ORIGINAL PAPER

Catalyst-free rapid synthesis of benzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxamides via four-component coupling in one pot

Ahmad Shaabani · Mozhdeh Seyyedhamzeh · Nasim Ganji · Seik Weng Ng

Received: 12 June 2013/Accepted: 27 July 2013 © Iranian Chemical Society 2013

Abstract A new class of fused tricyclic benzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamide derivatives was synthesized *via* an environmentally benign one pot sequential four-component condensation reaction of an amine, 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one, an aldehyde and 1*H*-benzo[*d*]imidazol-2-amine without using catalyst in good yields.

Keywords Catalyst-free · Multicomponent reaction · 2,2,6-Trimethyl-4*H*-1,3-dioxin-4-one · 1*H*-Benzo[*d*]imidazol-2-amine

Introduction

Recently, much attention has been devoted towards dihydropyrimidine derivatives due to their significant therapeutic and medicinal properties [1–3]. Several marine alkaloids having the dihydropyrimidine core unit were found to show interesting biological activities such as antiviral, antibacterial and anti-inflammatory activities [4, 5]. Many functionalized derivatives are used as calcium channel blockers, antihypertensive agents and α -la antagonists [6, 7]. Numerous heterocyclic systems fused with

Electronic supplementary material The online version of this article (doi:10.1007/s13738-013-0321-6) contains supplementary material, which is available to authorized users.

A. Shaabani (⊠) · M. Seyyedhamzeh · N. Ganji
Department of Chemistry, Shahid Beheshti University,
G. C., P.O. Box 19396-4716, Tehran, Iran
e-mail: a-shaabani@sbu.ac.ir

S. W. Ng Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia pyrimidines are known for their important biological activities [8]. Benzo[4,5]imidazo[1,2-*a*]pyrimidine derivatives can be used as inhibitor of cell proliferation [9], lymphocyte specific kinase [10], DNA-topoisomerase and protein kinase [11, 12].

The rapid assembly of molecular diversity and complexity is widely regarded as one of the most important aspects in modern organic synthesis, and is also a key paradigm in the design of libraries of bioactive molecules (for selected reviews of diversity-oriented synthesis and its impact in the discovery of bioactive compounds, see: [13– 19]). One approach to address this challenge involves the development of multicomponent reactions (MCRs), in which three or more reactants are combined sequentially together in a single reaction flask to generate a product in such a way that all the starting materials significantly contribute atoms to the newly formed product, are particularly promising for the construction of libraries of compounds (for selected recent reviews on multicomponent reactions, see: [20-26]). Another two important aspects are the development the catalyst-free synthesis in a greener solvent such as water or under solvent-free conditions [27– 34]. The combination of these three aspects is highly challenging and will provide the more benefits for chemical transformations.

In continuing of our studies toward the synthesis of organic compounds *via* multicomponent reactions (MCRs) [35-39], we report an environmentally friendly synthesis of various dihydrobenzo[4,5]imidazo[1,2-*a*]-pyrimidine-3-carboxamide derivatives **5** *via* a one pot sequential four-component condensation of amines **1**, 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one **2**, aldehydes **3** and 1*H*-benzo[*d*]imidazol-2-amine **4** in good yields under solvent-free and in water as a green solvent without using any catalyst within 35–60 min, respectively (Scheme 1).

Scheme 1 Synthesis of dihydrobenzo[4,5]imidazo[1,2-*a*]-pyrimidine-3-carboxamides **5a-l**

Experimental

Melting points were measured on an Electrothermal 9200 apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR-470 spectrometer. ¹H NMR spectra were recorded on a Bruker DRX-300 Avance spectrometer at 300.13 MHz; ¹³C NMR spectra were recorded on a Bruker DRX-400 Avance spectrometer at 100.65 MHz, respectively. The elemental analyses were performed with an Elementar Analysensysteme GmbH VarioEL. All the products are new compounds, which were characterized by IR, ¹H NMR and ¹³C NMR spectra and elemental analyses data.

