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Photocyclization of diarylethenes: the effect of imidazole on the 
oxidative photodegradation process 
A. V. Zakharov,a A. G. Lvov,a I. A. Rostovtseva,b A. V. Metelitsa,b A. V. Chernyshev,b M. M. 
Krayushkin,a A. V. Yadykov,a V. Z. Shirinian*a

We have studied the photoreaction of 1,2-diarylethenes under aerobic conditions in the presence of various amines to 
prevent side processes promoted by singlet oxygen. It has been found that the most amines quite effectively deactivate 
processes associated with singlet oxygen, but primary and secondary amines unlike tertiary ones, react with substrates 
resulting in various side products. Among the studied amines, the most effective additive for preventing side processes, 
including those associated with singlet oxygen is imidazole, which is practically not consumed in photoreaction. It was 
shown that imidazole can also prevents the photodegradation of organic photochromes in solutions. The results obtained 
can be used in various branches of science, technology and medicine to improve the photostability of photosensitive 
organics (dyes). 

Introduction
Photochemical transformations are of great interest, both 

for fundamental research and practical applications.1,2 They 
are widely investigated for the development of advanced 
technologies and materials for various fields of science, 
technology and medicine.1,3,4 However, one of the main 
limiting factors in the widespread practical application of 
photochemical reactions remains the need to carry out these 
processes under anaerobic conditions to prevent the 
formation of singlet oxygen and many side processes 
associated with it.5 Aerobic conditions promote the generation 
of singlet oxygen under UV irradiation in the presence of 
various sensitizers.6 In most cases, photosensitive substances 
involved in photochemical transformations themselves act as 
photosensitizers to generate singlet oxygen.7,8 For this reason, 
the exclusion of the formation of singlet oxygen becomes very 
complicated. One of the solutions to this issue is the exclusion 
of singlet oxygen formation in photochemical processes by 
removing oxygen from the reaction mixture under inert 
conditions and it, in turn, imposes additional restrictions on 
the carrying out of photochemical reactions.

Another way to prevent the occurrence of side processes 
promoted by singlet oxygen is its deactivation (physical 
quenching or chemical binding) by various substances, 
including organic compounds (tertiary amines, phenols, 
sulfides, disulfides, nitrogen heterocycles, etc.).9

Our interest in the issue of prevention of side processes 
associated with singlet oxygen arose in connection with the 
study of the photorearrangement reaction of 1,2-
diarylethenes I, leading to the formation of polyaromatic 
systems and, first of all, naphthalene derivatives II (Scheme 
1A).10 We have found that under photoirradiation, the 
diarylethenes containing a benzene and five-membered 
heterocyclic residues undergo cyclization with the further 
sigmatropic rearrangement and opening of the heterocyclic 
ring.11,12 However, a more detailed study of this process 
showed that depending on the reaction conditions, especially 
in scaling up to the gram level (in preparative reactions), a side 
reaction may occur. This transformation includes the 
interaction of the heterocyclic moiety (oxazole ring) with the 
singlet oxygen resulting to the triacylamines III after a number 
of rearrangements (Scheme 1B).13

Scheme 1B shows the mechanism of formation of 
triacylamine III by the reaction of singlet oxygen (formed via 
photosensitization with diarylethene triplet7) with an oxazole 
residue. In the first, [4+2]-cycloaddition takes place, followed 
by triacylamine formation after a number of skeletal 
rearrangements, including a Bayer-Villiger reaction. In this 
transformation, not only diarylethenes based on oxazole, but 
also with other heterocyclic residues (imidazole, thiazole, 
furan, thiophene, etc.) may react.14 In [4+2]-cycloadditions 
five-membered heterocycles act as the diene, and the singlet 
oxygen as the dienophile. Further transformations are dictated 
by the nature of the heterocyclic residue, in some cases the 
reaction is accompanied by the opening of the heterocycle, for 
example azoles,15 or without opening (furan and thiophene).16
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Scheme 1 Photoreactions of diarylethenes of oxazole series.

