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The electrochemical reduction strategy of nitrobenzenes is developed. The chemistry occurs under ambient conditions. The protocol 
uses inert electrodes and the solvent, DMSO, plays a dual role as a reducing agent. Its synthetic value has been demonstrated by the 
highly efficient synthesis of symmetric, unsymmetric and cyclic azo compounds. 
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Background and Originality Content 

Azobenzene derivatives are an important class of molecules, 
which are widely used in dyestuffs, colourants, photoresponsive 
materials, and therapeutic drugs.[1] Recently, due to the strong 
coordination ability of nitrogen atom, many chemists utilized the 
azo group as a directing group for ortho C-H functionalization.[2] 
Accordingly, all sorts of preparation methods for the synthesis of 
these compounds have been developed. The traditional synthetic 
method is primarily based on coupling of aryl diazonium salts with 
nucleophiles.[3] Yet this method requires preparation of reactive 
diazonium salts by oxidation of the corresponding aromatic 
amines with nitrous acid. Due to the electrophilic substitution 
mechanism, this kind of reaction is limited to the combination of 
electron rich and electron deficient aromatic substrates. 
Significant progress has been achieved by employing direct 
dehydrogenation of aromatic anilines or diarylhydrazines (Scheme 
1, a).[4] Yet these methods suffer from major issues such as using 
excessive additives and oxidants or hard preparation of starting 
materials. The direct dehydrogenation of diaryl hydrazines with 
the liberation of molecular hydrogen would be an alternative 
method for preparing aromatic azo compounds. [5]  

Nitroarenes are easily accessible and stable compounds, and 
can be converted into functionalized amines by reduction reac-
tion.[6] In this regard, our group demonstrated a series of proto-
cols by direct amination of nitroarenes to form corresponding 
amines or N-containing heterocycles.[7] Likewise, preparation of 
azobenzenes through a reduction of nitrobenzenes with reducing 
reagents is highly attractive (Scheme 1, b).[8] But this approach is 
limited to operations that require stoichiometric amounts of met-
al reductant or high-pressure hydrogen as a reducing reagent. For 
example, Guo and coworkers reported a Cu/graphene photocata-
lytic reduction coupling reactions of aromatic nitro compounds to 
corresponding azo compounds. [9]  

 
Scheme 1. Previous reports on catalytic approaches to the synthesis 
of azobenzene derivatives. 
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Electrochemical synthetic methods have been considered as a 

green and viable synthetic tool since it employs electrons as rea-
gents to avoid waste production.[10] The nitroaryl electroreduction 
has attracted considerable attention over the past decade, 
especially for the synthesis of anilines.[11] To date, very few exam-
ples have been reported on the use of electrochemistry to synthe-
size azobenzenes from nitroarenes. In 2006, Kim and co-workers 
employed magnesium electrodes for the direct reduction of ni-
trobenzenes to synthesize azobenzenes.[12] Noteworthy, this reac-
tion suffers from the use of a sacrificial Mg electrode and narrow 
substrate scope. In 2017, Mellah carried out the same reaction, 
using stoichiometric Sm as a reagent that was electrogenerated 
from Sm anode.[13] As part of our continuing efforts in molecular 

synthesis using nitroarenes as the readily available coupling part-
ners, herein, we report an environment-friendly and efficient 
electrochemical strategy for the reductive coupling of nitroarenes 
into azobenzenes under mild reaction conditions. Notably, this 
method uses inert electrodes while the solvent, DMSO, plays a 
dual role as a reducing agent, therefore, providing a green syn-
thetic approach for azobenzene derivatives. 

Results and Discussion 

Table 1 Optimization of the reaction conditiona. 

1a 2a

NO2 N
NNH4Cl (3 equiv)

DMSO, rt, 5 h
C(+)/Pt(-), I = 20 mA

undivided cell
 

Entry Variation from the standard reaction conditions Yieldb (%) 

1 none 

NH4Br instead of NH4Cl 

NH4OAc instead of NH4Cl 

TBAB instead of NH4Cl 
nBu4NBF4 instead of NH4Cl 

DMF instead of DMSO 

EtOH instead of DMSO 

Pt as anode 

10 mA instead of 20 mA, 10 h 

25 mA instead of 20 mA, 4 h 

no NH4Cl 

no electric current DMSO 

76 

2 20 

3 25 

4 n.r. 

5 40 

6 trace 

7 trace 

8 38 

9 trace 

10 51 

11 n.r. 