Typical procedure for the synthesis of *N*-benzyl-2methyl-4-(2-nitrophenyl)-1,4-dihydrobenz[4, 5]imidazo[1,2-*a*]pyrimidine-3-carboxamide (**5a**)

A solution of benzylamine (0.11 g, 1.0 mmol) and 2,2,6trimethyl-4H-1,3-dioxin-4-one (0.14 g, 1.0 mmol) was heated under solvent-free conditions at 150 °C for 30 min. Then, 2-nitrobenzaldehyde (0.15 g, 1.0 mmol) and 1Hbenzo[d]imidazol-2-amine (0.13 g, 1.0 mmol) in 5 ml H₂O were added simultaneously. The reaction mixture was allowed to reflux for 15 min until the precipitate was appeared. After completion of the reaction, as indicated by TLC (EtOAc:n-hexane, 1:2), the reaction mixture was filtered off and the residue was washed with ethanol and then with ethanol to give 5a as a pure product. Yellow powder (0.39 g, 89%): mp 260–262 °C. IR (KBr) cm⁻¹: 3,270, 3,051, 2,930, 1,670, 1,626, 1,580, 1,512, 1,459. ¹H NMR (300.13 MHz, DMSO-d₆) δ: 2.15 (3H, s, CH₃), 3.96 (Ha, d, ${}^{2}J_{\text{HH}} = 14.7 \text{ Hz}, \text{ CH}_{a}\text{H}_{b}$, 4.42 (H_b, dd, ${}^{2}J_{\text{HH}} = 14.9 \text{ Hz}$, ${}^{3}J_{\rm HH} = 6.5$ Hz, CH_aH_b), 6.87–6.91 (3H, m, CH, H-Ar), 7.05 (1H, t, ${}^{3}J_{\text{HH}} = 6.5$ Hz, H-Ar), 7.10–7.20 (5H, m, H-Ar), 7.27 (1H, d, ${}^{3}J_{HH} = 7.3$ Hz, H-Ar), 7.36 (1H, d, ${}^{3}J_{\text{HH}} = 7.3 \text{ Hz}, \text{H-Ar}$, 7.49–7.59 (2H, m, H-Ar), 7.91 (1H, d, ${}^{3}J_{HH} = 7.4$ Hz, H-Ar), 8.12 (1H, br s, NHCO), 10.26 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.9, 38.3, 48.4 (CH₃, CH₂, and CH), 99.9, 105.3, 112.8, 116.2, 118.1, 120.3, 122.8, 123.1, 124.3, 125.4, 125.6, 128.0, 130.0, 131.0, 131.7, 135.5, 138.6, 142.7, 144.4 (C-Ar, C=C and C=N), 162.3 (CO). Anal. Calcd for $C_{25}H_{21}N_5O_3$: C, 68.33; H, 4.82; N, 15.94; found C, 68.39; H, 4.76; N, 15.86.

N-Benzyl-2-methyl-4-(2-nitrophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5b**)

Yellow powder (0.37 g, 85%): mp 249 °C (dec.). IR (KBr) cm⁻¹: 3,246, 3,063, 2,918, 1,673, 1,628, 1,579, 1,531, 1,461. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.23 (3H, s, CH₃), 4.18 (H_a, br s, CH_aH_b), 4.35 (H_b, br s, CH_aH_b), 6.75 (1H, s, CH), 6.86–8.20 (13H, m, H-Ar), 8.33 (1H, br s, NHCO), 10.29 (1H, br s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.8, 38.3, 52.4 (CH₃, CH₂, and CH), 99.3, 105.7, 112.7, 116.1, 117.9, 118.1, 119.3, 122.8, 123.0, 124.1, 124.4, 124.9, 126.6, 127.7, 130.0, 131.8, 135.5, 138.6, 139.1, 142.4, 143.9 (C-Ar and C=C, C=N), 162.1 (CO). Anal. Calcd for C₂₅H₂₁N₅O₃: C, 68.33; H, 4.82; N, 15.94; found C, 68.29; H, 4.89; N, 15.99.

N-Benzyl-2-methyl-4-(4-chlorophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5c**)

White powder (0.37 g, 86%): mp 280–282 °C. IR (KBr) cm⁻¹: 3,307, 3,027, 2,918, 1,670, 1,627, 1,579, 1,512, 1,451. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.17 (3H, s, CH₃), 4.12 (H_a, m, CH_aH_b), 4.38 (H_b, m, CH_aH_b), 6.54 (1H, s, CH), 6.84–7.32 (13H, m, H-Ar), 8.27 (1H, br s, NHCO), 10.14 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.8, 38.3, 52.6 (CH₃, CH₂, and CH), 99.8, 105.6, 112.6, 115.8, 117.8, 122.7, 123.0, 124.2, 124.8, 125.3, 127.8, 128.8, 131.1, 135.6, 135.9, 138.6, 142.6, 144.4 (C-Ar, C=C and C=N), 162.3 (CO). Anal. Calcd for C₂₅H₂₁ClN₄O: C, 70.01; H, 4.93; N, 13.06; found C, 70.09; H, 4.86; N, 13.13.