Another area where it is necessary to take into account the 
influence of singlet oxygen is the photoswitching of 
diarylethenes (photochromic properties of diarylethenes).17 
This aspect for diarylethenes, unlike spiropyrans18 and 
spirooxazine19 has been studied poorly and the moreover a 
systematic study have not performed. Nevertheless several 
groups have noted that distinct diarylethene derivatives show 
different types of photochemical side reactions associated 
with air oxygen. In particular, formation of the DAE oxidative 
products in the presence of oxygen (in the air) including the 
oxidation of thiophene ring20 and the insertion of an oxygen 
atom between the ethene linker and the aryl residue21 has 
been reported. In addition, Hecht and et al. have detected the 
by-products with a mass (M+16)+ and (M+32)+ upon irradiation 
DAE solution in the presence of oxygen by UV-light.22 

Thus, the analysis of the literature has showed that in both 
reversible and irreversible photochemical reactions of 
diarylethenes singlet oxygen plays a negative role and favors 
the formation of undesirable oxidative side products. At the 
same time, the irreversible photocyclization of diarylethenes is 
widely used for the synthesis of various polyaromatic 
compounds including helicenes, graphenes, fluorophores, etc., 
and photochromic diarylethenes are actively explored to 
develop new smart materials for optoelectronics and 
photonics.  In this context, it is very important to develop a 
general concept for the prevention of oxidative side processes 
promoted by singlet oxygen in the irreversible and 
photochromic transformations of diarylethenes.  

The present work provides important insights on the role 
of singlet oxygen in the photochemical transformation of 
diarylethenes and on the protection of organic photochromes 
from oxidative photodegradation.

Experimental section
General information 

Proton nuclear magnetic resonance spectra (1H NMR) and 
carbon nuclear magnetic resonance spectra (13C NMR) were 
recorded in deuterated solvents on a spectrometers working 
at 300 MHz for 1H, 75 MHz for 13C. Data are represented as 

follows: chemical shift, multiplicity (s, singlet; d, doublet; m, 
multiplet; br, broad), coupling constant in hertz (Hz), 
integration, and assignment. Mass spectra were obtained on a 
mass spectrometer (70 eV) with direct sample injection into 
the ion source. High resolution mass spectra were obtained 
from a TOF mass spectrometer with an ESI source. All 
chemicals and solvents were purchased from commercial 
sources and used without further purification. Silica column 
chromatography was performed using silica gel 60 (70−230 
mesh); TLC analysis was conducted on silica gel 60 F254 plates. 
Synthesis. Diarylethenes 1a11 / 1b10 and spiropyranes 7 / 823 
were prepared according previously reported methods. 
Spectral studies

Absorption spectra and kinetic curves were recorded using 
an “Agilent 8453” diode array spectrophotometer supplied 
with a thermostated cell holder. The temperature of solutions 
was kept at 293 ± 0.2 K. Solutions (2 ml) were stirred in the 
four-windowed 1010 cm quartz cell with a magnetic bar 
driven by a speed controlled motor. Setup consisting of the 
200 W Hg Research Arc Source "Newport 66902", liquid IR 
filter, set of optical bandpass filters and UV-VIS Liquid Light 
Guide (300-650 nm) from Newport Corp. was used as a light 
source. The light was brought with Liquid Light Guide to the 
cell compartment at the right angle to the probe beam of the 
spectrometer. The monochromatic light intensity at 365 nm 
was determined to be 7.4·10-6 mol·L-1s-1 using an "Newport 
Power Meter 2903-C".
Preparative photoreactions

Irradiation of diarylethenes were carried out in 3 ml (d = 5 
mm) or 10 ml (d = 10 mm) flat-bottomed vessels from 
common glass (for analysis of their transparency, see 
Supporting information in work11). The irradiation was carried 
out by two 8 W UV lamp (365 nm).
Solvent, photosensitizer and amine effect studies

General. Glass vessel (3 ml) was charged by solution of 
diarylethene 1 (40 mg) in 2 ml of appropriate solvent (if 
necessary, appropriate photosensitizer or amine were added). 
The reaction mixture was irradiated by UV (2 lamps, 365 nm, 8 
W) without stirring at ambient temperature. Reactions were 
controlled by TLC, after completion the reaction mixture was 
poured into water (100 mL), and extracted with ethyl acetate 
(3 × 20 mL). The combined organic phases were washed with 
water (100 mL), dried with magnesium sulfate, and evaporated 
in vacuum. The residues were analyzed by 1H NMR 
spectroscopy in DMSO-d6 solutions (for copies of these spectra 
see Sections I, III, IV, V in ESI).
Photosensitizer effect studies

