

View Article Online View Journal

MedChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Manda, A. Wani, S. S. Bharate, R. A. Vishwakarma, A. Kumar and S. B. Bharate, *Med. Chem. Commun.*, 2016, DOI: 10.1039/C6MD00300A.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/medchemcomm

Page 1 of 7 MedChemComm

MedChemComm

www.rsc.org/medchemcomm

Paper

Design, synthesis and P-gp induction activity of aryl phosphonate esters: Identification of tetraethyl-2-phenylethene-1,1-diyldiphosphonate as an orally bioavailable P-gp inducer^{\ddagger}

Sudhakar Manda,^{a,b} Abubakar Wani,^{b,c} Sonali S. Bharate,^d Ram A. Vishwakarma,^{a,b} Ajay Kumar^{c,*} and Sandip B. Bharate^{a,b,*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: XXX

The clearance of amyloid-beta is mediated by P-glycoprotein (P-gp) transporter pump located at the blood brain barrier. Therefore, the induction of P-gp has been considered as a potential therapeutic strategy for treatment of Alzheimer's disease. The expression of P-gp is regulated through a nuclear receptor - pregnane-X-receptor (PXR). Thus, herein we investigated the potential of a known pregnane-X-receptor (PXR) activator diphosphonate ester SR12813 (6a) for P-gp induction activity and further studied its structure-activity relationship. A diphosphonate ester SR12813 along with a three series of analogs *viz*. aryl alkylidene, aryl alkynyl, and aryl α-amino phosphonate esters were synthesized and screened for P-gp induction activity in P-gp overexpressing adenocarcinoma LS180 cells using rhodamine-123 efflux assay. The parent compound SR12813 along with tetraethyl-2-phenylethene-1,1-diyldiphosphonate (6c) and tetraethyl-2-(anthracene-10-yl)ethene-1,1-diyldiphosphonate (6s) showed 7-8 fold increase in P-gp expression in LS180 cells. The diphosphonate ester 6c displayed excellent aqueous solubility, no cytochrome P450 inhibition liability and no efflux pump substrate liability. Furthermore, it possesses excellent oral pharmacokinetic profile in BALB/c mice with AUC_{0-∞} of 2067 ng·h/mL and 37.6% oral bioavailability. The results presented here clearly indicate the 20 potential of this scaffold to increase the clearance of brain Aβ across the BBB and thus its promise for development as potential anti-Alzheimer agents.

45

Introduction

Published on 08 July 2016. Downloaded by University of Sussex on 13/07/2016 07:04:17.

Deposition of amyloid-beta (A β) in the brain has been considered ²⁵ as a major hallmark for progression of the Alzheimer's disease (AD). Studies have demonstrated that the clearance mechanism of amyloid-beta gets hampered in Alzheimer patients.^{1, 2} The clearance of A β is mediated by the P-gp transporter pump located at the blood brain barrier (BBB).³⁻⁹ Thus, it is evident that drugs ³⁰ which can induce P-gp expression at BBB will have a great potential to emerge as novel AD therapeutics. With this hypothesis, several P-gp inducers have been identified in recent

years which showed significant efficacy in Alzheimer's disease in-vivo models.⁵ Anti-tubercular drug rifampicin (1) is the widely

 $_{35}$ known P-gp inducer which enhances A β clearance,¹⁰ and thus in

Medicine, Canal Road, Jammu-180001, India ^dPreformulation Laboratory, PKPD Toxicology and Formulation recent years it has been investigated up to the clinical trial stage for its potential in Alzheimer's disease.¹¹⁻¹³ The olive-oil-derived oleocanthal (**2**) enhances amyloid-beta clearance via upregulation of P-gp and LRP1 expression.⁵ Recently, our group has identified ⁴⁰ a natural product colupulone based synthetic analog 3,5dihydroxy-4,4-bis(3-methylbut-2-enyl)-2,6-dipropionylcyclohexa -2,5-dienone (**3**) as an inducer of P-gp and LRP-1.¹⁴ Fascaplysin (**4**)¹⁵ and a quinoline derivative **5**¹⁶ are other P-gp inducer leads discovered by us (Figure 1).

Figure 1. Structures of known P-gp inducers

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India ^cCancer Pharmacology Division, CSIR-Indian Institute of Integrative

Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^{*}E-mail: <u>sbharate@iiim.ac.in</u> (SBB); <u>ajaykmahajan@hotmail.com</u> (AK). Fax: +91-191-2589333; Tel: +91-191-2589006

[‡] The authors declare no competing interests.

