione-3-

yl)-1H-2-indolyl)-N-(2-methylphenyl)heptanoylamide (11e). Yield: 0.077 g (0.15 mmol; 10% from 1.5 mmol **6e** and **8**); m.p. 178 °C; R_f 0.06 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.31 (m; 4 H), 1.58 (t; J = 6.0 Hz, 2 H), 1.70 (t; J = 6.3 Hz, 2 H), 2.19 (s; 3 H, CH₃), 2.96 (t; J = 7.5 Hz, 2 H), 2.74 (t; J = 7.5 Hz, 2 H), 7.03 (m; 1 H, ind 5-H), 7.07 (m; 1 H, tol 4-H), 7.11 (m; 1 H, ind 6-H), 7.15 (m; 1 H, tol 5-H), 7.18 (d; J_o = 7.1 Hz, 1 H, tol 3-H), 7.34 (m; 2H, ind 7-H, tol 6-H), 7.37 (d; J_o = 7.5 Hz, 1 H, ind 4-H), 9.19 (s; 1 H, NH), 11.37 (s; 1 H, NH), 11.68 (s; 1 H NH); IR (KBr) v: 3340, 3210, 2963– 2855, 1771, 1717, 1653, 1624, 1530; 741 cm⁻¹. Anal. (C₂₆H₂₆BrN₃O₃) Calc. C 61.42, H 5.15, N 8.26. Found C 60.85, H 5.11, N 8.12.

6.2.7.6. 8-(3-(4-Bromo2,5-dihydro-1H-2,5-pyrroledione-3-yl)-1H-2-indolyl)-N-(2-methylphenyl)octanoylamide (**11***f*). Yield: 0.21 g (0.4 mmol; 20% from 2 mmol **6f** and **8**); m.p. 145– 150 °C (THF/pentane); R_f 0.17 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.19 (m; 6 H), 1.56 (m; 2 H), 1.68 (m; 2 H), 2.16 (s; 3 H, CH₃), 2.29 (t; J = 7.0 Hz, 2 H), 2.74 (t; $\begin{array}{l} J=7.5 \ \text{Hz}, 2 \ \text{H}), \ 7.02 \ (\text{m}; 1 \ \text{H}, \ \text{ind} \ 5\text{-H}), \ 7.05 \ (\text{m}; 1 \ \text{H}, \ \text{tol} \ 4\text{-H}), \ 7.08 \ (\text{m}; 1 \ \text{H}, \ \text{ind} \ 6\text{-H}), \ 7.14 \ (\text{m}; 1 \ \text{H}, \ \text{tol} \ 5\text{-H}), \ 7.18 \ (\text{d}; \ J_o=7.5 \ \text{Hz}, 1 \ \text{H}, \ \text{tol} \ 3\text{-H}), \ 7.34 \ (\text{m}; 2 \ \text{H}, \ \text{tol} \ 5\text{-H}), \ 7.18 \ (\text{d}; \ J_o=7.5 \ \text{Hz}, 1 \ \text{H}, \ \text{tol} \ 3\text{-H}), \ 7.34 \ (\text{m}; 2 \ \text{H}, \ \text{tol} \ 5\text{-H}), \ 7.18 \ (\text{d}; \ J_o=7.5 \ \text{Hz}, 1 \ \text{H}, \ \text{tol} \ 3\text{-H}), \ 7.34 \ (\text{m}; 2 \ \text{H}, \ \text{tol} \ 7\text{-H}, \ \text{ind} \ 7\text{-H}), \ 7.37 \ (\text{d}; \ J_o=7.5 \ \text{Hz}, 1 \ \text{H}, \ \text{ind} \ 4\text{-H}), \ 9.19 \ (\text{s}; 1 \ \text{H}, \ \text{NH}), \ 11.38 \ (\text{s}; 1 \ \text{H}, \ \text{NH}), \ 11.68 \ (\text{s}; 1 \ \text{H}, \ \text{NH}); \ \text{IR} \ (\text{KBr}) \ v: \ 3345, \ 3216, \ 2927-2855, \ 1771, \ 1719, \ 1647, \ 743 \ \text{cm}^{-1}. \ \text{Anal}. \ (C_{27}H_{28}\text{BrN}_3O_3) \ \text{C}, \ \text{H}, \ \text{N}. \end{array}$