N-Benzyl-2-methyl-4-(4-methylphenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5d**)

White powder (0.32 g, 79%): mp 292–294 °C. IR (KBr) cm⁻¹: 3,307, 3,039, 2,918, 1,671, 1,626, 1,582, 1,514, 1,449. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.18 (3H, s, CH₃), 2.25 (3H, s, CH₃), 4.16 (H_a, dd, ²J_{HH} = 15.1 Hz, ³J_{HH} = 4.7 Hz, CH_aH_b), 4.37 (H_b, dd, ²J_{HH} = 15.4 Hz,

 ${}^{3}J_{\text{HH}} = 6.6 \text{ Hz}, \text{ CH}_{a}\text{H}_{b}$), 6.50 (1H, s, CH), 6.83–7.32 (13H, m, H-Ar), 8.27 (1H, br s, NHCO), 10.06 (1H, s, NH). ${}^{13}\text{C}$ NMR (100.65 MHz, DMSO- d_{6}) δ : 13.7, 16.9, 38.3, 52.9 (CH₃, CH₂, and CH), 100.2, 105.7, 112.4, 115.7, 117.6, 122.7, 123.1, 123.3, 124.2, 125.3, 127.9, 130.9, 133.4, 134.0, 135.6, 138.7, 142.8 (C-Ar, C=C and C=N), 162.4 (CO). Anal. Calcd for C₂₆H₂₄N₄O: C, 76.45; H, 5.92; N, 13.72; found C, 76.53; H, 5.86; N, 13.65.

N-Benzyl-2-methyl-4-(4-methoxyphenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-]pyrimidine-3carboxamide (**5e**)

White powder (0.32 g, 76%): mp 290–292 °C. IR (KBr) cm⁻¹: 3,295, 3,051, 2,918, 1,672, 1,623, 1,584, 1,512, 1,459. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.19 (3H, s, CH₃), 3.71 (3H, s, OCH3), 4.16 (H_a, m, CH_aH_b), 4.35 (H_b, dd,, ²J_{HH} = 15.0 Hz, ³J_{HH} = 5.7 Hz, CH_aH_b), 6.50 (1H, s, CH), 6.86–8.20 (13H, m, H-Ar), 8.33 (1H, br s, NHCO), 10.29 (1H, br s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.7, 38.3, 51.3, 52.6 (CH₃, CH₂, and CH), 100.4, 105.7, 110.0, 112.4, 115.7, 117.6, 122.7, 123.1, 124.2, 124.7, 128.0, 129.1, 130.8, 135.7, 138.7, 142.8, 155.1 (C-Ar, C=C and C=N), 162.4 (CO). Anal. Calcd for C₂₆H₂₄N₄O₂: C, 73.56; H, 5.70; N, 13.20; found C, 73.49; H, 5.76; N, 13.25.

N-Benzyl-2-methyl-4-(4-ethyl)-1,4-dihydrobenzo[4, 5]imidazo[1,2-a]pyrimidine-3-carboxamide (**5f**)

White powder (0.27 g, 80%): mp 275–277 °C. IR (KBr) cm⁻¹: 3,308, 3,060, 2,968, 1,677, 1,638, 1,614, 1,517, 1,459. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 0.56 (3H, t, ³ $J_{\text{HH}} = 7.1$ Hz, CH₃), 1.49–1.59 (1H, m, CH₂), 1.98–2.10 (1H, m, CH₂), 2.13 (3H, s, CH₃), 4.38 (2H, m, CH₂), 5.64 (1H, br s, CH),.6.97–7.37 (9H, m, H-Ar), 8.40(1H, t, ³ $J_{\text{HH}} = 5.0$ Hz, NHCO), 9.75 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 3.1, 13.5, 22.0, 38.6, 49.4 (CH₃, CH₂, and CH), 97.7, 105.2, 112.5, 115.7, 117.6, 122.9, 123.5, 124.5, 127.7, 133.0, 136.0, 138.6, 144.0 (C-Ar, C=C and C=N), 163.0 (CO). Anal. Calcd for C₂₁H₂₂N₄O: C, 72.81; H, 6.40; N, 16.17; found C, 72.89; H, 6.46; N, 16.25.