0.1 equivalent of each photosensitizer was added (see 
Table S1 in Section III of ESI).
Amine effect studies

Diarylethene 1a was irradiated in the presence of 1 eq. (16 
mg) of naphthalene (1 eq.) and 1 eq. of appropriate amine (see 
Section IV in ESI). 
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Synthesis and characterization of new compounds

Synthesis of triacylamines 3

Diarylethene 1a or 1b (100 mg, 0.32 mmol) was dissolved 
in 5 ml of acetone and naphthalene (41 mg, 0.32 mmol) was 
added. The solution was irradiated until completion of reaction 
(TLC control). The resulting mixture was purified by column 
chromatography on silica gel to give target triacylamines 3 as 
labile amorphous powder. 
N-Acetyl-N-benzoyl-5-oxo-4-phenyl-2,5-dihydrofuran-3-
carboxamide (3a). Yield 11%. Yellow amorphous powder. 1H 
NMR (300 MHz, CDCl3): δ = 2.36 (s, 3H, CH3), 5.14 (s, 2H, CH2), 
7.18 (d, J = 7.9 Hz, 2H, Harom), 7.23 (d, J = 7.7 Hz, 2H, Harom), 
7.26-7.29 (m, 1H, Harom), 7.39-7.44 (m, 3H, Harom), 7.47-7.53 (m, 
2H, Harom). 1H NMR (300 MHz, DMSO-d6): δ = 2.35 (s, 3H, CH3), 
5.23 (s, 2H, CH2), 7.38-7.53 (m, 9H, Harom), 7.62-7.71 (m, 1H, 
Harom). 13C NMR (75 MHz, DMSO-d6): δ = 25.7, 70.2, 128.4, 
129.0 (2C), 129.3 (2C), 129.6 (2C), 129.8 (2C), 129.9, 130.5, 
131.9, 135.3, 151.6, 166.0, 171.2, 172.0, 172.3. HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C20H15NO5: 350.1023; Found: 
350.1018.  MS (EI): m/z (%) = 349 (16) [M]+, 307 (69), 105 
(100), 77 (27), 43 (19), 18 (15).

N-Acetyl-N-(3-oxo-2-phenylcyclopent-1-enecarbonyl)benzamide 
(3b). Yield 27%. Yellow amorphous powder. 1H NMR (300 MHz, 
CDCl3): δ = 2.40 (s, 3H, CH3), 2.66-2.69 (m, 2H, CH2), 3.04-3.05 
(m, 2H, CH2), 7.08 (d, J = 7.6 Hz, 2H, Harom), 7.19-7.24 (m, 3H, 
Harom), 7.35-7.51 (m, 5H, Harom). 1H NMR (300 MHz, DMSO-d6): 
δ = 2.39 (s, 3H, CH3), 2.60-2.65 (m, 2H, CH2), 2.87-2.95 (m, 2H, 
CH2), 7.18-7.25 (m, 2H, Harom), 7.28-7.46 (m, 7H, Harom), 7.60-
7.67 (m, 1H, Harom). 13C NMR (75 MHz, CDCl3): δ = 25.7, 27.9, 
34.6, 128.5, 128.7 (4C), 128.8 (2C), 129.2 (2C), 129.8, 131.9, 
134.0, 140.4, 161.5, 170.4, 172.0, 172.7, 205.9. HRMS (ESI-
TOF) m/z: [M + H]+ Calcd for C21H17NO4: 348.1230; Found: 
348.1217. MS (EI): m/z (%) = 305 (13) [M-CH3C(O)+H], 128 (25), 
115 (42), 105 (100), 77 (61), 43 (59).