6.2.7.7. 3-Bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (12a) [32]. Yield: 0.1 g (0.34 mmol; 17% from 2 mmol indole and **8**); m.p. 195 °C (Lit. 196 °C [32]); ¹H-NMR δ 7.12–7.26 (m; 2 H, 5-H, 6-H), 7.51 (d; J_o = 7.7 Hz, 1 H), 7.90 (d; J_o = 7.7 Hz, 1 H), 8.04 (d; J_m = 3 Hz, 1 H, 2-H), 11.35 (s; 1 H, NH), 12.10 (s; 1 H, NH); IR (KBr) v: = 3340, 3270, 3140–3035, 1760, 1700, 1620, 1610, 1490, 1460 cm⁻¹.

6.2.7.8. 3-Bromo-4-(2-methyl-1H-3-indolyl)-2,5-dihydro-1H-

2,5-pyrroledione (**12b**). Yield: 0.23 g (0.74 mmol; 37% from 2 mmol 2-methylindole and **8**); m.p. 185 °C (dec.); R_f 0.36 (CH₂Cl₂); ¹H-NMR δ 2.41 (s; 3 H, CH₃), 7.02 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.35 (d, $J_o = 7.6$ Hz, 1 H, 7-H), 7.36 (d; $J_o = 7.5$ Hz, 1 H, 4-H), 11.32 (s; 1 H, NH), 11.72 (s; 1 H, NH). IR (KBr) v: 3349, 3220, 3062–2695, 1771, 1753, 1626, 1613, 1541; 739 cm⁻¹. Anal. (C₁₃H₉BrN₂O₂) C, H, N.

6.2.7.9. 3-Bromo-4-(2-ethyl-1H-3-indolyl)-2,5-dihydro-1H-

2,5-pyrroledione (12c). Yield: 0.365 g (1.14 mmol; 57% from 2 mmol **3a** and **8**); m.p. 160 °C (dec.); R_f 0.6 (CH₂Cl₂/ethyl acetate 9:1); ¹H-NMR δ 1.28 (t; J_o = 7.5 Hz, 3 H, CH₃), 2.74 (m; 2 H), 7.03 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.34 (d; J_o = 8.2 Hz, 1 H, 7-H) 7.37 (d; J_o = 7.7 Hz, 1 H, 4-H) 10.69 (s; 1 H, NH), 11.70 (s; 1 H, NH). IR (KBr) v: 3347, 3214, 3058–2689, 1771, 1753 1715, 1624, 1607 1493, 740 cm⁻¹. Anal. (C₁₄H₁₁BrN₂O₂) C, H, N.

6.2.7.10. 3-Bromo-4-(2-propyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**12d**). Yield: 0.42 g (1.26 mmol; 63% from 2 mmol **3d** and **8**); m.p. 150 °C; R_f 0.7 (CH₂Cl₂/ethyl acetate 1:9); ¹H-NMR δ 0.87 (t; J_o = 7.5 Hz, 3 H, CH₃), 1.70 (m; 2 H), 2.71 (t; J = 7.7 Hz, 2 H), 7.03 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.34 (d; J_o = 7.9 Hz, 1 H, 7-H), 7.37 (d; J_o = 7.9 Hz, 1H, 4-H), 11.37 (s; 1 H, NH), 11.672 (s; 1 H, NH). IR (KBr) v: 3378, 3222, 3066–2871, 1775, 1757, 1719, 1624, 1609 1489, 741 cm⁻¹. Anal. (C₁₅H₁₃BrN₂O₂) C, H, N.

6.2.7.11. 3-Bromo-4-(2-butyl-1H-3-indolyl)-2,5-dihydro-1H-

2,5-pyrroledione (**12e**). Yield: 0.272 g (0.78 mmol; 39% from 2 mmol **3c** and **8**); m.p. 155 °C; R_f 0.18 (CH₂Cl₂); ¹H-NMR δ 0.85 (t; J = 7.1 Hz, 3 H, CH₃), 1.26 (m; 2 H), 1.65 (m; 2 H), 2.72 (t; J = 7.5 Hz, 2 H), 7.01 (m; 1 H, 5-H), 7.10 (m; 1 H, 6-H), 7.32 (d; J_o = 8.7 Hz, 1 H, 7-H), 7.36 (d; J_o = 7.5 Hz, 4-H), 11.35 (s; 1 H, NH), 11.66 (s; 1 H, NH); IR (KBr) v: 3416, 3224, 2947–2854, 1773, 1766, 1716, 1616, 1538, 1488; 741 cm⁻¹. Anal. (C₁₆H₁₅BrN₂O₂) C, H, N.