N-(4-Methylbenzyl)-2-methyl-4-(3-chlorophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5g**)

White powder (0.38 g, 87%): mp 271–273 °C. IR (KBr) cm⁻¹: 3,319, 3,051, 2,918, 1,671, 1,635, 1,579, 1,512, 1,457. ¹H NMR (300.13 MHz, DMSO-*d₆*) δ : 2.18 (3H, s, CH₃), 2.25 (3H, s, CH₃), 3.71 (3H, s, CH3), 4.12 (H_a, dd, ²*J*_{HH} = 15.2 Hz, ³*J*_{HH} = 4.6 Hz, CH_aH_b), 4.32 (H_b, dd, ²*J*_{HH} = 15.3 Hz, ³*J*_{HH} = 6 Hz, CH_aH_b), 6.49 (1H, s, CH),

6.76–7.05 (9H, m, H-Ar), 7.22 (2H, d, ${}^{3}J_{HH} = 8.4$ Hz, H-Ar), 7.29 (2H, d, ${}^{3}J_{HH} = 7.8$ Hz, H-Ar), 8.22 (1H, t, ${}^{3}J_{HH} = 5.6$ Hz, NHCO), 10.03 (1H, s, NH). 13 C NMR (100.65 MHz, DMSO- d_6) δ : 13.7, 16.9, 38.0, 51.2, 52.6 (CH₃, CH₂, and CH), 100.4, 105.7, 110.0, 112.4, 115.6, 117.6, 123.1, 124.6, 124.8, 127.9, 129.0, 130.7, 131.6, 132.6, 138.7, 142.8, 155.0 (C-Ar, C=C and C=N), 162.3 (CO). Anal. Calcd for C₂₆H₂₃ClN₄O: C, 70.50; H, 5.23; N, 12.65; found C, 70.59; H, 5.26; N, 12.73.

ORTEP diagram for **5g**; summary of data: The Cambridge Crystallographic Data Center (CCDC) no.: 907238; unit cell parameters: a 13.5701(5) b 8.9746(5) c 18.6211(9) beta 99.062(4); space group P 21/n.

N-Phenyl-2-methyl-4-(4-chlorophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5h**)

White powder (0.34 g, 83%): mp 258–260 °C. IR (KBr) cm⁻¹: 3,319, 3,015, 2,942, 1,667, 1,626, 1,600, 1,514, 1,442. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.22 (3H, s, CH₃), 6.68 (1H, s, CH), 6.90–7.57 (13H, m, H-Ar), 9.77 (1H, br s, NHCO), 10.36 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.7, 52.6 (CH₃ and CH), 100.4, 105.9, 112.4, 115.9, 116.4, 118.2, 119.6, 124.9, 125.6, 127.4, 128.8, 132.2, 135.1, 135.7, 137.5, 142.3 (C-Ar, C=C and C=N), 161.0 (CO). MS *m/z*: 417 (M⁺+1, ³⁷Cl, 4), 416 (M⁺, ³⁷Cl, 18), 415 (M⁺+1, ³⁵Cl, 16), 414 (M⁺, ³⁵Cl, 46), 399 (3), 322 (100), 294 (32), 184 (80), 158 (52), 119 (31), 65 (39). Anal. Calcd for C₂₄H₁₉ClN₄O: C, 69.48; H, 4.62; N, 13.50; found C, 69.41; H, 4.66; N, 13.57.

N-Phenyl-2-methyl-4-(phenyl)-1,4-dihydrobenzo[4, 5]imidazo[1,2-a]pyrimidine-3-carboxamide (**5i**)

Yellow powder (0.31 g, 81%): mp 266–268 °C. IR (KBr) cm⁻¹: 3,246, 3,051, 2,918, 1,670, 1,620, 1,578, 1,516, 1,441. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.22 (3H, s, CH₃), 6.66 (1H, s, CH), 6.86–7.57 (14H, m, H-Ar), 9.75 (1H, s, NHCO), 10.28 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.7, 53.2 (CH3 and CH), 100.5, 105.7, 112.6, 115.8, 115.9, 117.8, 119.5, 122.9, 124.2, 124.8, 124.9, 127.9, 132.4, 135.3, 137.0, 138.7, 142.9 (C-Ar, C=C and C=N), 161.2 (CO). Anal. Calcd for C₂₄H₂₀N₄O: C, 75.77; H, 5.30; N, 14.73; found C, 75.71; H, 5.36; N, 14.67.