Diarylethenes 4-6 were prepared according to a previously 
reported method24 from corresponding hetarylacetic acid and 
bromoketone.
3-(2,5-Dimethylthiophen-3-yl)-4-(5-methyl-2-phenyloxazol-4-
yl)furan-2(5H)-one (4). Pale yellow powder, mp = 146-148 °C. 1H 
NMR (300 MHz, CDCl3): δ = 1.92 (s, 3H, CH3), 2.17 (s, 3H, CH3), 
2.44 (s, 3H, CH3), 5.27 (s, 3H, CH2), 6.71 (s, 1H, Hthiophene), 7.43-
7.55 (m, 3H, Harom), 7.94-8.10 (m, 2H, Harom). 13C NMR (75 MHz, 
CDCl3): δ = 11.2, 14.3, 15.2, 71.0, 121.3, 126.2 (2C), 126.6 (2C), 
127.1, 128.9 (2C), 129.3, 130.7, 136.7, 136.9, 149.8 (2C), 160.8, 
173.4. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C20H17NO3S: 
352.1002; Found: 352.0999.

4-(2,4-Dimethyloxazol-5-yl)-3-(2,5-dimethylthiophen-3-yl)furan-
2(5H)-one (5). Gray powder, mp = 98-100 °C. 1H NMR (300 MHz, 
CDCl3): δ = 1.85 (s, 3H, CH3), 2.16 (s, 3H, CH3), 2.43 (s, 3H, CH3), 
2.45 (s, 3H, CH3), 5.14 (s, 2H, CH2), 6.65 (s, 1H, Hthiophene). 13C 
NMR (75 MHz, CDCl3): δ = 12.5, 13.9, 14.1, 15.1, 69.1, 119.7, 
126.6, 136.4, 137.1, 139.0, 140.6, 143.7, 163.0, 172.6, 174.1. 
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H15NO3S: 290.0845; 
Found: 290.0838.

4-(2,4-Dimethyloxazol-5-yl)-3-(2,5-dimethylthiophen-3-yl)furan-
2(5H)-one (6). Pale yellow powder, mp = 189-190 °C. 1H NMR 
(300 MHz, CDCl3): δ = 2.08 (s, 3H, CH3), 2.40 (s, 6H, CH3), 5.15 
(s, 2H, CH2), 6.58 (s, 1H, Hthiophene), 7.35-7.50 (m, 3H, Harom), 
7.90-8.01 (m, 2H, Harom). 13C NMR (75 MHz, CDCl3): δ = 14.9, 
15.1, 16.6, 71.7, 118.0, 120.5, 124.2, 126.4 (2C), 128.0, 128.9 
(2C), 130.2, 133.3, 138.4, 139.2, 153.2, 154.8, 168.4, 172.6. 
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C20H17NO2S2: 
368.0773; Found: 368.0766.

Results and Discussion
Solvent effect 

Studies on competition between photorearrangement and 
interaction with singlet oxygen were carried out on model 
diarylethenes based on furanone and cyclopentenone 
derivatives 1a11 and 1b,10 which were obtained previously in 
our group (Scheme 2). The choice of these model compounds 
was dictated by their electron-withdrawing bridges, which 
accelerate hydrogen migration during photorearrangement.25 
The irradiation of 1 in various solvents by UV light (λ = 365 nm) 
leads in most cases to the formation of two products: a major 
product from photoinduced rearrangement 2a,b10,11 and a 
minor product from [4+2]-cycloaddition of an oxazole moiety 
with singlet oxygen 3a,b (Scheme 2 and Table 1). The 
structures of compounds 3a,b have been proved by 1H, 13C 
NMR spectroscopy and mass spectrometry, and they are well 
correlated with literature data.13 As can be seen from Table 1, 
in the majority of the solvents studied, the 
photorearrangement reaction of furanone derivative 1a 
proceeds in good yields, while for diarylcyclopentenone 1b, 
the yields of triacylamine 3b are in many cases significantly 
higher (for copies of NMR spectra see section I in ESI). As 
noted above, in these reactions diarylethenes act as a 
photosensitizer, generating singlet oxygen, consequently the 
formation of triacylamine 3 also depends on the 
photochemical characteristics of the substrate. 

In the case of the cyclopentenone derivative, not only an 
increase in the formation of triacylamine (ethyl acetate, 
acetonitrile, toluene, acetone and methylene chloride) is 
observed, but the prolonged irradiation is required for 
complete conversion. Especially high yields of 3b were 
observed in toluene and acetonitrile, 25 and 31%, respectively.