6.2.7.12. 3-Bromo-4-(2-pentyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**12f**). Yield: 0.281 g (0.78 mmol; 38% from 2 mmol **3d** and **8**); m.p. 150 °C (dec.); R_f 0.3 (CH₂Cl₂); ¹H-NMR δ 0.83 (t; J = 6.7 Hz, 3 H, CH₃), 1.30 (m; 4 H), 1.70 (m; 2 H), 2.73 (t; J = 7.0 Hz, 2 H), 7.02 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.34 (d; J = 8.8 Hz, 1 H, 7-H), 7.37 (d; J = 7.5 Hz, 1 H, 4-H), 11.36 (s; 1 H, NH), 11.67 (s; 1 H, NH). IR (KBr) v: 3345, 3222, 2957–2869, 1771, 1753, 1717, 1624, 1607, 1493, 743 cm⁻¹. Anal. (C₁₇H₁₇BrN₂O₂) C, H, N.

6.2.7.13. 3-Bromo-4-(2-hexyl-1H-3-indolyl)-2,5-dihydro-1H-

2,5-pyrroledione (**12g**). Yield: 0.325 g (0.87 mmol; 43% from 2 mmol **3e** and **8**); m.p. 135 °C (dec.); R_f 0.22 (CH₂Cl₂); ¹H-NMR δ : 0.82 (t; J = 6.3 Hz, 3 H, CH₃); 1.23 (m; 6 H), 1.67 (m; 2 H), 2.73 (t; J = 7.1 Hz, 2 H), 7.03 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.33 (d; J_o = 8.3 Hz, 1 H, 7-H), 7.36 (d; J_o = 7.9 Hz, 1 H, 4-H), 11.37 (s; 1 H, NH), 11.67 (s; 1 H, NH). IR (KBr) v: 3342, 3226, 2929, 1771, 1721, 1707, 1607, 1535, 743 cm⁻¹. Anal. (C₁₈H₁₉BrN₂O₂) C, H, N.

6.2.7.14. 3-Bromo-4-(2-heptyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**12h**). Yield: 0.314 g (0.8 mmol; 40% from 2 mmol **3f** and **8**); m.p. 153 °C (dec.); R_f 0.36 (CH₂Cl₂); ¹H-NMR δ 0.83 (t; J = 6.7 Hz, 3 H, CH₃), 1.22 (m; 8 H); 1.66 (m; 2 H), 2.73 (t; J = 7.5 Hz, 2 H), 7.03 (m; 1 H, 5-H), 7.11 (m; 1 H, 6-H), 7.33 (d; J = 8.3 Hz, 1 H, 7-H), 7.37 (d; J = 8.0 Hz, 1 H, 4-H), 11.37 (s; 1 H, NH), 11.67 (s; 1 H, NH); IR (KBr) v: 3341, 3216, 3062–2689, 1771, 1755, 1719, 1624, 1493, 742 cm⁻¹. Anal. (C₁₉H₁₉BrN₂O₂) C, H, N.

6.2.7.15. 3-Bromo-4-(2-phenyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**12i**). Yield: 0.247 g (0.67 mmol; 33% from 2 mmol 2-phenylindole); m.p. 270 °C; R_f 0.11 (CH₂Cl₂); ¹H-NMR δ 7.11 (m; 1 H, ind 5-H), 7.22 (m; 1 H, ind 6-H), 7.38 (m; 1 H, ph 4-H), 7.46 (d; J_o = 6.5 Hz, 1 H, ind 7-H), 7.47 (m; 2 H, ph 3-H, ph 5-H), 7.49 (d; J_o = 8.3 Hz, 1 H, ind 4-H), 7.57 (m; 2 H, ph 2-H, ph 6-H), 11.12 (s; 1 H, NH), 12.14 (s; 1 H, NH); IR (KBr) v: 3363, 3183, 1769, 1709, 1620, 1580, 1481, 770, 750, cm⁻¹. Anal. (C₁₈H₁₁BrN₂O₂) C, H, N.

