Antinociceptive Effects of *N*-Acyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridine in Mice: Structure–Activity Relation Study of Matrine-Type Alkaloids Part II

Seiichi Kobashi, Masayuki Takizawa, Hajime Kubo, Takayasu Yamauchi, and Kimio Higashiyama*

Faculty of Medicinal Chemistry, Hoshi University; 4–41, Ebara 2-chome, Shinagawa-ku, Tokyo 142–8501, Japan. Received August 28, 2002; accepted November 14, 2002

N-Acyloctahydropyrido[3,2,1-ij][1,6]naphthyridines were synthesized as derivatives of matrine-type alkaloids, and the structure-activity relations were examined by the acetic acid-induced abdominal contraction test. The antinociceptive potencies of N-acyloctahydropyrido[3,2,1-ij][1,6]naphthyridines were significantly lower than those of (+)-matrine. The antinociceptive effects of N-benzyloctahydropyrido[3,2,1-ij][1,6]naphthyridines are approximately 5.6 to 6.5 times less than those of N-benzyloctahydropyrido[3,2,1-ij][1,6]naphthyridine. These findings suggest that the amide group of matrine-type alkaloids is an essential functional group that influences antinociceptive potency. The antinociceptive effect of 4c was markedly antagonized by pretreatment with Naloxone, and that of 3c partially so.

Key words structure-activity relationship; antinociception; matrine

We reported previously that (+)-matrine 1, a typical matrine-type lupine alkaloid produced by some Sophora plants (Leguminosae), has antinociceptive properties identical to those of pentazocine, and these are mediated mainly through activation of κ -opioid receptors and partially through μ -opioid receptors.¹⁾ (+)-Allomatrine 2, which is the C-6 epimer of 1, also has antinociceptive properties, its potency is onethird the potency of 1. The effects of (+)-allomatrine are mediated only through activation of κ -opioid receptors.²⁾ The structure-activity relation of this antinociceptive effect is of interest because the structure of the matrine-type alkaloids differs from the structures of conventional κ -opioid receptor agonists such as ethylketocyclazocine, U-50,488,34 and TRK-820⁵) (Chart 1). The matrine-type alkaloids may serve as κ -opioid receptor agonist drugs that are more selective and lack the undesirable morphine-like side effects of existing drugs. We reported previously in our study of antinociceptive effects of 1-acyl-4-dimethylaminopiperidines that the amide group of (+)-matrine 1 is essential for antinociceptive potency.⁶⁾ The *N*-acyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridines 3a-c and 4a-c were synthesized as derivatives of the matrine-type alkaloids. They included the amide group and the A, B, and C rings of matrine-type alkaloids because they were predicted to comprise the pharmacophore for the antinociceptive effect. N-Benzyloctahydropyrido[3,2,1-ij]-

[1,6]naphthyridines 8 and 9 were made from 3c and 4c to confirm the pharmacophore prediction. The antinociceptive effects of these compounds were tested with the acetic acid-induced abdominal contraction test (writhing test) to clarify structure–activity relations.

Synthesis 1-Benzyl-4-piperidone 5 was bisalkylated with acrylonitrile via the Stork enamine synthesis.⁷⁾ A mixture of bis- and monoalkylated compounds was hydrogenated with 20% palladium hydroxide on carbon to the corresponding amine 6 in 62% yield. We determined that both 3- and 5cyanoethyl groups were *cis* configuration, because six peaks were observed by ¹³C-NMR spectra. The amine 6 was acylated with acetic anhydride (7a: R=Me, 92%), pentanoyl chloride (7b: R=Bu, 94%), and benzoyl chloride (7c: R=Ph, 67%) in the presence of triethylamine. Reductive cyclization^{8,9)} of 7a-c was accomplished with 5% palladium on carbon in glacial acetic acid at room temperature under a hydrogen pressure (5 atm) to give compounds 3a-c in 12 to 19% yields and 4a—c in 8 to 11% yields (Chart 3). We determined the structure of 3a-c and 4a-c by comparing those chemical shifts of 10b position on ¹³C-NMR spectra. Compounds 3c and 4c were reduced with lithium aluminum hydride, to give amines 8 and 9 in 81 and 83% yields, respectively (Chart 4).

Acetic Acid-Induced Abdominal Contraction Assay

Chart 1

* To whom correspondence should be addressed. e-mail: kimio@hoshi.ac.jp

Reagents and reaction conditions: (i) pyrrolidine, benzene, reflux 48 h; (ii) acrylonitrile, EtOH reflux 48 h; (iii) 25% AcOH rt 1 h; (iv) $H_2/20\%$ Pd(OH)₂–C, EtOH rt 24 h; (v) Ac₂O or RCOCl or RCOCl (R=Bu, Ph), Et₃N, CH₂Cl₂ 0 °C 1 h; (vi) $H_2/5\%$ Pd–C, AcOH 5 atm rt 48 h.