Electronic supplementary information (ESI) available for experimental details. See DOI: XXX

Published on 08 July 2016. Downloaded by University of Sussex on 13/07/2016 07:04:17.

The pregnane X receptor (PXR), a member of the nuclear receptor superfamily of proteins regulates the expression of P-gp, located in various tissues such as intestinal epithelium, hepatic canalicular membrane, proximal tubular of kidneys and 5 endothelial cells of the blood-brain barrier (BBB). Thus, it is quite obvious that activators of PXR could be a potential starting point to identify promising P-gp inducer leads. A diphosphonate potent antiester SR12813 (6a), apart from its hypocholesterolemic activity,^{17, 18} is a potent activator of PXR.¹⁹

10 In continuation to our efforts on discovery of P-gp inducers as potential anti-Alzheimer therapeutics,14-16 herein our objective was to investigate the P-gp induction potential, and establish structure-activity relationship of a PXR activator SR12813 (6a). Despite of the promising P-gp induction activity of two natural 15 product based P-gp inducer leads 3 and 4 discovered earlier, their oral pharmacokinetic profile was very poor (%F = < 5%). The pharmacophoric features of SR12813 indicated that this scaffold will have better pharmacokinetic properties. Furthermore, literature search indicated that no medicinal chemistry efforts 20 have been made on this unique scaffold for P-gp induction activity. Thus, herein, the synthesis, P-gp induction activity in LS180 cells, structure-activity relationship, physicochemical properties/ drug discovery liabilities (aqueous solubility, solubility in other biological media's, cytochrome P450 inhibition 25 liabilities, Caco-2 permeability) and pharmacokinetic analysis of aryl phosphonates is presented in this paper.

Results and discussion

SR12813 is an alkylidene tetraethyl bisphosphonate ester, containing three main structural components viz. substituted aryl 30 (bearing two tert-butyl and one hydroxyl group), alkylidene linker, and bisphosphonate ester. As this scaffold has never been studied for P-gp induction activity, here one of the objective was also to establish preliminary structure-activity relationship. For this purpose, modifications were planned on ester portion, aryl 35 moiety as well as on the alkylidene linker, as depicted in Figure 2. Three series of phosphonate esters were synthesized as depicted in Figure 2.

Table 1. Synthesis, P-gp induction activity and	cytotoxicity of alkylide	ne di-phosphonate esters 6a-s ^{ab}
	R ₁ O _{OR1}	R ₁ O O-P-OR ₁

		$Ar-CHO + O^{P'} OR_1 = O^{P'$	$\rightarrow $ $P \\ OR_1$	
		10 11	6	
Entry	R ₁	Ar	% accumulation of Rh123 in LS180 cells (±SD) ^{cd}	% cell viability of LS180 cells at 30 μM ^d
6a	-Et	-Ph (4-OH, 3,5-di-tert-Bu)	90 ± 6^{ns}	100
6b	-CH(CH ₃) ₂	-Ph (4-OH, 3,5-di-tert-Bu)	$66.93 \pm 3.48 * * *$	100
6c	-Et	-Ph	58.09 ± 4.63***	100
6d	-CH(CH ₃) ₂	-Ph	73.88 ± 3.49***	92
6e	-Et	-Ph(2-NO ₂)	65.69 ± 5.29***	100
6f	-CH(CH ₃) ₂	-Ph(3-Br)	$68.08 \pm 11^{***}$	74
6g	-CH(CH ₃) ₂	-Ph(4-N,N-diMe)	$65.32 \pm 7.56 * * *$	100
6h	-Et	-Ph(3,5-di-OMe)	64.8 ± 4.96 ***	100
6i	-CH(CH ₃) ₂	-Ph(3,5-di-OMe)	72.45 ± 5.26***	100
6j	-CH(CH ₃) ₂	-Ph(4-F, 5-OMe)	70 ± 4.11 ***	86
6k	-Et	-Ph(3,5,6-tri-OMe)	$68.74 \pm 6.23 * * *$	100
61	-CH(CH ₃) ₂	-Ph(3,4,6-tri-OMe)	64.07 ± 2.89 ***	100
6m	-Et	-5-nitrofuran-2-yl	88.3 ± 3.32^{ns}	92
6n	-CH(CH ₃) ₂	-5-nitrofuran-2-yl	$67.84 \pm 8.61 * * *$	41
60	-CH(CH ₃) ₂	-Ph(3,4-dimethylene-dioxy)	83.27 ± 4.9^{ns}	100
6р	-Et	-naphth-1-yl	$73.66 \pm 8.08 * * *$	100
6q	-CH(CH ₃) ₂	-naphth-1-yl	63.71 ± 7.36***	100
6r	-CH(CH ₃) ₂	-quinolin-5-yl	70.48 ± 2.19 ***	100
6s	-Et	-anthracen-10-yl	56.6 ± 3.65***	100
Control	-	-	100	100
Rifampicin	-	-	77.3 ± 7.5***	nd

