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Nitrogen heterocycles could be prepared in good yields via 

intramolecular cyclization of tertiary amines and alkenes 

promoted by KOt-Bu/DMF. 

Nitrogen heterocycles are most privileged structures in natural 

products and synthetic drugs. Their synthetic methods have been 10 

receiving great attention.1 In recent years, there have been 

increasing interests in the direct functionalization of α C−H 

bonds of amines.2 The strategy provides superior advantages over 

the traditional methods in terms of synthetic efficiency, atom 

economy and green chemistry. Typical activation modes of α 15 

C−H bonds of amines include α-amino anion pathway, α-amino 

cation (iminium) pathway, α-amino radical pathway, and 

transition metal mediated C−H activation pathway.2 The 

generation of reactive α-amino radicals and consequent addition 

to alkenes are highly efficient for the synthesis of α-alkyl amines 20 

and nitrogen heterocycles.3, 4 So far the generation of α-

aminoalkyl radicals has been reported via the homolysis of α 

C−X bonds, radical translocation, photoinduced single electron 

transfer, and SmI2-promoted reduction of imines or iminium 

cations.5 However these methods still suffer from the limited 25 

substrate scope, toxic reagents, or the requirement of special 

precursors (such as α-sulfanyl amines or α-TMS amines) and 

light irradiation. 

Knochel, Pines and their co-workers found that KOt-Bu could 

catalyze the addition of carbonyl derivatives (lactams, ketones, 30 

nitriles and imines) to styrene.6 The carbanion reaction pathway 

was proposed by Pines et al.6a In 2008, Itami et al. reported the 

KOt-Bu promoted biaryl coupling of electron-deficient nitrogen 

heterocycles with aryl iodides.7 Shi and other researchers found 

that the coupling reactions of aryl halides and arenes could be 35 

promoted by KOt-Bu in combination with 1, 10-phenanthroline 

or DMF.8 Recently Hayashi, Rueping and their co-workers 

reported Mizoroki-Heck reaction promoted by KOt-Bu/DMF.9 In 

these reactions, the generation of aryl radical via the single 

electron transfer from t-butoxy anion to aryl halides and the 40 

consequent elimination of  halogen anion was suggested. In this 

paper, we report a new strategy for the generation of α-

aminoalkyl radicals via the direct reaction of tertiary amines with 

KOt-Bu/DMF. The resulted α-aminoalkyl radicals readily 

undergo intramolecular cyclization with alkenes. 45 

   Initially we examined the reaction of N-2-ethenyl-phenyl 

tetrahydroisoquinoline 1a in the presence of KOt-Bu (3 equiv) in 

DMF. The reaction gave 64% yield of cyclization product 2a  

Table 1  Intramolecular cyclization of 1a
a 

 50 

Entry Solvent Base Yield (%)b 

1 DMF KOt-Bu 67 (64) 
2 DMSO KOt-Bu 62 
3 DMA KOt-Bu 11 
4 DMF NaOt-Bu 63 
5 DMF NaOMe 10 
6 DMF KHMDS 56 
7c THF n-BuLi 0 
8d DMF KOt-Bu 82 (76) 
9e DMF KOt-Bu 78 (65) 
10f DMF KOt-Bu 82 (69) 
11 d,g DMF KOt-Bu 0 
12 d,h DMF KOt-Bu 5 
13 d,i DMF KOt-Bu 31 
a Reaction conditions: 1a (0.1 mmol), base (0.3 mmol), solvent (1.2 mL), 90 

°C, 4 h. b Yields were determined by GC with n-dodecane as the internal 

standard. The values in the parenthesis are the isolated yields after the 

column chromatograph. c 1a (0.1 mmol), n-BuLi (0.3 mmol), THF (1.2 mL), 

-30 °C, 4 h. d KOt-Bu (0.15 mmol) was used. e 1a (0.3 mmol), KOt-Bu (0.15 

mmol). f
 KOt-Bu (>99.99% purity, 0.15 mmol) was used. g Benzoquinone 

(0.15 mmol) was used. h TEMPO (0.15 mmol) was added. i The reaction was 

carried out with an oxygen balloon. 

 

(Table 1, entry 1). DMSO is also suitable solvent and a slightly 

lower yield was obtained (Table 1, entry 2). The reaction in N, N- 

dimethylacetamide (DMA) led to poor yield (Table 1, entry 3). 