6.2.7.16. 3-Bromo-4-(2-(2-methoxyphenyl)-1H-3-indolyl)-2,5dihydro-1H-2,5-pyrroledione (**12***j*). Yield: 0.17 g (0.45 mmol; 22% from 2 mmol **3g**); m.p. 205 °C; R_f 0.18 (CH₂Cl₂); ¹H-NMR δ 3.69 (s; 3 H, OCH₃), 7.01–7.11 (m; 3 H, ind 5-H, ph 4-H, ph 5-H), 7.18 (m; 1 H, ind 6-H), 7.34–7.41 (m; 2 H, ph 3-H, ph 6-H), 7.46 (d; $J_o = 7.9$ Hz, 1 H, ind 7-H), 7.47 (d; $J_o = 7.9$ Hz, 1 H, ind 4-H), 11.22 (s; 1 H, NH), 11.89 (s; 1 H, NH); IR (KBr) v: 3353, 2834–2280, 1775, 1717, 1616, 1601, 1489, 1466, 1452, 1441, 1327, 1298, 1277, 1248, 1204, 1028, 739 cm⁻¹. Anal. (C₁₉H₁₃BrN₂O₃) C, H, N.

6.2.7.17. 3-Bromo-4-(2-(3-methoxyphenyl)-1H-3-indolyl)-2,5dihydro-1H-2,5-pyrroledione (**12k**). Yield: 0.082 g (0.21 mmol; 10% from 2 mmol **3h**); m.p. 225 °C; R_f 0.1 (CH₂Cl₂); ¹H-NMR δ 3.79 (s; 3H, OCH₃), 6.95 (m; 1 H, ph 6-H), 7.07–7.13 (m; 3 H, ind 5-H, ph 4-H, ph 2-H), 7.21 (m; 1 H, ind 6-H), 7.36 (m; 1 H ph 5-H) 7.46 (d; $J_o = 6.7$ Hz, 1 H, ind 7-H), 7.48 (d; $J_o = 7.1$ Hz, 1 H, ind 4-H), 11.37 (s; 1 H, NH), 12.13 (s; 1 H, NH); IR (KBr) v: 3064, 1773, 1707, 1613, 1578, 1533, 1485, 1445, 1335, 1288, 1261, 1223, 1205, 1180, 1146, 1119, 1031, 910, 885, 783, 752, 694 cm⁻¹. Anal. (C₁₉H₁₃BrN₂O₃) C, H, N.

6.2.7.18. 3-Bromo-4-(2-(4-methoxyphenyl)-1H-3-indolyl)-2,5dihydro-1H-2,5-pyrroledione (**12l**). Yield: 0.320 g (0.8 mmol; 40% from 2 mmol 2-(4-Methoxyphenyl)-1H-indole [31]); m.p. 262 °C; R_f 0.15 (CH₂Cl₂); ¹H-NMR δ 3.80 (s; 3 H, OCH₃), 7.04 (d; J_0 = 9.1 Hz, 2 H, ph 3-H, ph 5-H), 7.09 (m; 1 H, ind 5-H), 7.19 (m; 1 H, ind 6-H), 7.43 (d; J_0 = 7.1 Hz, 1 H, ind 7-H), 7.46 (d; J_0 = 9.1 Hz, 1 H, ind 4-H), 7.50 (d; J_0 = 8.7 Hz, 2 H, ph 2-H, ph 6-H), 11.26 (s; 1 H, NH), 12.03 (s; 1 H, NH). IR (KBr) v: 3376, 1771, 1721, 1609, 1580, 1495, 837, 746 cm⁻¹. Anal. (C₁₉H₁₃BrN₂O₃) C, H, N.

6.2.8. Methylation of the silyl-protected indolyl-maleinimide derivatives

A solution of the silyl-protected products (1 mmol) from indole derivative and **8**, produced by the procedure described in general procedure A, in THF (10 ml) was cooled to -78 °C under N₂. Then n-BuLi (1.1 mmol 1.6 M solution in hexane) was added slowly, and the mixture was stirred for 1 h. Then DMS (0.6 mmol) was added, and the solution was stirred overnight while slowly warming to RT. Then it was poured into a saturated solution of NH₄Cl (100 ml), extracted with ethyl acetate, dried over Na₂SO₄, concentrated in vacuo and purified by CC (CH₂Cl₂). The products were collected as crude oils and were directly used for the procedure described in general procedure B to remove the silyl protection group.