N-Phenyl-2-methyl-4-(3-nitrophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5j**)

Yellow powder (0.36 g, 85%): mp 245–247 °C. IR (KBr) cm⁻¹: 3,426, 3,051, 2,923, 1,661, 1,628, 1,594, 1,527,

1,439. ¹H NMR (300.13 MHz, DMSO- d_6) δ : 2.22 (3H, s, CH₃), 6.66 (1H, s, CH), 6.86–7.57 (14H, m, H-Ar), 9.75 (1H, s, NHCO), 10.28 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.9, 52.4 (CH₃ and CH), 99.7, 105.7, 112.8, 115.9, 116.2, 117.4, 118.1, 119.3, 119.6, 124.8, 126.6, 127.6, 129.6, 133.1, 135.1, 138.6, 139.3, 142.6, 144.1 (C-Ar, C=C and C=N), 161.1 (CO). Anal. Calcd for C₂₄H₁₉N₅O₃: C, 67.76; H, 4.50; N, 16.46; found C, 67.71; H, 4.46; N, 16.51.

N-Propyl-2-methyl-4-(4-chlorophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5**k)

White powder (0.33 g, 87%): mp 292–294 °C. IR (KBr) cm⁻¹: 3,331, 3,064, 2,955, 2,877, 1,676, 1,627, 1,512, 1,457. ¹H NMR (300.13 MHz, DMSO- d_6) & 0.70 (3H, t, ${}^{3}J_{HH} = 7.2$ Hz, CH₃), 1.27–1.37 (2H, m, CH₂), 2.15 (3H, s, CH₃), 2.96–3.01 (2H, m, CH₂), 6.52 (1H, s, CH), 6.84–6.92 (1H, m, H-Ar), 6.97–7.05 (2H, m, H-Ar), 7.22–7.37 (5H, m, H-Ar), 7.77 (1H, br s, NHCO), 10.10 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) & 7.5, 13.6, 18.5, 36.7, 52.4 (CH₃, CH₂, and CH), 100.1, 105.6, 112.5, 115.8, 117.8, 124.7, 124.9, 127.8, 128.6, 130.7, 136.0, 138.7, 142.9 (C-Ar, C=C and C=N), 162.0 (CO). Anal. Calcd for C₂₁H₂₁ClN₄O: C, 66.22; H, 5.56; N, 14.71; found C, 66.16; H, 5.48; N, 14.66.

N-Allyl-2-methyl-4-(4-chlorophenyl)-1,4dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3carboxamide (**5**I)

White powder (0.32 g, 84%): mp 295–297 °C. IR (KBr) cm⁻¹: 3,331, 3,039, 2,917, 1,676, 1,615, 1,514, 1,458. ¹H NMR (300.13 MHz, DMSO-d₆) δ: 2.18 (3H, s, CH₃), 3.68 (2H, br s, CH₂), 4.85 (H_a, d, ${}^{3}J_{\text{HH}(trans)} = 17.2$ Hz, ${}^{3}J_{\rm HH(cis)} = 10.2$ Hz, $CH=CH_aH_b),$ 4.94 $(H_b,$ d, $CH = CH_aH_b$, 5.61–5.77 (1H, m, $CH=CH_2$) 6.54 (1H, s, CH), 6.85-6.93 (1H, m, H-Ar), 6.98-7.05 (2H, m, H-Ar), 7.24-7.37 (5H, m, H-Ar), 7.94 (1H, br s, NHCO), 10.12 (1H, s, NH). ¹³C NMR (100.65 MHz, DMSO- d_6) δ : 13.7, 37.3, 52.3 (CH₃, CH₂, and CH), 99.8, 105.6, 111.1, 112.6, 115.9, 117.8, 124.8, 124.9, 127.7, 128.7, 131.4, 136.0, 138.7, 142.8 (C-Ar, C=C and C=N), 162.0 (CO). Anal. Calcd for C₂₁H₁₉ClN₄O: C, 66.58; H, 5.05; Cl, 9.36; N, 14.79; found C, 66.51; H, 5.12; N, 14.72.