The combination of NaOt-Bu/DMF provided slightly lower yield 55 

(Table 1, entry 4). Sodium methoxide also provided poor yield 

(Table 1, entry 5). Potassium hexamethyldisilazide (KHMDS) 

could promote the reaction and 2a was obtained in 56% yield 

(Table 1, entry 6), however the use of butyl lithium in THF did 

not give the product 2a (Table 1, entry 7). Other solvents and 60 

bases were also examined, but no substantial amount of 2a could 

be obtained.10 The decrease of the loading of KOt-Bu (1.5 equiv) 

led to better yield (Table 1, entry 8). The use of substoichiometric 

amount of KOt-Bu (0.5 equiv) still gave good yield (Table 1, 

entry 9). The sublimed grade of KOt-Bu (>99.99% purity) was 65 

also examined and the similar yield was obtained (Table 1, entry 

10). The fact supported that the reaction is promoted by KOt-Bu 

itself, rather than contaminated transition metals in KOt-Bu. The 

radical scavenger such as benzoquinone and TEMPO (2, 2, 6, 6- 

tetramethylpiperidinooxy)  70 
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Table 2  Intramolecular cyclization of tetrahedroisoquinoline derivatives 

1a-1j promoted by KOt-Bu/DMFa 

 

 

significantly inhibited the reaction (Table 1, entries 11−12). The 5 

reaction was also inhibited in the presence of oxygen (Table 1, 

entry 13). The results undoubtedly implicated a free radical 

reaction pathway. 

The reaction was also applied to other tetrahydroisoquinoline 

derivatives 1a−1j and the results are summarized in Table 2. The 10 

reaction of 1b−1c bearing with 3-halide styrene moiety gave the 

products 2b−2c in good yields (Table 2, entries 2-3). The 

substitution with electron-donating groups such as methyl and 

methoxyl slightly decreased the yields (Table 2, entries 4-5). The 

reactions of substates 1f−1g with trifluoromethyl and nitro groups 15 

did not provide the expected cyclization products (Table 2, 

entries 6-7), instead polmerized products were probably 

generated. The electron-deficient olefins may be prone to the 

polymerization under the reaction conditions. The substitution 

with methoxyl groups at the tetrahydroisoquinoline moiety was 20 

also tolerable. The product 2h was obtained in good yield (Table 

2, entry 8). The substitution of styrene moiety with β-methyl or β, 

β-dimethyl were also examined. The products 2i and 2j were 

obtained in good yields (Table 2, entries 9-10). 

Table 3.  Intramolecular cyclization of arylmethylamine derivatives 3a-25 

3g promoted by KOt-Bu/DMF. a 

R1 N

Me

KOt-Bu (1.5 equiv)
R1 N

DMF, 90 C
o

R2 R2

3a-3g 4a-4f

Me

R1 N

5a-5f

Me

R2

+

R3 R3

R3

 
Entry 3 R

1
 R

2
 R

3
 4/5 Yield (%)

b
 

1 3a Ph H H 29/71 84
c
 

2 3b Ph Ph H 0/100 82
d
 

3 3c Ph H Ph 100/0  80
e
 

4 3d 2-Naphthyl H H 100/0 70 

5 3e 2-Quinolyl H H 100/0 77 

6 3f 2-Benzofuranyl H H 100/0 41 

7 3g H H H -- nr
f 

a Reaction conditions: 3a−3g (0.1 mmol) and KOt-Bu (0.15 mmol) in DMF (1.2 

mL) at 90 °C for 4 h.. b  Combined isolated yields of 4 and 5. c 5a (cis/trans=1:5). d 

Isomers (cis/trans=1:10). e Isomers (cis/trans=1:3.3). f  No reaction. 

 

The reaction was further extended to arylmethylamine derivatives 

3a−−−−3g and the results are summarized in Table 3. The reaction of 30 

N-benzyl-N-methyl-2-vinylaniline 3a gave a mixture of 6-endo 

cyclization product 4a and 5-exo cyclization product 5a 

(4a/5a=29/71) in good yield (Table 3, entry 1). The introduction 

of β-phenyl group significantly increased the selectivity for 5-exo 

product (Table 3, entry 2). On the other hand, α-phenyl 35 

substituted substrate 3c provided 6-endo product exclusively 

(Table 3, entry 3). 2-Naphthylmethylamine, 2-quinolylamine and 

2-benzofuranylamine derivatives 3d−3f provided 6-endo products 

(Table 3, entries 4−6). For these substrates, big steric hindrance 

strongly favors 6-endo-trig cyclization pathway.11 N, N- 40 

Dimethylamine derivatives 3g was also examined and found to be 

unreactive (Table 3, entry 7). The activation of α C−H bond by 

the neighboring aryl group seems to be necessary for this 

transformation. 