6.2.8.1. 3-Bromo-4-(1,2-dimethyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**13a**). Yield: 0.25 g (0.78 mmol; 39% from 2 mmol silyl-protected **12b**); m.p. 195 °C; R_f 0.29 (CH₂Cl₂); ¹H-NMR δ 2.39 (s; 3 H, NCH₃), 3.75 (s, 3 H, OCH₃), 7.06 (m; 1 H, 5-H), 7.17 (m; 1 H, 6-H), 7.37 (d; $J_o = 7.52$ Hz, 7-H), 7.49 (d; $J_o = 7.9$ Hz, 1 H, 4-H), 11.35 (s; 1 H, NH); IR (KBr) v: 3212, 3062, 2927, 1767, 1713, 1611, 1597, 1412, 1323, 999, 746, 486 cm⁻¹. Anal. (C₁₄H₁₁BrN₂O₂) C, H, N.

6.2.8.2. 3-Bromo-4-(1-methyl-2-butyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (**13b**). Yield: 0.216 g (0.61 mmol; 31% from 2 mmol silyl-protected **12e**); m.p. 165 °C; R_f 0.34 (CH₂Cl₂); ¹H-NMR δ 0.83 (t; J = 7.1 Hz, 3 H, CH₃), 1.27 (m; 2 H, CH₂), 1.54 (m; 2 H, CH₂), 2.79 (t; J = 7.5 Hz, 2 H, CH₂); 3.77 (s; 3 H, NCH₃), 7.07 (m; 1 H, 5-H), 7.18 (m; 1 H, 6-H), 7.32 (d; J_o = 7.5 Hz, 1 H, 7-H), 7.49 (d; J_o = /.49, 1 H, 4-H), 11.40 (s; 1 H, NH); IR (KBr) v: 3233, 2959, 2871, 1759, 1713, 1622, 1472, 1329, 1016, 740 cm⁻¹. Anal. (C₁₇H₁₇BrN₂O₂) C, H, N. 6.2.8.3. 3-Bromo-4-(1-methyl-2-hexyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (13c). Yield: 0.27 g (0.69 mmol; 35% from 2 mmol silyl-protected 12g); m.p. 120 °C; R_f 0.26 (CH₂Cl₂); ¹H-NMR δ 0.80 (t; J = 6.4 Hz, 3 H, CH₃), 1.19 (m; 6 H), 1.55 (m; 2 H), 2.80 (t; J = 7.4 Hz, 2 H), 3.77 (s; 3 H, NCH₃), 7.04 (m; 1 H, 5-H), 7.18 (m; 1 H, 6-H), 7.32 (d; J_o = 7.15 Hz, 1 H, 7-H), 7.49 (d; J_o = 7.9 Hz, 1 H, 4-H), 11.41 (s; 1 H, NH). IR (KBr) v: 3204, 2961–2859, 1775, 1763 1725, 1622, 1472; 740 cm⁻¹. Anal. (C₁₉H₂₁BrN₂O₂) C, H, N.

6.2.8.4. 3-Bromo-4-(1-methyl-2-phenyl-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrrole-dione (13d). Yield: 0.027 g (0.07 mmol; 3.5% from 2 mmol silyl-protected 12i); m.p. 245 °C; R_f = 0.41 (CH₂Cl₂); ¹H-NMR δ : 3.77 (s; 3 H, CH₃), 7.26 (m; 1 H, 5-H), 7.35 (m; 1 H, 6-H), 7.38–7.51 (m; 6 H, arom.), 7.59 (m; 2 H, ph 2-H, ph 6-H); IR (KBr) V: 3193, 1771, 1715, 1616, 1472, 743 cm⁻¹. Anal. (C₁₉H₁₃BrN₂O₂) C, H, N.

6.2.8.5. 3-Bromo-4-(1-methyl-2-(4-methoxyphenyl)-1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione (**13e**). Yield: 0.400 g (9.7 mmol; 10% from 10 mmol of silyl-protected **12l**); m.p. 225 °C; R_{j} : 0.15 (CH₂Cl₂); ¹H-NMR (CDCl₃) δ : 3.75 (s; 1 H, NCH₃); 3.87 (s; 1 H, OCH₃); 6.99 (d; $J_0 = 6.7$ Hz; 2 H, ph 3-H); 7.22–7.44 (m; 5 H, arom.); 7.57 (d; $J_0 = 7.9$ Hz; 1 H, ind 5-H); IR (KBr) v: 3222, 2934–2836, 1775, 1717, 1611, 1535, 1483, 843, 752 cm⁻¹. Anal. (C₂₀H₁₅BrN₂O₃) C, H, N.