12 n.r. 
aReaction conditions: anode: graphite rod (6 mm) and cathode: Pt foil (1.0 
x 1.0 cm2), constant current = 20 mA, 1a (0.5 mmol), NH4Cl (1.5 mmol), 
DMSO (8 mL) in an undivided cell, rt, air, 5 h. b Isolated yield based on 1a 

We primary chose nitrobenzene 1a as the substrate for reduc-
tive homodimerization with carbon/platinum electrodes and 
NH4Cl electrolyte to determine the optimized conditions. Nitro-
benzene 1a reacted efficiently in an undivided cell with 20 mA for 
5 h, azobenzene 2a was synthesized in 76% isolated yield (Table 1, 
entry 1). Then we investigated the influence of electrolytes such 
as NH4Br, NH4OAc, TBAB (n-Bu4NBr) or n-Bu4NBF4, it was found to 
be ineffective for this electrochemical reduction reaction (Table 1, 
entries 2-5). The employment of other media such as DMF and 
EtOH also failed to give acceptable yield of azobenzene 2a, which 
indicates DMSO may play roles more than solvent (Table 1, entries 
6-7). During the optimization process, (methylsulfonyl) methane 
was detected by GC-MS when utilizing DMSO. When a reticulated 
Pt was used as the anode, the yield of azo product 2a was dra-
matically decreased (Table 1, entry 8). Either lower (10 mA) or 
higher (25 mA) constant current (compared to 20 mA) leads to 
lower yields (Table 1, entries 9-10). We did not observe azo prod-
uct 2a when the reaction was carried out in the absence of cur-
rent or electrolyte (Table 1, entries 11-12). 

Under the optimized conditions, we investigated various aro-
matic nitro compounds for this reductive homocoupling reaction 
(Scheme 2). A 76% isolated yield of azo product 2a was achieved 
using nitrobenzene (1a) as model substrate. Electron-rich aro-
matic nitro compounds, such as methyl, ethyl and methoxy groups 
in the para position, reacted smoothly to furnish the correspond-
ing azo products 2b-2d in excellent yields. Halo-substituted nitro-
benzenes (1e-1h) could also be used. It should be noted that the 
use of 4-iodo-nitrobenzene 1h gave access to product 2h in 73% 
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yield and C–I bond is suitable for this reaction system. An isolated 
yield was reduced to 51% using 4-nitrobenzonitrile (1i) as the re-
actant. Interestingly, steric factors do not seem to play a role, 
whether the substituents were at ortho or meta position. For ex-
ample, p-methylnitrobenzene (1b), m-methylnitrobenzene (1k), 
o-methylnitrobenzene (1r) proceeded smoothly to give the corre-
sponding azo products in 73-87% yields. Nitrobenzenes with two 
functional groups also reacted well giving the aromatic azo prod-
ucts in good yields (2v and 2w). It is noteworthy that the ethynyl 
group is well tolerated under this reaction condition, and the 
ethynyl-substituted aromatic azo compounds 2x could be used for 
further Sonogashira coupling or addition reactions. In this reac-
tion, sensitive and active hydroxy group substituent on benzene 
ring was well tolerated, yielding azobenzene products (2y and 2z) 
in good yields.  

Scheme 2 Symmetric aromatic azo compounds under standard 
conditionsa. 
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aReaction conditions: anode: graphite rod (6 mm) and cathode: Pt foil (1.0 
x 1.0 cm2), constant current = 20 mA, 1a (0.5 mmol), NH4Cl (1.5 mmol), 
DMSO (8 mL) in an undivided cell, rt, air, 5 h. b Isolated yield based on 1a. 

Next, the formation of unsymmetric aromatic azo compounds 
were also explored (Scheme 3). Unsymmetric azo product 2bg as a 
major product was selectively achieved in 57% yield when 
p-methylnitrobenzene (1b) was reacted with equimolar amount of 
4-bromonitrobenzene (1g). Similar yield was obtained when 
4-methoxyaniline (1d) was treated with 4-bromoaniline (1g). This 
heterocoupling approach is also applicable for the synthesis of 
push-pull-type azobenzenes 2bi and 2ed in moderate yields. The 
cross-dimerization reactions of an electron-rich p-methoxy nitro-
benzene (1d) with p-methylnitrobenzene (1b) and nitrobenzene 
(1a) also lead to give unsymmetric azobenzenes 2bd and 2ad in 
47% and 51% yield, respectively. 