^a Reagents and conditions; (a). N-methyl morpholine, TiCl₄, CCl₄, dry THF, 0 °C to room temp., overnight, 50-65% yield; ^b product yields are mentioned in the experimental section; "The P-gp induction activity of compounds tested at 5 µM was measured in terms of the % intracellular accumulation of rhodamine 123 (Rh123)/total protein (µg) in LS180 cells. The decrease in % intracellular accumulation (compared to control) of Rh123 indicates induction of P-gp. Rifampicin (5 µM) was used as a reference P-gp inducer; ^dThe statistical comparisons were made between control vs compounds. The p value <0.5 was considered to be significant. P value *< 0.5, **<0.01, ***<0.001. All values are shown as average of three experiments ± SD. nd: not determined.

Figure 2. Chemical structure of SR12813 and general structures of designed series for synthesis.

A series of analogues were synthesized²⁰ starting from s commercially available substituted aldehydes **10**. Aldehydes **10** on treatment with diphosphonate ester **11a-b** in dry THF in presence of titanium tetrachloride produced alkylidene diphosphonate esters **6a-s** and alkylidene monophosphonate esters **7a-d** in 55-65% yield (Table 1 and 2). Next, a series ¹⁰ alkynyl phosphonates²¹ were synthesized by treatment of substituted phenylacetylenes **12** with diethylchloro phosphate **13** using n-BuLi as a base. Three alkynyl phosphonates **8a-c** were prepared (Table 3). Further, we synthesized α -amino phosphonates²² by treatment of substituted aldehydes **10** with ¹⁵ anilines **14** and diethyl phosphite **15** using silica perchloric acid as a catalyst. Two α -amino phosphonate esters **9a-b** were prepared (Table 4). All synthesized compounds were characterized by ¹H NMR, ¹³C NMR and MS analysis.

All synthesized compounds were screened for P-gp ²⁰ induction activity using rhodamine 123 based efflux assay in Pgp expressing human colorectal adenocarcinoma LS180 cells. Prior to screening compounds for P-gp induction activity in LS180 cells, the cytotoxic effect of all compounds was investigated in these cells in order to select the non-toxic test ²⁵ concentration. In MTT assay, all compounds were non-toxic to LS180 cells with IC₅₀ > 30 μ M, except compound **6n** which showed 41% cell viability at 30 μ M. Therefore, for P-gp induction assay, we selected 5 μ M as a test concentration. LS180 cells treated with 5 μ M of each compound, for 48 h, displayed ³⁰ significant induction of P-gp activity, as displayed by the reduced intracellular accumulation of rhodamine-123, compared to control, as a result of increased efflux of rhodamine-123 (Table 1-4).

Published on 08 July 2016. Downloaded by University of Sussex on 13/07/2016 07:04:17.

In alkylidene di-phosphonate esters series (**6a-s**), several ³⁵ newer analogs displayed promising ability to decrease the intracellular accumulation of Rh123 levels in LS180 cells. The SR12813 showed moderate P-gp induction activity at 5 μ M. However, several newly synthesized analogs showed promising P-gp induction activity. Particularly, the compound **6c** showed ⁴⁰ reduction in % accumulation of Rh123 levels up to 58% (control = 100%; positive control rifampicin – 77%). Similarly, another new compound **6s** also showed similar level of potent P-gp induction activity (56% intracellular levels of Rs123).