β-Vinyl substituted substrate 3h and 3i were also examined. 45 

Interestingly 3-propyl indole derivatives 6h and 6i were obtained 

in good yields (Scheme 1). In these cases, 5-exo-trig cyclization 

occurred exclusively. The indole derivatives were generated after 

the rearrangement of the double bond.12 

 50 

Scheme 1. Reaction of β-vinyl substituted substrates 3h and 3i. 

When the reaction of 1a was carried out in DMF-d1, extensive 

deuterium incorporations at the benzyl positions were observed 

(Scheme 2). On the other hand, no deuteration was found if the 

reaction was carried out in non-deuterated DMF combined with 5 55 

equivalents of t-BuOD. The results indicated that the reaction 

intermediate abstracts a hydrogen from DMF, but not from t- 

BuOH. If the reaction proceeds via an α-amino anion 

intermediate, the abstraction of a proton from more acidic t-

BuOH should be favorable. The present evidence strongly 60 

supports a radical reaction pathway. Because t-butoxy radical is a 

possible intermediate in the reaction, we examined the general 

initiators of t-butoxy radical including t-BuOOBu-t and 

PhCOOOBu-t for the reaction of 1a, however no 2a was obtained.  

 65 

Scheme 2. Study of reaction mechanism. 

We reason that a radical derived from DMF plays the crucial 

role. Sliwka et al. observed the generation of radical 

intermediates in the basic DMF and DMSO solution via EPR 

Entry 1 R
1
 R

2
 R

3
 2 Yield (%)

b
 

1 1a H H H 2a 76 

2 1b H 3-Br H 2b 68 

3 1c H 3-Cl H 2c 75 

4 1d H 3-Me H 2d 57 

5
c
 1e H 3-MeO H 2e 52 

6 1f H 3-CF3 H 2f 0 

7 1g H 4-NO2 H 2g 0 

8
c
 1h 6,7-(MeO)2 H H 2h 72 

9 1i H H Me 2i 85
d
 

10 1j H H di-Me 2j 84 
a Reaction conditions: 1a-1j (0.1 mmol), KOt-Bu (0.15 mmol), DMF (1.2 

mL), 90 °C, 4 h. b Isolated yields after the column chromatograph. c KOt-
Bu (0.3 mmol) and DMF (2 mL) were used. d The product was obtained as 
a mixture of cis- and trans-isomers (cis/trans=3:2). 
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analysis, however the exact structures of these radical 

intermediates are not clear.13 The trapping of the radical 

intermediate with 1,1-diphenylethylene was attempted (Scheme 

2). To our delight, N,N-dimethyl-3,3-diphenylacrylamide 7 was 

obtained in 20% yield. The result together with the above 5 

deuterium-labeling experiment data suggest the generation of a 

carbamoyl radical from DMF. Such a carbamoyl radical was 

previously suggested in the oxidative reactions with tert-butyl 

hydroperoxide or tert-butyl perbenzoate  in DMF.14 

A tentative reaction mechanism is proposed in Scheme 3. The 10 

formation of the carbamoyl anions via the deprotonation of N,N- 

disubstituted formamides with lithium diisopropylamide or other 

strong bases had been reported by Reeves, Smith and their 

coworkers.15 In the present reaction, DMF is probably 

deprotonated by KOt-Bu to give the carbamoyl anion with η2 15 

coordination of potassium by the carbonyl group. The anion is 

further transformed to the carbamoyl radical A by a single 

electron transfer process. The possible single electron acceptor 

may be another DMF molecule and a radical anion species such 

as B is formed. The radical A abstracts C-1 hydrogen atom of 20 

tetrahydroisoquinoline and the consequent radical cyclization 

provides the intermediate D. After the abstraction a hydrogen 

atom from DMF, the product 2a is formed and the carbamoyl 

radical A is regenerated. Because the reaction proceeds via a 

chain process with the carbamoyl radical A being recycled, only a 25 

trivial amount of the radical anion B is formed depending on the 

chain length. 

KOt-Bu
O

N

O

N

t-BuOH

N N

NN

SET

H

O

N

DMF

H N

O

DMF
B

A

C

D

1a

2a

K

K

 

Scheme 3. Tentative reaction mechanism. 

 30 

In summary, we have developed an efficient intramolecular 

cyclization of α-aryl substituted tertiary amines and alkenes 

promoted by KOt-Bu/DMF. The reaction provided a number of 

nitrogen heterocycles in good yields. The experiment results 

support a radical reaction pathway. The carbamoyl radical 35 

derived from DMF is proposed to be the crucial initiator in the 

reaction. Such a radical cyclization reaction promoted by the 

simple combination of KOt-Bu and DMF is unprecedented. The 

new pathway to reactive α-aminoalkyl radical should find wide 

applications for the direct functionalization of α C−H bonds of 40 

amines. 
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