6.2.9. Preparation of 3-(1H-3-indolyl)-2,5-pyrrolidinedione (14) [33]

0.7 mmol **12a** were stirred together with 0.2 g Pd/C (5%) in 5 ml of methanol under low H_2 pressure. Then the catalyst was removed by filtration through Celite. The filtrate was evaporated under reduced pressure, and the residue was crystallized from methanol.

Yield: 0.11 g (0.51 mmol; 75%); m.p. 195 °C (Lit. 196 °C [33]); ¹H-NMR δ 2.76 (m; 1 H), 3.18 (m; 1 H), 4.33 (m; 1 H), 6.96–7.43 (m; 5 H, aromat.), 11.02 (s; 1 H, NH), 11.30 (s; 1 H, NH). IR (KBr) v: 3405, 3040–2990, 1490, 1460 cm⁻¹.

6.2.10. Preparation of 3-(1H-3-indolyl)-2,5-dihydro-1H-2,5pyrroledione (15)

The pyrrolidinedione **14** (0.5 g, 2.33 mmol) was dissolved in benzene (200 ml), and DDQ (0.58 g, 2.57 mmol) and *p*toluenesulfonic acid (0.05 g, 0.26 mmol) were added. After stirring for 30 min at RT. the solvent was removed; the residue was dissolved in ethyl acetate (200 ml) and washed with saturated NaHSO₃ solution (100 ml) and brine (100 ml). The organic phase was separated and dried over Na₂SO₄, the solvent was removed in vacuo and the residue was purified by CC (CH₂Cl₂/ethyl acetate 7:3).

Yield: 0.23 g (1.08 mmol; 47%); m.p. 201 °C; ¹H-NMR δ 6.79 (s; 1 H), 7.17–7.98 (m; 4 H, arom.), 8.36 (d; J = 3.0 Hz, 1 H, 2-H), 10.75 (s; 1 H, NH); IR (KBr) v: 3395, 3080–3010, 1755, 1690, 1605, 1500, 1460 cm⁻¹. Anal. (C₁₂H₈N₂O₂) C, H, N.