A precise structure-activity relationship was not observed; ⁴⁵ however some of the key features noticed were: (a) In case of alkylidene di-phosphonate esters, the unsubstituted aryl moiety was preferred over substituted aryl moiety (e.g. compound **6c** and **6s** versus **6e**, **6h**, **6k**, **6m**, **6p**; Table 1). (b) In case of alkylidene mono-phosphonates, the aryl moiety substituted with one halogen ⁵⁰ atom showed 76% accumulation of Rh123. Substitution of aryl moiety with two halogen atoms, results in reduced P-gp induction activity (e.g. **7b** and **7d** – both contain two halogen atoms – 91 and 97% accumulation of Rh123 levels). However, when aryl moiety containing one halogen atom was substituted with one

ss electron-donating group (e.g. OMe), P-gp induction activity was increased (e.g. 7c - 70% Rh123 levels; Table 2). (c) The alkynylphosphonate esters, in general displayed good P-gp induction activity (74-77% intracellular accumulation of Rh 123) without any toxicity (Table 3). (d) α -amino phosphonate esters ⁶⁰ showed weak activity (Table 4). Here, only marginal decrease in

the % intracellular accumulation of Rh123 levels was observed (82-90% intracellular accumulation of Rh 123). (e) Both monoand bis-phosphonate esters showed P-gp induction activity. Similarly, alkynyl mono-phosphonate esters also were active. ⁶⁵ This indicates that there is no effect of change of two phosphonates to one and change of double bond linker with triple bond linker.

In general, amongst the four series tested, series one (alkylidene di-phosphonate esters) was most promising, wherein 70 the phenyl alkylidene di-phosphonate ethyl ester **6c** and anthracen-10-yl alkylidene di-phosphonate ethyl ester **6s** showed the lowest % of intracellular accumulation of rhodamine-123 (58% and 56%, respectively), in comparison to untreated control cells, suggesting both compounds as the most potent P-gp 75 inducers. Furthermore, the P-gp induction activity of these two compounds was better than the positive control rifampicin. Both these compounds does not showed any toxicity to LS180 cells at 30 μM. Results are shown in Table 1.

 Table 2. Synthesis, P-gp induction activity and cytotoxicity of

 80 alkylidene mono-phosphonate esters 7a-d^{ab}

^a Reagents and conditions: (a). *N*-Methyl morpholine, TiCl₄, CCl₄, dry THF, 0 °C to room temp., overnight, 55-65% yield; ^b product yields are mentioned in the experimental section; ^cThe P-gp induction activity of scompounds tested at 5 μM was measured in terms of the % intracellular accumulation of rhodamine 123 (Rh123)/ total protein (μg) in LS180 cells. The decrease in % intracellular accumulation (compared to control) of Rh123 indicates induction of P-gp. Rifampicin (5 μM) was used as a reference P-gp inducer; ^d The statistical comparisons were made between 90 control *vs* compounds. The p value <0.5 was considered to be significant. *P* value *< 0.5, **<0.01, ***<0.001. All values are shown as average of three experiments ± SD. nd: not determined.

 Table 3. Synthesis, P-gp induction activity and cytotoxicity of

 95 alkynylphosphonate esters 8a-e^{ab}

Published on 08 July 2016. Downloaded by University of Sussex on 13/07/2016 07:04:17.

		of Rh123 in	30 µM ^d
		LS180 cells	
		(±SD) ^{cd}	
8a	Ph	77.64 ± 4.31*	100
8b	Ph (4-CF ₃)	$74.63 \pm 0.64 **$	100
8c	Ph (3-CF ₃)	$75.16 \pm 2.61 **$	100
Control	-	100	100
Rifampicin	-	77.3 ± 7.5***	nd

^a Reagents and conditions: a). n-BuLi, dry THF, -78 °C, 2 h, 75-85%; ^b product yields are mentioned in the experimental section; ° The P-gp induction activity of compounds tested at 5 µM was measured in terms of the % intracellular accumulation of rhodamine 123 (Rh123)/total protein 5 (µg) in LS180 cells. The decrease in % intracellular accumulation (compared to control) of Rh123 indicates induction of P-gp. Rifampicin (5 μ M) was used as a reference P-gp inducer; ^d The statistical comparisons were made between control vs compounds. The p value <0.5 was considered to be significant. P value *< 0.5, **<0.01, ***<0.001. All 10 values are shown as average of three experiments \pm SD. nd: not determined.