Synthesis of *N*-(3-nitrobenzylidene)-1*H*benzo[*d*]imidazol-2-amine (**7b**)

The mixture of 3-nitrobenzaldehyde (0.15 g, 1.0 mmol) and 1H-benzo[d]imidazol-2-amine (0.13 g, 1.0 mmol) in 5 ml H₂O was allowed to reflux for 5 min until the

precipitate was appeared. After completion of the reaction, as indicated by TLC (EtOAc:*n*-hexane, 1:2), the reaction mixture was filtered off and the residue was further purified by recrystallization from ethanol to give **7b** as a pure product. Yellow powder (0.26 g, 97%): mp 177–179 °C. ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 7.17–7.22 (2H, m, H-Ar), 7.46 (1H, br s, H-Ar), 7.60 (1H, br s, H-Ar), 7.83 (1H, t, ³*J*_{HH} = 7.9 Hz, H-Ar), 8.37–8.46 (2H, m, H-Ar), 8.85 (1H, s, H-Ar), 9.59 (1H, s, CH), 12.85 (1H, s, NH). Anal. Calcd for C₁₄H₁₀N₄O₂: C, 63.15; H, 3.79; N, 21.04; found C, 63.11; H, 3.72; N, 21.01.

Results and discussion

In a pilot experiment, the reaction of *N*-alkyl-3-oxobutanamide **6**, which was derived from the nucleophilic reaction of benzyl amine **1** with 2,2,6-trimethyl-4*H*-1,3dioxin-4-one under solvent-free conditions at 150 °C for 30 min, with 2-nitrobenzaldehyde and 1*H*-benzo[*d*]imidazol-2-amine **4** without addition of catalyst proceeds in water at reflux temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, the product *N*-benzyl-2-methyl-4-(2-nitrophenyl)-1,4-dihydrobenz[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxamide **5a** was obtained in 89% yield.

We have shown that the use of a wide diversity of substituents in amines 1 and aldehydes 3 in this fourcomponent reaction makes possible the synthesis of libraries under similar circumstances. The results revealed that not only electron-deficient and electron-rich aryl aldehydes but also aliphatic aldehydes in the multi-component reaction afforded the corresponding product efficiently under the same conditions. The results are shown in Table 1. As anticipated from our original results, these reactions proceeded very cleanly and no undesirable side reactions were observed. All compounds, described in the paper, were synthesized for the first time. The structures of products **5a–I** are shown in Fig. 1.

The nature of these compounds as 1:1:1:1 adducts was apparent from their mass spectra, which displayed, in each case, the molecular ion peak at appropriate m/z values. Compounds **5a–l** are stable solids whose structures are fully supported by IR, ¹H, and ¹³C NMR spectroscopies and elemental analysis. For example, the ¹H NMR spectrum of **5a** exhibited a singlet for the methyl group ($\delta = 2.15$), a doublet at 3.96 ppm (²J_{HH} = 14.7 Hz) and a doublet of doublet at 4.42 ppm (²J_{HH} = 14.9 Hz, ³J_{HH} = 6.5 Hz) for the methylene group. One multiplet ($\delta = 6.87$ –6.91) was attributed to methine group (CHN) and phenyl moiety. Other 11 aromatic hydrogens gave rise to characteristic signals in the aromatic region of the spectrum. The spectrum also contains a broad singlet

Table 1Synthesis ofdihydrobenzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamides5a-l

Entry	R ¹	Aldehyde	Product	Time (min)	Yield ^a (%)
1	Benzyl	2-Nitrobenzaldehyde	5a	45	89
2	Benzyl	3-Nitrobenzaldehyde	5b	35	85
3	Benzyl	4-Chlorobenzaldehyde	5c	50	86
4	Benzyl	4-Methylbenzaldehyde	5d	55	79
5	Benzyl	4-Methoxybenzaldehyde	5e	60	76
6	Benzyl	Propionaldehyde	5f	60	80
7	4-Methylbenzyl	3-Chlorobenzaldehyde	5g	40	87
8	Phenyl	4-Chlorobenzaldehyde	5h	50	83
9	Phenyl	Benzaldehyde	5i	60	81
10	Phenyl	3-Nitrobenzaldehyde	5ј	45	85
11	<i>n</i> -Propyl	4-Chlorobenzaldehyde	5k	60	82
12	Allyl	4-Chlorobenzaldehyde	51	55	84

^a Isolated yield

Fig. 1 The structures of products 5a–l

 $(\delta = 8.12)$ which is attributed NHCO group. The signal corresponding to the NH group appears as a singlet at 10.26 ppm. The ¹H-decoupled ¹³C NMR spectrum of **5a** showed 23 distinct resonances in agreement with the product structure. Furthermore, the structure of the product **5g** was confirmed unambiguously by single-crystal X-ray analysis (Fig. 2).