Scheme 1 Photochemical transformations of diarylethenes bearing benzene and 
oxazole units.
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Table 1 Solvent optimization of the photorearrangement reaction.a

Yieldsb for furan-2(5H)-
ones

Yieldsb for 
cyclopentenones

Solvent
Time 
(h)

2a 3a
Other by-
products

Time 
(h)

2b 3b
Other by-
products

1 MeCN 10 87 12 <1 17 56 31 13
2 MeCN + imidazole 5 99 0 0 25 99 0 0
3 DMF 3 97 3 0 5 81 19 0
4 NMP 13 99 0 0 5 99 0 0
5 CH2Cl2 7 95 5 0 16 80 0 20
6 CHCl3 10 93 7 0 5 76 10 14
7 Acetone 13 86 13 <1 17 72 15 13

8
Acetone + 

naphthalene
17 70 30 0 13 35 37 28

9 EtOH 9 96 3 <1 17 65 9 26
10 EtOAc 6 88 10 <1 8 34 23 43

11 EtOAc + imidazole - - - - 25 99 0 0
12 CH3NO2 17 80 5 15 17 67 16 17
13 Toluene 26 75 8 17 27 55 25 20

a Typical procedure: solution of 2 (40 mg) in 2 ml of solvent was irradiated by 2 UV lamps (365 nm, 8W) until full conversion of 2. After common work-up procedure, the residues were analyzed by 1H NMR spectroscopy.

b Yields were determined by 1H NMR spectroscopy.

The best yields of the desired photorearrangement products 
for both substrates (compounds 2a,b) have been  obtained in 
N-methyl-2-pyrrolidone (entry 4 in Table 1), where the 
formation of side products, including triacylamine was not 
observed. The nature of the solvent also affects the 
photoreaction time. However, the reaction time is not a 
relevant parameter for this process, since it also depends on 
many other factors such as concentration, loading, solubility, 
etc. Nevertheless, we have found that in nonpolar solvents the 
reaction slows down significantly. In particular, in DMF, the 
reaction requires 3 hours, whereas in toluene under otherwise 
identical conditions requires 26 h for competition. In addition, 
in the case of the cyclopentenone, the formation of other by-
products is observed in most solvents. We were unable to 
establish the structure of these compounds due to the 
formation of a complex mixture of hard-to-separate 
substances. In ethyl acetate and ethanol, the yields of 
unestablished by-products are significantly higher than those 
of triacylamine 3b. For this reason, further studies on the 
prevention of side processes associated with singlet oxygen by 
amines were carried out only for the furanone derivative 1a.

Amine effect. 

The study to prevent the formation of by-products 
associated with singlet oxygen was carried out in acetone in 
the presence of various amines. To more accurately assess the 
efficiency of amines, the photocyclization of diarylethene 1a in 
the presence of an additional sensitizer (naphthalene) has 
been studied as a model reaction. It is well known that 
aromatic hydrocarbons (naphthalene, anthracene, 
phenanthrene, biphenyl, etc.) are good photosensitizers and 
are capable of generating singlet oxygen upon UV 
irradiation.26,27 We have studied the photocyclization of 
diarylethene 1a in the presence of various photosensitizers 
and found that among them, naphthalene more effectively 
sensitized the generation of singlet oxygen and the yields of 

triacylamine were 30% (see section III in ESI). In addition, the 
choice of naphthalene was dictated by another factor. Signals 
of protons of naphthalene in the 1H NMR spectrum are 
observed in the form of two multiplets in the range of 7.51 and 
7.91 ppm and they are not overlapped by signals of the 
photoreaction product. It should be noted that, without 
naphthalene, the yields of triacylamine in acetone did not 
exceed 13% (Table 1, entry 6).  

For the neutralization of singlet oxygen and prevent the 
formation of a side process - [4+2]-cycloaddition, we have 
investigated the effect of various commercially available 
amines on the photorearrangment process (Table 2). In all 
cases, equimolar amounts of amines were used to prevent the 
formation of triacylamine. As can be seen from Table 2, 
practically all amines except pyridine, in equimolar amounts, 
completely prevent the formation of triacylamine. And only in 
the reaction with pyridine is the formation of triacylamine 
(12%), although to a significant degree less, as compared with 
the reaction without amines in the presence of naphthalene 
(30%, entry 7 in Table 1).