Table 4. Synthesis, P-gp induction activity and cytotoxicity of α amino phosphonate esters 9a-b^a

15	Ar ₁ -NH ₂ 14	+ Ar ₂ -C 1	HO + (0	OR1) ^P OR1) 15	a Ar ₂	
	Entry	Ar ₁	Ar ₂	% accu of R LS13 (±SI	mulation h123 in 80 cells)) ^{bc}	% cell viability of LS180 cells at 30 µM ^c
	9a	-Ph	-Ph	82.5	$6\pm5.32^{\mathrm{ns}}$	100
	9b	-Ph	-Ph (4-Cl)	90.8	5 ± 3.21^{ns}	100
	Control	-		100		100
	Rifampicin	-		77.3	± 7.5***	nd

^a Reagents and conditions: (a). n-BuLi, dry THF, -78 °C, 2 h, 80-85%; ^b product yields are mentioned in the experimental section; "The P-gp induction activity of compounds tested at 5 µM was measured in terms of the % intracellular accumulation of rhodamine 123 (Rh123)/total protein 20 (µg) in LS180 cells. The decrease in % intracellular accumulation (compared to control) of Rh123 indicates induction of P-gp. Rifampicin (5 µM) was used as a reference P-gp inducer; ^dThe statistical comparisons were made between control vs compounds. The p value <0.5 was considered to be significant. P value *< 0.5, **<0.01, ***<0.001. All 25 values are shown as average of three experiments \pm SD. nd: not determined.

The promising P-gp induction activity of these compounds was further confirmed by western-blot (WB) analysis. In the WB 30 analysis, the exposure of LS180 cells with compounds 6c and 6s at 5 µM, resulted in 7.2 and 7.8-fold increase in the P-gp expression in LS180 cells (Figure 3).

This journal is © The Royal Society of Chemistry [year]

(b)

Figure 3. The effect of alkylidene bis-phosphonate esters 6c and 6s (5 µM) on P-gp expression in LS180 cells. (a) Western-blot 35 (b) quantitation results of P-gp expression.

(a)

www.rsc.org/xxxxxx

Next, the EC₅₀ for P-gp induction was determined for SR12813 (6a) and best new analogs 6c and 6s along with rifampicin (Table 5). Both newly synthesized phosphonate esters ⁴⁰ **6c** and **6s** showed better P-gp induction activity (EC₅₀ = 0.27-0.29 μ M) than SR12813 (6a: EC₅₀ = 1.25 μ M). The compound 6s possesses 4.3-4.6-fold higher EC_{50} value than SR12813 (6a). The EC₅₀ of new analogs **6c** and **6s** was comparable to that of positive control rifampicin.

⁴⁵ Table 5. P-gp induction activity in terms of EC₅₀ values of 6a, 6c and 6s

Entry	EC ₅₀ (μM)	
SR12813 (6a)	1.250	
6c	0.271	
6s	0.290	
Rifampicin	0.226	

After obtaining two interesting P-gp inducer leads based on the known PXR activator SR12813 scaffold, next we decided to 50 perform their preclinical characterization. Both compounds 6c and 6s displayed excellent thermodynamic aqueous solubility in water, PBS, SGF and SIF (S = >1.5 mg/ml) (Table 6).

fable 6. Aqueous	solubility of SR1	2813 (6a) and	its analogs 6c and 6s
------------------	-------------------	---------------	-----------------------

Media ^a		Solubility (µg/ml)	
	6a	6c	6s
Water	200	>1500	400
PBS	200	>1500	>1500
SGF	200	>1500	>1500
SIF	200	40	>1500

55 ^aPBS: phosphate buffer saline (pH 7.4); SGF: simulated gastric fluid (pH 1.2); SIF: simulated intestinal fluid (pH 6.8)

Next, the Caco-2 permeability and CYP liability was determined for compound 6c. The cytochrome P450 liability was assessed on 60 four key drug metabolizing enzymes CYP3A4, CYP2D6, CYP2C9, CYP2C19 at 10 µM. Compound 6c showed 19, 20, 0, and 0% inhibition of these enzymes at tested concentration, indicating that this compound does not possess any CYP liability (<50% inhibition at 10 µM). In caco-2 permeability assay, the 65 efflux ratio of 0.9 indicated that it is not a substrate of efflux pumps. The pharmacokinetic behaviour of compound 6c was then evaluated in BALB/c mice using oral and IV dosing.²³ A single 10 mg/kg oral dose and 1.0 mg/kg intravenous dose was given to the BALB/c mice. Compound showed good plasma exposure on ⁷⁰ oral administration with AUC_{0-t} and AUC_{0- ∞} of 1968 and 2067 ng·h/mL, respectively. Furthermore, compound has good elimination half-life (3.48 h). The in vivo blood clearance following intravenous dosing was found to be 30.4 mL. min⁻¹.kg⁻¹ with a large volume of distribution 1.81 L.kg⁻¹. Compound 6c 75 showed good oral bioavailability (37.6%) (Figure 4).