 
 

Scheme 3. Unsymmetrically substituted Azo Compound preparation 
under Standard conditions. 
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Reaction conditions: anode: graphite rod (6 mm) and cathode: Pt foil (1.0 x 
1.0 cm2), constant current = 20 mA, 1 (0.25 mmol), NH4Cl (1.5 mmol), 
DMSO (8 mL) in an undivided cell, rt, air, 5-6 h. Isolated yields. 

Scheme 4. Control experiments under various conditions. 
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Reaction conditions: anode: graphite rod (6 mm) and cathode: Pt foil (1.0 x 
1.0 cm2), constant current = 20 mA, 5 (0.5 mmol), NH4Cl (1.5 mmol), DMSO 
(8 mL) in an undivided cell, rt, air, 5-6 h. Isolated yields. 

Furthermore, the treatment of 2,2'-dinitro-1,1'-biphenyl (5a) 
gave intramolecular cyclization product (6a) in 75% yield. The 
target product (6b) can be obtained when using 
4,4'-dibromo-2,2'-dinitro-1,1'-biphenyl. It is noteworthy that eight 
membered ring product 6c was obtained when using 
1,2-bis(2-nitrophenyl)ethane (5c). Other eight membered ring 
products 6d-6g can also be obtained in moderate yields (Scheme 
4). We also conducted cyclic voltammetry (CV) experiments (see 
Supporting Information, Fig S3). The reductive peak of 1b was 
recorded at -1.143 V vs SCE and 5a at -1.280 V vs SCE in ethanol. 

 
 
 
 
 
 
 
 

Scheme 5. Time-conversion plot for the catalytic reduction of ni-
trobenzene into azobenzene. 
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In order to better understand this potential reaction pathway, 

we then carried out reaction time tracking experiment of nitro-
benzene (1a) conversion to azobenzene (2a) through gas chroma-
tography (GC) analysis (Scheme 5). In the early stage of electro-
chemical reduction coupling reaction, the concentration of raw 
material nitrobenzene (1a) decreased continuously, while the 
concentration of azo product azobenzene (2a), intermediate 
product azoxybenzene (3a) and nitrosobenzene (4a) increased 
slowly. Meanwhile, the highest conversion of nitrobenzene (4a) 
was 8% in 150 min, and then it was completely converted after 
210 min. At the same time, the intermediate product azoxyben-
zene (3a) reached a threshold of 42% conversion, and then the 
concentration decreased to 18%. The evolution of the concentra-
tion of azoxybenzene (3a) and nitrosobenzene (4a) suggests a 
reaction pathway, in which the nitroaromatic compound is initially 
reduced to nitrosobenzene (4a), which quickly dimerize to form 
azoxybenzene (3a), and finally to the corresponding azobenzene 
(2a). 
Scheme 6. Possible reaction pathway. 
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On the basis of our experimental results and precedent reports, 

a possible mechanism for this reaction is proposed, as depicted in 
Scheme 6. Reduction of nitrobenzene (1a) at cathode could gen-
erate a nitrosobenzene (4a) intermediately, and then the dimeriza-
tion was occurred quickly to form azoxybenzene (3a), followed by 
a further reduction to generate target product azobenzene (2a). At 
the anode, the solvent DMSO was oxidized to give (methyl-
sulfonyl)methane, which was detected by GC-MS. 

Conclusions 

In summary, we demonstrated an efficient and low ener-
gy-consuming electrochemical reduction procedure for nitro to 
construct a N=N double bond under mild reaction conditions. This 
protocol was carried out under ambient conditions in DMSO and 
provided a straightforward route for the synthesis of symmetric, 
unsymmetric and cyclic azo compounds. 

Experimental 

General procedure for the electrochemical reaction  
In an undivided three-necked flask (25 mL), 

4-methylnitrobenzene (0.5 mmol, 69 mg), NH4Cl (1.5 mmol, 81 mg) 
and DMSO (8 mL) were continuously added. The flask was 
equipped with platinum plate electrode (1.0×1.0 cm2) as the 
cathode and graphite rod (Φ = 6 mm) as the anode. The reaction 
mixture was stirred and electrolyzed at a constant current of 20 
mA under air at room temperature for 5 h. After the reaction was 
complete, the mixture was diluted with water (30 mL) and then 
extracted by EtOAc (10 mL×3). The combined organic phases were 
dried over anhydrous Na2SO4, filtered, concentrated in vacuo and 
the crude product was obtained. The pure product was obtained 
by silica gel chromatography using petroleum ether/ ethyl acetate 
(100:1) as eluent. 
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