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Oxidation of 9-Xanthenones with Lead(IV) Acetate.
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Synopsis. The oxidation of 9-xanthenones with lead
(IV) acetate afforded 3a,3b,6a,12b-tetrahydro-2H-difuro[3,2-
a:3,2’-c]xanthene-2,5,7(3H,6H)-triones in addition to other
products. Characterization of the di-p-lactones and the dif-
ference between the oxidation reaction of lead(IV) and
manganese(III) acetates in the 9-xanthenone system are
discussed.

Recently, we have reported that the oxidation of
9-xanthenones with manganese(III) acetate (MTA)
affords carboxy-, carboxymethyl-, acetoxymethyl-, and
diacetoxymethyl-9-xanthenones, and that carboxyl
groups are preferentially introduced at the peri positions
of the 9-xanthenones.) This regioselectivity was ex-
plained in terms of complexation between substrate
and MTA.D) In connection with the MTA oxidation,
we have investigated the oxidation of 9-xanthenones
with lead(IV) acetate (LTA)? to give di-y-lactones,
carboxymethyl, acetoxymethyl, and methyl derivatives.

When 9-xanthenone (la) was oxidized with LTA
for 3.2 h, di-y-lactone (2a; 229,), l-carboxymethyl-9-
xanthenone (3a; 39%,), 4-carboxymethyl-9-xanthenone
(4a; 89%), 4-carboxymethyl-1-methyl-9-xanthenone
(5a; 1%), l-acetoxymethyl-9-xanthenone (7a; 1%), 4-
acetoxymethyl-9-xanthenone (8a; 19%)," and 1-methyl-
9-xanthenone (10a; 29%,) were obtained. The com-
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1b : 1-CH30-3-CH3
3a: 1-HOLCH
4a : 4-HO,CCHy
4b : 1-CH30- 3-CH3-4-HO2CCHy
4b': 1-CH30- 3-CH3-5-HO2CCH,
5a : 1-CH3-4-HO,CCH;

" 6b : 1-CH30-3-CH3-4 -HOCH,-5-HOCCH;
7a : 1-AcOCH,
8a : 4-AcOCHp
8b : 1-CH30-3-CH3-4-AcOCH)
9b : 1-CH30-3,8-(CHg)y-4-AcOCHy
10a : 1-CH3
10b : 1-CH30-3,8 -(CH3)2
11a : 1,3-(CH30,CCHy)2-4-CH30

2a
2b: 8-CH30-10-CH3-11-AcOCH;

Fig. 1. 9-Xanthenones (la, b) and the oxidation

products.
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Fig. 2. 'H-NMR spectrum of di-y-lactone (2a) in
DMSO-dg (6 ppm, 200 MHz).

pound (2a) showed a parent ion peak at mfe 312 in
the MS spectrum, and strong IR absorption bands
at 1775 and 1640 cm~! in KBr. The H-NMR spec-
trum (200 MHz) of 2a in DMSO-d; is shown in Fig.
2. Decoupling the triplet at §=4.95 (H,) collapsed
the multiplet at 6=3.85 (H,) to four peaks. De-
coupling the H, collapsed the triplet of H; and two
double doublets at 6=3.15 (H,) and 2.64 (H,) to
three doublets. When the multiplet at 6=3.50 (H,)
was decoupled, the doublet at 6=>5.64 (H,), the triplet
(Hy), the double doublets at §=2.82 (H,) and 2.64
(H,) were collapsed to a sharp singlet and three dou-
blets, respectively. The coupling constants are as fol-
lows: [,,=8.8, J,,=44, J,.=17.8, J.4=5.9, Js=
4.9, J=83, Jo,=%4, J,=17.3, and J,=7.3 Hz.
In the 3C-NMR spectrum of 2a seventeen peaks ap-
peared. In addition, 2a (44 mg) was hydrolyzed with
509% KOH-ethanol, then treated with 3M (1 M=
1 mol dm~3) sulfuric acid, followed by methylation
to give 1,3-bis(methoxycarbonylmethyl)-4-methoxy-9-
xanthenone (1la; 16 mg, 319%,). It is known that the
addition of a -CH,COOH radical to olefins occurs
by cis-addition.?) Therefore, the y-lactone rings of
2a may add cis to the cyclohexene ring. From the
results described above the structure of 2a was deduced
to be 3a,3b,6a,12b-tetrahydro-2H-difuro[3,2-a:3',2'~c]-
xanthene-2,5,7(3H,6 H)-trione, though the configura-
tions at C-3a, 3b, 6a, and 12b could not be determined.