The use of secondary and primary amines (entries 1-5 in 
Table 2) leads to the formation of a mixture of hardly 
separable products, including the desired product (see 1H NMR 
spectra of the reaction mixtures in ESI). However, the product 
of the [4+2]-cycloaddition according to 1H NMR was not 
observed. Along with quenching of singlet oxygen and the 
photorearrangement reaction, there are probably other 
chemical transformations involving amines, which result in its 
consumption.28,29,30 In the case of DBU the 
photorearrangement product, as well as triacylamine were not 
separable and a complex mixture is formed. Perhaps DBU 
contributes to the formation of other additional side 
processes. In the case of triethylamine and, along with the 
target product, the formation of corresponding N-oxide is 
observed31 (see table S2 in ESI), which, in particular, is 
indicative of the chemical quenching of singlet oxygen.
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Table 2 The effect of amines on the yields of photoproducts.a

Yields
Amines

2a 3a Other by-products
1 n-Butylamine 83 0 17

99b 0 0
2 Aniline

94c 6 0

3 Morpholine 73 0 27

4 Piperidine 60 0 40
5 TEMP-H 99 0 0
6 DBU 0 0 99

99b 0 0
7 Et3N 95c 5 0

99b 0 0
8 DABCO

99c 0 0
9 Pyridine 88 12 0

99b 0 0
10 Imidazole

99c 0 0
99b 0 0

11 1-Methylimidazole
89c 10 0

a Typical procedure: solution of 2 (40 mg), naphthalene (1 eq.) and amine (1 eq.) 
in 2 ml of acetone was irradiated by 2 UV lamps (365 nm, 8W) until full 
conversion of 2. After common work-up procedure, the residues were analyzed 
by 1H NMR spectroscopy.
b 1 eq. of amine; 
c 0.1 eq. of amine.

Unfortunately, isolation of the triethylamine N-oxide in its 
pure form failed. However, in the 1H NMR spectrum, the 
proton signals are shifted to a weak field, which indicates the 
formation of the N-oxide.32 A similar pattern is observed for 
the DABCO. The observed weak-field shift of NMR signals of 
the hydrogen atoms of DABCO agrees very well with the 
literature data.33 And only in the case of imidazole, the use of 
even catalytic amounts (0.1 equiv) ensures complete 
deactivation of singlet oxygen. Thus, it has been found that 
imidazole is an effective additive to prevent by-products 
associated with singlet oxygen in the diarylethene synthetic 
photocyclization reactions. Despite the literature data on the 
oxidative degradation of imidazole and its derivatives by 
singlet oxygen,34 we have failed to fix of the imidazole 
oxidation products, even when scaling the reaction.

It is very interesting to note that the use of N-
methylimidazole does not have the same effect as in the case 
of imidazole. A decrease in the amount of N-methylimidazole 
leads to the appearance of triacylamine 3b. In addition, there 
is also a shift in the NMR signals of the hydrogen atom of N-
methylimidazole in a weak field, like triethylamine and DABCO 
(see Table S2 in ESI). 

The effectiveness of imidazole was also demonstrated 
using photocyclization of diarylethene 1b in acetonitrile and 
ethyl acetate solutions. In these solvents without imidazole, 
the formation of triacylamine 3b is observed with yields of 31 
and 23%, respectively (entries 1 and 10 in Table1) whereas the 
addition of imidazole leads to the complete disappearance of 
this product (entries 2 and 11 in Table 1). Moreover, as seen in 
the Table, imidazole prevents not only the formation of 
triacylamine 3b, but also other by-products (entries 2 and 11 in 
Table 1). Such behavior of imidazole can be explained by the 
fact that it quenches not only singlet oxygen, but also (or only) 
triplet (excited) state of diarylethenes. Indirect confirmation of 

the formation of the triplet state of diarylethenes in this 
process is the generation of singlet oxygen. In addition, 
recently, we have demonstrated the formation of triplet state 
of diarylethenes in photorearrangement reaction.25 In the 
future, a more detailed study by flash photolysis of the excited 
singlet and triplet states of diarylethenes, as well as their 
transformations without or in the presence of imidazole under 
aerobic conditions is planned. 
Role of imidazole in the photodegradation process of 
photochromic compounds. 