Two suggested pathways for the formation of compound **5** are presented in Scheme 2. It is conceivable in pathway **I**, so that the initial event is the formation of Schiff base **7** by the condensation of an aldehyde **3** and 1H-benzo[d]imidazol-2-amine **4**. In the next step, intermediate **8** is obtained *via* Michael addition reaction between **7** and *N*-alkyl-3-oxobutanamide **6**, which derived from the reaction

of an amine **1** with 2,2,6-trimethyl-4H-1,3-dioxin-4-one **2**. Then, the intermediate **9** is produced by an elimination reaction. Finally, Michael addition between **9** and 1H-benzo[d]imidazol-2-amine **4** afforded the intermediate **10**, which upon isomerization, intramolecular cyclization and dehydration gave the product **5**. In the case of pathway **II**, a

Fig. 2 ORTEP diagram for 5g

reaction between compound 6 and aldehyde 3 produces the intermediate 9, which after reaction with 4 affords product 5.

To distinguish the preferred pathway (pathway I or II), we carried out the condensation reaction between 3-nitrobenzaldehyde **3b** with *N*-alkyl-3-oxobutanamide **6** and the desired intermediate **9** was not obtained under reflux conditions in water. However, the intermediate *N*-(3-nitrobenzylidene)-1*H*-benzo[*d*]imidazol-2-amine **7b** was easily prepared *via* the condensation of 3-nitrobenzaldehyde **3b** and 1*H*-benzo[*d*]imidazol-2-amine **4** under the same reaction conditions (Scheme 3). This finding leads us to conclude that the preferred pathway to produce **5** is *via* route **I**.

In conclusion, we demonstrated an environmentally efficient four-component approach for the synthesis of dihydrobenzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamide derivatives *via* cyclocondensation reaction of primary aliphatic or aromatic amines, 2,2,6-trimethyl-4*H*-1,3dioxin-4-one, 1*H*-benzo[*d*]imidazol-2-amine and aliphatic or aromatic aldehydes under catalyst-free conditions and in water. To the best of our knowledge, this new procedure provides the first example of the efficient synthetic method

Scheme 2 Proposed mechanism for the synthesis of dihydrobenzo[4,5]imidazo[1,2-a]-pyrimidine-3-carboxamides 5

Scheme 3 Synthesis of *N*-(3-nitrobenzylidene)-1*H*benzo[*d*]imidazol-2-amine 7b

for dihydrobenzo[4,5]imidazo[1,2-*a*]-pyrimidine-3-carboxamides by a four-component reaction. The operational simplicity, short reaction time, high purity and good yield of products and minimal environmental impact are notable features of this procedure.

Acknowledgments We gratefully acknowledge financial support from the Iran National Elites Foundation (INEF), Research Council of Shahid Beheshti University and Ministry of Higher Education of Malaysia (Grant No. UM.C/HIR/MOHE/SC/12).