Chart 3

Reagents and reaction conditions: (i) LiAlH_4 , THF reflux 2 h.

Char 4

(Writhing Test) and Data Analysis For writhing test and data analysis refer to our previous work.⁶⁾ Opioid receptor antagonist Naloxone (1 mg/kg, i.p.) was dissolved in saline, and administered 30 min before each drug.

RESULTS

Compounds 3a—c (doses of 10—100 mg/kg, s.c.) produced dose-dependent inhibition of the writhing response in mice (Fig. 1). The ED₅₀ values (mg/kg with 95% confidence limits) were 35.6 mg/kg (-127.9—199.2) for 3a, 24.7 mg/kg (-81.8—171.3) for 3b, and 37.5 mg/kg (15.7—59.3) for 3c. Compounds 4a—c (doses of 10—100 mg/kg, s.c.) also produced dose-dependent inhibition of the writhing response in

Fig. 1. Dose–Response Lines for the Antinociceptive Effect of s.c. Administration of (+)-Matrine 1 (●), (+)-Allomatrine 2 (●), 3a (○), 3b (△), 3c (□) in the Acid-Induced Abdominal Contraction Assay in Mice Each point represents the mean±S.E. of 10 mice.

Fig. 2. Dose–Response Lines for the Antinociceptive Effect of s.c. Administration of (+)-Matrine 1 (●), (+)-Allomatrine 2 (●), 4a (○), 4b (△), 4c (□) in the Acid-Induced Abdominal Contraction Assay in Mice Each point represents the mean±S.E. of 10 mice.

Fig. 3. The Antinocic eptive Effect of s.c. Administration of Amide Compounds 3c and 4c in the Acid-Induced Abdominal Contraction Assay in Mice

*** p < 0.001 *versus* the corresponding amine compounds **8** and **9**. Each column represents the mean with S.E. of 10 mice in each group.

mice (Fig. 2). The ED_{50} values (mg/kg with 95% confidence limits) were 56.0 mg/kg (25.5—86.5) for **4a**, 40.5 mg/kg (28.4—52.5) for **4b**, and 8.6 mg/kg (0.7—107.1) for **4c**. All drugs with the amide group produced dose-dependent inhibition of the writhing response in mice. The antinociceptive potencies of **8** and **9** (100 mg/kg) were significantly lower than those of the corresponding amides **3c** and **4c** (Fig. 3).

The antinociceptive effect of 4c was markedly antagonized by pretreatment with Naloxone, and that of 3c was partially antagonized (Fig. 4).

Fig. 4. Effects of Naloxone on the Antinociceptive Effects of **3c** and **4c** (100 mg/kg, s.c.) in mice

Naloxone (1 mg/kg) was injected i.p. 30 min before the injection of **3c** and **4c**. Each column represents the mean with S.E. of 10 mice in each group. *p<0.05, ***p<0.001 versus the respective group.

DISCUSSION

The present experiments show that compounds 3a—c and 4a—c, which include the amide group and the A, B, and C rings of matrine-type alkaloids, produced dose-dependent antinociception in mice. The antinociceptive effects of 3c and 4c are approximately 5.6 to 6.5 times greater than those of 8 and 9. These findings showed that the amide group of (+)-matrine 1 is essential for antinociceptive potency.

The antinociceptive effect of 4c was markedly antagonized by pretreatment with naloxone. It was clarified that allomatrine derivative 4c produced the antinociceptive effect mainly through the activation of opioid receptor, while that of 3cwas partially antagonized by pretreatment with naloxone. Like the above, it was determined that matrine derivative 3cproduced the antinociceptive effect partially through the activation of opioid receptor.

The antinociceptive potency of compounds 3c and 4c, which contain a benzoyl group, is greater than that of the other synthesized compounds 3a—b and 4a, b. Thus, matrine derivatives with greater potencies may be developed by improving the lipophilicity with an acyl group. The antinociceptive potencies of 3a—c and 4a—c are greater than those of the 1-acyl-4-dialkylaminopiperidines, which have only the C ring of 1.⁵⁾ It is conceivable that the antinociceptive potency of the latter compounds depends on the lipophilicity of the molecule and on the distance of the amide from the tertiary amino groups. We obtained some useful information regarding structure–activity relations in this study, but we failed to identify any compound with an antinociceptive potency greater than that of 1.