Analy	sis							
3g	Calc.	C 80.69	Н 5.87	N 6.27	Found	C 80.48	Н 5.54	N 6.19
3h	Calc.	C 80.69	Н 5.87	N 6.27	Found	C 80.08	Н 5.59	N 6.09
5b	Calc.	C 66.38	Н 7.23	N 5.96	Found	C 66.43	Н 7.32	N 5.91
5c	Calc.	C 67.47	Н 7.63	N 5.62	Found	C 67.57	H 7.78	N 5.88
5d	Calc.	C 68.44	H 7.98	N 5.32	Found	C 68.35	H 8.06	N 5.41
5e	Calc.	C 69.31	H 8.30	N 5.05	Found	C 69.22	H 8.46	N 5.00
5f	Calc.	C 70.10	H 8.59	N 4.81	Found	C 70.04	H 8.72	N 4.88
6a	Calc.	C 77.69	H 6.47	N 10.07	Found	C 77.60	H 6.62	N 9.99
6b	Calc.	C 78.05	H 6.89	N 9.58	Found	C 77.70	H 7.05	N 9.24
6c	Calc.	C 78.43	H 7.18	N 9.15	Found	C 78.18	Н 7.25	N 9.10
6d	Calc.	C 78.75	H 7.50	N.8.75	Found	C 78.63	Н 7.65	N 8.71
6e	Calc.	C 79.01	H 7.84	N 8.38	Found	C 78.65	H 7.87	N 8.14
6f	Calc.	C 79.31	H 8.05	N 8.05	Found	C 78.95	H 8.22	N 7.79
10b	Calc.	C 52.69	H 3.47	N 8.78	Found	C 52.67	Н 3.56	N 8.67
10c	Calc.	C 54.07	H 3.93	N 8.41	Found	C 54.14	H 4.09	N 8.21
10d	Calc.	C 55.35	H 4.35	N 8.07	Found	C 55.31	Н 4.22	N 7.95
10e	Calc.	C 56.52	H 4.74	N 7.75	Found	C 56.38	H 4.69	N 7.70
10f	Calc.	C 57.61	H 5.10	N 7.47	Found	C 57.74	Н 5.14	N 7.08
10g	Calc.	C 58.62	Н 5.44	N 7.20	Found	C 58.69	Н 5.44	N 7.20
10h	Calc.	C 59.56	Н 5.75	N 6.95	Found	C 59.32	Н 5.72	N 6.89
10i	Calc.	C 59.86	Н 3.44	N 7.35	Found	C 60.01	Н 3.70	N 7.21
10j	Calc.	C 58.41	H 3.67	N 6.81	Found	C 58.42	H 4.04	N 6.59
10k	Calc.	C 58.41	H 3.67	N 6.81	Found	C 58.44	H 3.85	N 6.62
101	Calc.	C 58.41	H 3.67	N 6.81	Found	C 58.26	Н 3.75	N 6.64
12b	Calc.	C 51.14	H 2.92	N 9.18	Found	C 50.93	H 3.18	N 8.89
12c	Calc.	C 52.66	H 3.45	N 8.78	Found	C 52.65	H 3.57	N 8.60
12d	Calc.	C 54.05	H 3.90	N 8.41	Found	C 53.96	H 4.00	N 8.12
12e	Calc.	C 55.33	H 4.32	N 8.07	Found	C 55.04	H 4.49	N 7.92
12f	Calc.	C 56.51	H 4.71	N 7.76	Found	C 56.26	H 4.77	N 7.51
12g	Calc.	C 57.61	H 5.10	N /.4/	Found	C 57.59	H 5.22	N 7.20
12n 12:	Calc.	C 58.61	H 5.39	N 7.20	Found	C 58.60	H 5.40	N 7.20
121	Calc.	C 58.88	H 3.02	N 7.05	Found	C 58.68	H 3.43	N 7.29
12j 12l-	Calc.	C 57.45	H 3.20	N 7.05	Found	C 57.55	H 3.59	N 0.87
12K 12l	Cale.	C 57.45	H 3.30	N 7.05	Found	C 57.20	H 3.49	N 0.74
121 12 m	Cale.	C 50.17	П 3.30	N 8 26	Found	C 50.61	п 3.39 н 4.77	N 0.87
12 III 11o	Cale.	C 58 42	H 3.31	N 0.30	Found	C 58.96	H 4 40	N 8 75
11a 11b	Cale.	C 59.24	H 4 32	N 9.29	Found	C 59.01	H 4.40	N 8.75
110	Cale.	C 59.24	H 4.52	N 8 75	Found	C 59.01	H 4.40	N 8.16
11d	Calc.	C 60.74	H 4 89	N 8 50	Found	C 60.65	H 5 03	N 8.10
11u 11o	Calc.	C 61 42	H 5 15	N 8 26	Found	C 60.85	H 5 11	N 8.12
11f	Cale.	C 62 07	H 5 40	N 8 04	Found	C 61 73	H 5 48	N 7 75
139	Calc.	C 52.69	H 3 47	N 8 78	Found	C 52 87	H 3.86	N 8 48
13b	Calc.	C 56 52	H 4 74	N 7 75	Found	C 56 60	H 4 85	N 7.56
13c	Calc.	C 58 62	H 5 44	N 7 20	Found	C 58 88	H 5 39	N 7.30
13d	Calc.	C 59.86	Н 3 44	N 7 35	Found	C 59.60	H 3 80	N 7 21
13e	Calc.	C 58.41	H 3.68	N 6.81	Found	C 58.80	H 3.82	N 6.72
15	Calc.	C 67.92	H 3.80	N 13.20	Found	C 68.33	H 4.12	N 12.00

Appendix A. Additional information: compound number combustion elemental analysis