References

- 1. C.O. Kappe, Eur. J. Med. Chem. 35, 1043 (2000)
- 2. C.O. Kappe, W.M.F. Fabian, Tetrahedron 53, 2803 (1997)
- 3. C.O. Kappe, Tetrahedron 49, 6937 (1993)
- 4. B.B. Snider, Z. Shi, J. Org. Chem. 58, 3828 (1993)
- L.E. Overman, M.H. Rabinowitz, P.A. Renhowe, J. Am. Chem. Soc. 117, 2657 (1995)
- K.S. Atwal, B.N. Swanson, S.E. Unger, D.M. Floyd, S.A. Moreland, B.C. O'Reilly, J. Med. Chem. 34, 806 (1991)
- K.S. Atwal, G.C. Rovnyak, S.D. Kimball, D.M. Floyd, S. Moreland, B.N. Swanson, J.Z. Gougoutas, J. Schwartz, K.M. Smilie, M.F. Mallay, J. Med. Chem. 33, 2629 (1990)
- J. Kempson, W.J. Pitts, J. Barbosa, J. Guo, O. Omotoso, A. Watson, K. Stebbins, G.C. Starling, J.H. Dodd, J.C. Barrish, R. Felix, K. Fischer, Bioorg. Med. Chem. Lett. 15, 1829 (2005)
- N. Zanatta, S.S. Amaral, A. Esteves-Souza, A. Echevarria, P.B. Brondani, D.C. Flores, H.G. Bonacorso, A.F.C. Flores, M.A.P. Martins, Synthesis 2305 (2006)
- J.J. Nunes, X.T. Zhu, M. Ermann, C. Ghiron, D.N. Johnston, C.-G.P. Saluste, WO 2005021551, 2005 [Chem. Abstr. 2005, 142, 298123]
- 11. A.A.M. Abdel-Hafez, Arch. Pharm. Res. 30, 678 (2007)
- V.V. Lipson, V.D. Orlov, S.M. Desenko, S.V. Shishkina, O.V. Shishkin, M.G. Shirobokova, Chem. Heterocycl. Compd. 36, 1039 (2001)
- 13. S.L. Schreiber, Science 287, 1964 (2000)

- 14. D.R. Spring, Org. Biomol. Chem. 1, 3867 (2003)
- 15. M.D. Burke, E.M. Berger, S.L. Schreiber, Science **302**, 5645 (2003)
- 16. M.D. Burke, S.L. Schreiber, Angew. Chem. Int. Ed. 43, 46 (2004)
- 17. D.S. Tan, Nat. Chem. Biol. 1, 74 (2005)
- 18. L.A. Wessjohann, E. Ruijter, Top. Curr. Chem. 243, 137 (2005)
- R.J. Spandl, A. Bender, D.R. Spring, Org. Biomol. Chem. 6, 1149 (2008)
- M.N. Ivantsova, M.I. Tokareva, M.A. Mironov, Chem. Heterocycl. Compd. 48, 584 (2012)
- 21. R.P. Gore, A.P. Rajput, Drug Invention Today 5, 148 (2013)
- 22. D.J. Ramón, M. Yus, Angew. Chem. Int. Ed. 44, 1602 (2005)
- 23. A. Dömling, Chem. Rev. 106, 17 (2006)
- F. Liéby-Muller, C. Simon, T. Constantieux, J. Rodriguez, QSAR Comb. Sci. 25, 432 (2006)
- G. Guillena, D.J. Ramón, M. Yus, Tetrahedron: Asymmetry 18, 693 (2007)
- 26. N. Isambert, R. Lavilla, Chem. Eur. J. 14, 8444 (2008)
- 27. T.H. Istvan, T.A. Paul, Chem. Rev. 107, 2167 (2007)
- 28. I.T. Horvath, Chem. Rev. 35, 685 (2002)
- 29. J.N. Tan, H. Li, Y. Gu, Green Chem. 12, 1772 (2010)
- D. Bradley, G. Williams, A. Cullen, A. Fourie, H. Henning, M. Lawton, W. Mommsen, P. Nangu, J. Parker, A. Renison, Green Chem. 12, 1919 (2010)
- A. Solhy, A. Elmakssoudi, R. Tahir, M. Karkouri, M. Larzek, M. Bousmina, M. Zahouily, Green Chem. 12, 2261 (2010)
- 32. G. Choudhary, R.K. Peddinti, Green Chem. 13, 276 (2011)
- S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, Tetrahedron 64, 536 (2008)
- 34. J. Zhang, Z. Cui, F. Wang, Y. Wang, Z. Miao, R. Chen, Green Chem. 9, 1341 (2007)
- A. Shaabani, M. Seyyedhamzeh, A. Maleki, F. Rezazadeh, M. Behnam, J. Comb. Chem. 11, 375 (2009)
- A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, F. Rezazadeh, Tetrahedron Lett. 50, 2911 (2009)
- A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, Tetrahedron Lett. 50, 6355 (2009)
- A. Shaabani, M. Seyyedhamzeh, A. Maleki, F. Hajishaabanha, Tetrahedron 66, 4040 (2010)
- A. Shaabani, A. Maleki, F. Hajishaabanha, H. Mofakham, M. Seyyedhamzeh, M. Mahyari, S.W. Ng, J. Comb. Chem. 12, 186 (2010)