The oxidation of l-methoxy-3-methyl-9-xanthenone
(Ib) with LTA for 2.5h gave ll-acetoxymethyl-8-
methoxy-10-methyl-3a,3b,6a,12b-tetrahydro-2 H-difuro-
[3,2-a:3",2'-c]xanthene-2,5,7(3H,6H)-trione (2b; 69%,),
4-carboxymethyl - 1 - methoxy - 3 - methyl -9 -xanthenone
(4b; 39,), 5-carboxymethyl-1-methoxy-3-methyl-9-
xanthenone (4b’; 19),) 5-carboxymethyl-4-hydroxy-
methyl-1-methoxy-3-methyl-9-xanthenone (6b; 59,), 4-
acetoxymethyl-1-methoxy-3-methyl-9-xanthenone (8b;
129,),1 4-acetoxymethyl-1-methoxy-3,8-dimethyl-9-
xanthenone (9b; 19%,), and l-methoxy-3,8-dimethyl-9-
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xanthenone (10b; 19,).

It is known that LTA decomposes in acetic acid
to yield -CH, radicals®) which react with acetic acid
to afford -CH,COOH radicals.> The -CH,COOH
radicals attack aromatic compounds and the CH,-
COOH group is then introduced; this is also
converted into a CH,OAc group.® Therefore, these
groups are substituted at the positions ortho or para
to electron-donating groups because of the electrophilic
nature of -CH,COOH radicals.®) -CHj radicals also
attack 9-xanthenones to yield methylated products,
which can be further oxidized with LTA to give ace-
toxymethyl-9-xanthenones.? In MTA oxidation, on
the other hand, -CH,COOH radicals predominantly
attack the peri positions regardless of the effect of
the electron-donating groups.!) However, in the pres-
ent LTA oxidation such a tendency was not observed
and the yields of products were not so good as those
in MTA oxidation. Consequently, the interaction be-
tween the substrate and oxidant which was assumed
in MTA oxidation is not important in LTA oxida-
tion.Y) It is known that the reaction of olefins with
LTA gives y-lactones.?) The present reaction is, how-
ever, the first example that -CH,COOH radicals add
to the aromatic rings to give di-y-lactones.

Experimental

Measurements. The 'H-NMR spectra were recorded
on a Hitachi Perkin-Elmer R-24 spectrometer (60 MHz)
in CDCl; and a JEOL FX-200 spectrometer (200 MHz),
while the 3C-NMR spectrum was measured on a JEOL
FX-90Q spectrometer. The IR spectra were taken on a
JASCO IRA-1 grating spectrometer in CHCIl;. The Mass
spectra were measured on a JEOL DX-300 mass spectrom-
eter. The UV spectra were recorded for methanol solution
with a Hitachi EPS-3T spectrophotometer. The melting
points were determined with a Yanagimoto micromelting
point apparatus and were not corrected.

Oxidation of 9-Xanthenones. A mixture of 9-xanthenone
(la or 1b; 1 mmol), LTA (5 mmol), and acetic acid (25
ml) was heated under reflux. The work-up procedure in-
cluding the esterification of the acidic products was the same
as described elsewhere.) The yields are based on the amount
of substrate consumed.

2a: Mp 281—283°C (EtOH); Am.xnm (loge), 231
(4.28), 2532 (3.95), 2682 (3.73), 307 (3.80); 'H-NMR 6=
2.64 (1H, dd, Jj=17.3, 4.4 Hz, H, or Hg), 2.65 (1H, dd,
J=17.8, 44 Hz, H, or H,), 2.82 (1H, dd, /=173, 8.3 Hz,
Hy), 3.15 (1H, dd, J=17.8, 8.8 Hz, H,), 3.50 (1H, m, H,),
3.85 (1H, m, H,), 4.95 (1H, t, Hy), 5.46 (1H, d, /=7.3 Hz,
H,), 7.5—8.1 (4H, m, ArH); ®C-NMR 6=30.2 (t, CH,),
31.4 (d, CH), 34.3 (t, CH,), 36.1 (d, CH), 72.5 (d, H-C-O),
75.7 (d, H-C-0), 117.3 (d, ArC), 118.3 (s, ArC), 122.5
(s, ArC), 125.0 (d, ArC), 125.7 (d, ArC), 134.8 (d, ArC),
155.5 (s, G=), 156.0 (s, C=), 174.6 (s, C=0), 175.3 (s, C=0),
176.3 (s, C=0); m/e 312 (96), 268 (100), 226 (64), 197 (43).
Found: C, 65.23; H, 4.05%. Calcd for C;;H,;,04: C, 65.38;
H, 3.87%.