References

- P. Stapleton, S. Uesato, P.W. Taylor, PCT Int. Appl. WO 2005034976 (2005) A1.
- [2] D.T.W. Chu, J. Plattner, L. Katz, J. Med. Chem. 37 (1996) 3853-3874.
- [3] M. Marcelo, Medicina 62 (Supl.2) (2002) 30–35.
- [4] M. Sancelme, S. Fabre, M. Prudhomme, J. Antibiot 47 (1994) 792–798.
- [5] Y.S. Kim, J. Sagara, A. Kawai, Biol. Phar. Bull. 18 (1995) 895-899.
- [6] M.J. Slater, G.S. Cockerill, E. Littler, C.L. Yeates, PCT Int. Appl. WO 93 (18) (1993) 765 (Welcome Foundation Ltd.).
- M.J. Slater, G.S. Cockerill, E. Littler (1993), PCT WO 93/18, 765, Chem. Abstr., 120, P 106760j (1994).
- [8] M.J. Slater, G.S. Cockerill, J.E. Robinson (1995), PCT WO 95/07,910, Chem. Abstr., 123, P 256682m (1995).
- [9] P.D. Davis, C.H. Hill, G. Lawron, J.S. Nixon, S.E. Wilkinson, S.A. Hurst, E. Keech, S.E. Turner, J. Med. Chem. 35 (1992) 177–184.
- [10] S. Mahboobi, A. Popp, W.F. Fleck Pharmazie 54 (1999) 730-733.
- [11] A.B. Smith, M. Visnick, Tetrahedron Lett. 26 (1985) 3757-3760.
- [12] A.B. Smith, M. Visnick, J.N. Haseltine, P.A. Sprengler, Tetrahedron 42 (1986) 2957–2969.
- [13] M. Brenner, H. Rexhausen, B. Steffan, W. Steglich, Tetrahedron 44 (1988) 2887–2892.
- [14] M. Murase, K. Watanabe, T. Kurihara, S. Tobinaga, Chem. Pharm. Bull. (Tokyo) 46 (1998) 889–892.
- [15] M. Ohkubo, T. Nishimura, H. Jona, T. Honma, H. Morishima, Tetrahedron 92 (1996) 8099–8112.
- [16] H.D. Scharf, F. Korte, H. Seidler, R. Dittner, Chem. Ber. 98 (1965) 764–780.
- [17] H. Terada, Quant. Struct. Act. Relat. 5 (1986) 81-88.

- [18] E. Mutschler, M. Schäfer-Korting, in: Arzneimittelwirkungen, 7, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1996, p. 10.
- [19] H.G. Schlegel, in: Allgemeine Mikrobiologie, 3, Georg Thieme Verlag, Stuttgart, 1974, p. 83.
- [20] J. Stephan, C. Mailaender, G. Etienne, M. Daffe, M. Niederweis, Antimicrob. Agents Chemother. 48 (2004) 4163–4170.
- [21] National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard M7-A. NCCLS, Villanova, Pa, USA, 1991.
- [22] R.M. Carlson, R.E. Carlson, H.L. Kopperman, J. Chromatogr. 107 (1975) 219–223.
- [23] S.H. Unger, J.R. Cook, J.S. Hollenberg, J. Pharm. Sci. 67 (1978) 1364– 1367.
- [24] A.C. De Kock, D.A. Lord, Chemosphere 16 (1987) 133-142.
- [25] V. Balasubramaniyan, V.G. Bhatia, S.B. Wagh, Tetrahedron 39 (1983) 1475–1485.
- [26] S. Inagaki, Y. Nishizawa, T. Sugiura, H. Ishihara, J. Chem. Soc., Perkin Trans. 1 1 (1990) 179–180.
- [27] S. Raucher, G.A. Koolpe, J. Org. Chem. 48 (1983) 2066–2069.
- [28] E. Wenkert, H.M. Hanna, M.H. Leftin, E.L. Michelotti, K.T. Potts, D. Usifer, J. Org. Chem. 50 (1985) 1125–1126.
- [29] M. Ishikura, I. Agata, Heterocycles 41 (1995) 2437-2440.
- [30] A.R. Katritzky, A. Kunihiko, J. Am. Chem. Soc. 108 (1986) 6808– 6809.
- [31] B.F. Bowden, R.W. Read, E. Ritchie, W.C. Taylor, J. Chem. 28 (1975) 65–80 (Austr).
- [32] H. Barth, J. Hartenstein, H.J. Betche, C. Schächtele, C. Rudolph, H. Osswald, Chem. Abstr. 114 (1991) 185264c (Gödecke AG), Ger. Offen. DE 3,914,764A1 (1990).
- [33] M. Julia, P. Manoury, Bull. Soc. Chim. Fr. (1964) 1953-1956.