Having in hand the results on the effectiveness of imidazole 
in preventing oxidative processes in the photocyclization of 
diarylethenes we have tested it for other processes. It has 
been studied the photodegradation of photochromic 
compounds in the presence of imidazole under aerobic 
conditions (in the presence of air oxygen). Photochromic 
compounds belong to a relatively small number of families of 
organic compounds that undergo photoinduced reversible 
molecular rearrangements between two states characterized 
by different spectral parameters.35  These molecules have a 
few real and many potential applications.36 One of the main 
obstacles to the use of photochromic compounds is still the 
photodegradation.37

There are two main photodegradation pathways for the 
photochromic compounds (Scheme 3). The first of these is 
related to the structural features of the photochromic 
molecule, leading to different rearrangements and, as a result, 
to a decrease in fatigue resistance. For example, photochromic 
diarylethenes undergo a monomolecular 1,2-dyotropic 
rearrangement.22,38 The second channel includes the 
interaction of the photochromic molecule with singlet oxygen, 
which also leads to photodegradation. 

Scheme 3 Photochromism of model diarylethenes and spiropyrans.
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Figure 1.

Dependence of the normalized optical density at the absorption maximum 
of photoinduced isomer B of DAE 4 on the irradiation time (solvent – CH3CN, 

C = 1.4•10-5 M, C(imidazole) = 1.03·10-3 M, λirr = 365 nm, T = 293 K).
Dependence of the normalized optical density at the absorption maximum 

557 nm of merocyanine form B of spiropyran 7 on the irradiation time 
(solvent – CH3CN, C = 1.4•10-5 M, λirr = 365 nm, T = 293 K).

A B

To compare the photodegradation of the photochromic 
compounds in the presence of imidazole, their acetonitrile 
solutions were investigated under prolonged continuous 
irradiation similar to the earlier studies.39 During attainment of 
the photostationary state of the system its coloration gradually 
faded and the absorbance at the long wavelength band 
belonging to the photoinduced isomers decreased. Such 
spectral behavior is due to irreversible photodestruction of the 
photochromic system. We have investigated two classes of 
photochromic compounds: diarylethenes 4 – 6 and spiropyrans 
7 and 8 (Scheme 3). The photochromic switching of 
diarylethenes is based on electrocyclic reaction of a hexatriene 
system (form A) followed by ring-opening of cyclohexadiene 
system (form B).17a The photochromism of spiropyrans 
includes the reversible heterolytic Cspiro–O bond cleavage in 
the cyclic isomer A followed by cis–trans-isomerization into 
the metastable merocyanine form B.40

The photodegradation of photochromic diarylethene 4 
(Figure 1A) and spiropyran 7 (Figure 1B) has been studied in 
solution in the presence of oxygen (in the air) with and without 
imidazole. For the spiropyran 7 has also been performed 
additional experiment: the photodegradation has been carried 
out under inert conditions (argon). The results obtained 
indicate that imidazole very effectively prevents 
photodegradation of these photochromic compounds. It was 
found that the stability of the photochromes depends on the 
imidazole concentration, the higher it is, the higher the 
stability. Similar results have been obtained for diarylethenes 
5, 6 and spiropyran 8 (see section VII in ESI). The partial 
photodegradation of these compounds is likely due to the 
structural features of these photochromic molecules.

Conclusions
Thus, the photocyclization of 1,2-diarylethenes under aerobic 
conditions in the presence of various amines has been studied 
to prevent side processes promoted by singlet oxygen. It has 
been found that most amines effectively quench singlet 
oxygen, but primary and secondary amines, unlike tertiary 
ones, react with substrates leading to various by-products. 
Comprehensive studies have shown that the most effective 
quencher of singlet oxygen is imidazole, which is practically 
not consumed in the process of photoreaction. It was shown 
that imidazole also prevents the photodegradation of 
photochromic diarylethenes and spiropyrans in solution. An 
important achievement of this work is the possibility of 
carrying out photochemical transformations in the presence of 
oxygen (in the air) without fear of the harmful effect of singlet 
oxygen. 
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It was found that imidazole prevents the side process of diarylethenes photocyclization 
and the photodegradation of photochromic compounds.
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