ARTICLE TYPE

Parameters	IV	РО
Dose (mg/kg)	1	10
$t_{1/2,\beta}(h)$	0.69	3.48
AUC_{0-t} (ng·h/mL)	543	1968
$AUC_{0-\infty}$ (ng·h/mL)	549	2067
C_{max} (ng/mL)	811	870
$C_0 (ng/mL)$	1153	-
CL (mL/min/Kg)	30.4	-
$V_d(L/Kg)$	1.81	-
$V_{dss}(L/Kg)$	1.10	-
$T_{last}(h)$	4.0	-
$t_{max}(h)$	-	0.50
%F	-	37.6

Figure 4. Pharmacokinetic analysis of compound **6c** in BALB/c mice. The plasma versus plasma concentration profile of compound in BALB/c mice is shown $[t_{1/2,\beta}]$: terminal half life; ⁵ AUC_{0-t}: the area under the plasma concentration-time curve from 0 to last measurable time point; AUC_{0- ∞}: area under the plasma concentration-time curve from time zero to infinity; C_{max}: maximum observed plasma concentration; C₀: extrapolated concentration at zero time point; CL: clearance; V_d: volume of ¹⁰ distribution; V_{dss}: volume of distribution at steady state; T_{last}: time at which last concentration was found; F: bioavailability].

Conclusion

In conclusion, the alkylidene phosphonate scaffold has shown promising P-gp induction activity in LS180 cells. The alkylidene

- ¹⁵ bisphosphonate **6c** strongly induced the expression of P-gp which plays major role in enhancing A β efflux across the BBB. Furthermore, this compound **6c** possessed excellent aqueous solubility, no CYP and efflux pump liability; and has excellent pharmacokinetic properties with oral bioavailability of 37%.
- $_{20}$ Thus, the results presented herein, demonstrate the potential of this scaffold for investigation as amyloid- β clearing agent and thereby as a potential anti-Alzheimer treatment.

Acknowledgements

AK is thankful to CSIR, New Delhi for the award of senior ²⁵ research associateship. VK thanks UGC for fellowship. S.S.B. thanks ICMR for research associateship. This research was supported by a grant from the CSIR 12th FYP project (BSC-0205).

30 Abbreviations

 $A\beta$, amyloid-beta; AD, Alzheimer's disease; BBB, blood-brain barrier; bEnd3, endothelial polyoma middle T antigen transformed cells of cerebral cortex of the brain; DMSO, dimethyl sulfoxide; LS180, intestinal