Methyl Esters of 3a and 4a: The methyl ester of 3a was
not separated from the methyl ester of 4a because they have
the same R; values on TLC; mp 148—150 °C (MeOH);
IR (CHCI,;) 1670, 1745 cm™* (C=0); 3a (CDCl;) 6=3.69
(3H, s, CO,CH,), 425 (2H, s, CH,), 6.95—8.35 (7H, m,
ArH); 4a §=3.69 (3H, s, CO,CHy), 3.93 (2H, s, CH,),
6.95—8.35 (7H, m, ArH). Found: G, 71.34; H, 4.55%.
Caled for CgH,;,0,: C, 71.63; H, 4.51%.
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Methyl Ester of 5a: Mp 149—150 °C (MeOH); IR 1665,
1740 cm—! (C=0); §6=2.89 (3H, s, CHy), 3.70 (3H, s,
CO,CH,), 3.91 (3H, s, CH,), 7.04 (1H, d, J=7.8 Hz, H(y),
7.44 (1H, d, J=7.8 Hz, H,), 7.15—8.40 (4H, m, ArH);
mje 282.0798 (52, M+), 223 (100), 194 (20). Calcd for
C,,H,,0,: M, 282.0892.

7a: Mp 132—133°C (EtOH); IR 1665, 1745 cm™ (GC=
0); 6=2.20 (3H, s, OAc), 5.87 (2H, s, CH,), 7.19—8.42
(7H, m, ArH); m/e 268.0711 (8, M+), 225 (100), 197 (28).
Calcd for C;H;,0,: M, 268.0736.

10a: Mp 113°C (MeOH) (lit, mp 114 °C).

I1a: Mp 137°C (MeOH); IR 1660, 1740 cm~! (C=0);
0=3.71 (6H, s, 2x CO,CH,), 3.77 (2H, s, CH,), 4.03 (3H,
s, OCH,), 4.19 (2H, s, CH,), 7.00 (1H, s, H), 7.25—
8.34 (4H, m, ArH); m/e 370.1080 (20, M+), 338 (66), 323
(100), 311 (38), 295 (38), 237 (50). Calcd for CyH;3O;:
M, 370.1051.

2b: Mp 199—204°C (EtOH); Apaxnm (loge), 237
(4.33), 26551 (4.07), 2852 (3.62), 324 (3.73); IR 1645, 1745,
1785 cm—! (C=0); 6=2.07 (3H, s, OAc), 2.46—3.88 (6H,
m, 2x CH,, 2x CH), 2.52 (3H, s, CHj), 3.95 (3H, s, OCH,),
4.80 (1H, t, J=6.0 Hz, Hy,)), 5.30 (2H, s, CH,), 5.38 (1H,
d, J=6.6 Hz, H,yy), 6.70 (1H, s, He); mfe 428.1113 (2,
M+), 384 (19), 326 (23), 325 (100), 253 (63). Calcd for
C,oH,00y: M, 428.1107.

Methyl Ester of 4b: Mp 160—161 °C (MeOH); IR 1655,
1740 cm—t (C=0); 6=2.41 (3H, s, CHy), 3.71 (3H, s,
CO,CH,), 3.88 (2H, s, CH,), 3.97 (3H, s, OCH,), 6.66
(1H, s, Hey), 7.20—8.37 (4H, m, ArH). Found: C, 69.01;
H, 5.129%,. Calcd for C;H;(O;: C, 69.22; H, 5.16%.

Methyl Ester of 6b: Mp 224—225 °C (MeOH); IR 1655,
1740 (C=0), 3250—3600 cm~—! (OH); 6=2.45 (3H, s, CH,),
3.08 (1H, br. s, OH), 3.70 (3H, s, CO,CH;), 3.89 (2H,
s, CH,CO,), 3.91 (3H, s, OCHj;), 4.86 (2H, s, CH,0), 6.47
(1H, s, He,), 7.10—8.20 (3H, m, ArH). Found: C, 66.57;
H, 5.28%. Caled for C;yH;;04: C, 66.66; H, 5.30%.

9b: Mp 184—186 °C (EtOH); IR 1655, 1740 cm™ (C=
0); 6=2.06 (3H, s, OAc), 2.50 (3H, s, CH,), 2.91 (3H,
s, CH,), 4.00 (3H, s, OCH,), 5.42 (2H, s, CH,), 6.63 (1H,
s, Hey), 6.98—7.69 (3H, m, ArH); m/e 326.1165 (100, M+),
297 (31), 267 (89), 250 (25), 249 (95), 238 (26). Calcd
for C;sH;405: M, 326.1154.

10b: Mp 168—170 °C (MeOH); IR 1655 cm~! (C=0);
0=2.43 (3H, s, CH,), 2.89 (3H, s, CHj;), 4.00 (3H, s, OCH,),
6.56 (1H, d, J=1.8Hz, H), 6.79 (lH, d, J=1.8Hz,
Hy), 6.94—7.59 (3H, m, ArH); m/e 254.0942 (35, M™),
236 (100). Caled for C;sH;,O5: M, 254.0943.
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