www.rsc.org/xxxxxx

XXXXXXXXX

Notes and references

- 1. K. G. Mawuenyega, W. Sigurdson, V. Ovod, L. Munsell, T. Kasten,
- J. C. Morris, K. E. Yrasheski and R. J. Bateman, *Science* 2010, **330**, 1774.
- D. M. E. van Assema, M. Lubberink, M. Bauer, W. M. van der Flier, R. C. Schuit, A. D. Windhorst, E. F. I. Comans, N. J. Hoetjes, N. Tolboom, O. Langer, M. Müller, P. Scheltens, A. A. Lammertsma and B. N. M. van Berckel, *Brain*, 2012, **125**, 181-189.
 - F. C. Lam, R. Liu, P. Lu, A. B. Shapiro, J. M. Renoir, F. J. Sharom and P. B. Reiner, *J. Neurochem.*, 2001, 76, 1121-1128.
 - H. Qosa, A. H. Abuznait, R. A. Hill and A. Kaddoumi, J. Alzheimers Dis., 2012, 31, 151-165.
- 50 5. A. H. Abuznait, H. Qosa, B. Busnena, K. A. El Sayed and A. Kaddoumi, ACS Chem. Neurosci., 2013, 19, 973-982.
 - A. H. Abuznait, C. Cain, D. Ingram, D. Burk and A. Kaddoumi, J. Pharm. Pharmacol., 2011, 63, 1111–1118.
- 7. J. R. Cirrito, R. Deane, A. M. Fagan, M. L. Spinner, M. Parsadanian,
- M. B. Finn, H. Jiang, J. L. Prior, A. Sagare, K. R. Bales, S. M. Paul, B. V. Zlokovic, D. Piwnica-Worms and D. M. Holtzman, J. Clin. Invest., 2005, 115, 3285-3290.
- S. Vogelgesang, I. Cascorbi, E. Schroeder, J. Pahnke, H. K. Kroemer, W. Siegmund, C. Kunert-Keil, L. C. Walker and R. W. Warzok, *Pharmacogenetics*, 2002, **12**, 535-541.
- D. Kuhnke, G. Jedlitschky, M. Grube, M. Krohn, M. Jucker, I. Mosyagin, I. Cascorbi, L. C. Walker, H. K. Kroemer, R. W. Warzok and S. Vogelgesang, *Brain Pathol.*, 2007, 17, 347-353.
- H. Qosa, A. H. Abuznait, R. A. Hill and A. Kaddoumi, J. Alzh. Dis.,
 2012, 151-165.
- D. W. Molloy, T. I. Standish, Q. Zhou, G. Guyatt and D. S. GROUP, *Int. J. Geriatr. Psychiatry*, 2013, 28, 463-470.
- B. Yulug, L. Hanoglu, E. Kilic and W. R. Schabitz, *Brain Res. Bull.*, 2014, **107**, 37-42.
- 70 13. M. B. Loeb, D. W. Molloy, M. Smieja, T. Standish, C. H. Goldsmith, J. Mahony, S. Smith, M. Borrie, E. Decoteau, W. Davidson, A. McDougall, J. Gnarpe, M. O'DONNell and M. Chernesky, *J. Am. Geriatr. Soc.*, 2004, **52**, 381-387.
- 14. J. B. Bharate, Y. S. Batarseh, A. Wani, S. Sharma, R. A.
 ⁵ Vishwakarma, A. Kaddoumi, A. Kumar and S. B. Bharate, *Organic & biomolecular chemistry*, 2015, 13, 5488-5496.
- S. Manda, S. Sharma, A. Wani, P. Joshi, V. Kumar, S. K. Guru, S. S. Bharate, S. Bhushan, R. A. Vishwakarma, A. Kumar and S. B. Bharate, *Eur. J. Med. Chem.*, 2016, **107**, 1–11.
- 80 16. J. B. Bharate, A. Wani, S. Sharma, S. I. Reja, M. Kumar, R. A. Vishwakarma, A. Kumar and S. B. Bharate, *Org. Biomol. Chem.*, 2014, **12**, 6267-6277.
- T. A. Berkhout, H. M. Simon, D. D. Patel, C. Bentzen, E. Niesor, B. Jackson and K. E. Suckling, *J. Biol. Chem.*, 1996, **271**, 14376-14382.
- 85 18. G. B. W. Ryan E. Watkins, Linda B. Moore, Jon L. Collins, Millard H. Lambert, Shawn P. Williams, Timothy M. Willson, Steven A. Kliewer, Matthew R. Redinbo, *Science*, 2001, 292, 2329-2333.

- S. A. Jones, L. B. Moore, J. L. Shenk, G. B. Wisely, G. A. Hamilton, D. D. McKee, N. C. O. Tomkinson, E. L. LeCluyse, M. H. Lambert, T. M. Willson, S. A. Kliewer and J. T. Moore, *Mol. Endocrinol.*, 2000, 14, 27-39.
- 5 20. Z.-Y. Xue, Q.-H. Li, H.-Y. Tao and C.-J. Wang, J. Am. Chem. Soc., 2011, 133, 11757-11765.
- 21. D. Lecerclé, M. Sawicki and F. Taran, Org. Lett., 2006, 8, 4283-4285.
- 22. A. K. Bhattacharya and K. C. Rana, *Tetrahedron Lett.*, 2008, **49**, 2598-2601.
- 23. The pharmacokinetic study was carried out at Jubilant Biosys Limited Bangalore (India) on a commercial basis. These experiments were approved by the Jubilant Biosys Institutional Animal Ethics Committee, Bangalore, India (IAEC/JDC/2012/27) and were in
- accordance with the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Social Justice and Environment, Government of India.

GRAPHICAL ABSTRACT

We report P-gp induction activity of a PXR activator SR12813 and its structure-activity relationship. SR12813 analogs displaying promising P-gp induction have been identified and studied for aqueous solubility, CYP/ efflux liabilities, and pharmacokinetic analysis.