MATERIALS AND METHODS

General High-resolution MS (HR-MS) were measured at 70 eV using a direct inlet system on a JEOL D300 spectrometer. ¹H-NMR (270 MHz) and ¹³C-NMR (67.8 MHz) spectra were recorded using tetramethylsilane (TMS) as an internal standard with a JEOL JNM-LA270 spectrometer. IR spectra were measured with a JASCO FT/IR-200 spectrometer. Column chromatography was carried out on Silica gel 60 (100—210 μ m, Kanto Chemical Co., Inc.), Wako gel C-300 (45—75 μ m, Wako Pure Chemical Industries, Ltd.), and Lichrospher Si 60 (40—63 μ m, Merck).

cis-3,5-Dicyanoethyl-4-oxo-piperidine, 6 A mixture of the piperidone 5 (10.02 g, 52.94 mmol) and pyrrolidine (15.30 g, 215.12 mmol) in benzene (50 ml) was refluxed with a dean-stark trap for 48 h. The solvent was evaporated and the residue was dissolved in anhydrous EtOH (50 ml). Acrylonitrile (11.20 g, 226.16 mmol) was added to the solution and the reaction mixture was refluxed for 48 h. The solvent was evaporated, and the residue was dissolved in 25% AcOH (50 ml) and stirred at room temperature for 1 h. The solution was extracted with CH₂Cl₂ and the extract was washed with 5% HCl and 5% NaOH. The organic phase was dried over anhydrous sodium sulfate, filtered, and evaporated to give the crude product, which was difficult to purify. To a solution of the crude product in EtOH (50 ml) was added $Pd(OH)_2$ on carbon (2.0 g, 20% w/w), hydrogenated at atmospheric pressure at room temperature for 24 h. Catalyst was filtered off, and solvent was evaporated. The residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH/28% $NH_4OH = 100:9:1$) to give the title compound as a pale vellow oil (6.74 g, 32.84 mmol, 62%): ¹H-NMR (CDCl₃) δ : 1.40-1.55 (2H, m), 1.97 (1H, s), 2.03-2.16 (2H, m), 2.45-2.51 (4H, m), 2.57-2.65 (4H, m), 3.49 (2H, dd, J=6.9, 12.8 Hz). ¹³C-NMR (CDCl₃) δ : 15.0, 22.3, 51.1, 54.0, 119.7, 210.0. IR (Film) cm^{-1} ; 1700 (C=O), 2240 (C=N), 3330 (NH). HR-MS m/z: Found 205.1191 (Calcd for C₁₁H₁₅N₃O 205.1215).

cis-1-Acetyl-3,5-dicyanoethyl-4-oxo-piperidine, 7a To a solution of the amine 6 (5.36 g, 26.11 mmol) and triethylamine (10.22 g, 101.0 mmol) in CH_2Cl_2 (25 ml), cooled to 0°C under nitrogen, was added acetyl chloride (3.98 g, 50.70 mmol). The reaction mixture was stirred at 0 °C for 2 h, then sat. K_2CO_3 was added, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with 10% HCl, dried over anhydrous (Na₂SO₄) and concentrated in vacuo. The residue was purified by silica gel chromatography (CH₂Cl₂/MeOH/28%) $NH_4OH=100:9:1$) and gave the title compound as a pale yellow oil (5.91 g, 23.90 mmol, 92%): ¹H-NMR (CDCl₃) δ : 1.50-1.70 (2H, m), 1.99-2.21 (2H, m), 2.22 (3H, s), 2.45—2.75 (7H, m), 3.08 (1H, dd, J=12.0, 13.2 Hz), 4.17 (1H, ddd, J=2.8, 6.0, 13.2 Hz), 4.96 (1H, ddd, J=2.8, 6.0, 12.1 Hz). ¹³C-NMR (CDCl₃) δ : 14.0, 20.5, 21.3, 21.6, 45.5, 47.1, 47.5, 50.0, 118.8, 168.2, 207.1. IR (Film) cm⁻¹; 1640 (amide C=O), 1710 (C=O), 2240 (C=N). HR-MS m/z: Found 248.1415 (M+1) (Calcd for C₁₃H₁₈N₃O 2248.1399).

cis-1-Pentanoyl-3,5-dicyanoethyl-4-oxo-piperidine, 7b As described for the preparation of 7a, the amine 6 (2.90 g, 14.13 mmol) was acylated with pentanoyl chloride (2.46 g, 20.40 mmol) and triethylamine (4.31 g, 42.59 mmol) in CH₂Cl₂ (15 ml), and purified by silica gel chromatography (CH₂Cl₂/MeOH/28% NH₄OH=180:9:1): colorless crystal, yield 3.86 g (94%); mp 93 °C. ¹H-NMR (CDCl₃) δ : 0.96 (3H, t, *J*=7.3 Hz), 1.34—1.48 (2H, m), 1.56—1.73 (4H, m), 2.11-2.18 (4H, m), 2.41-2.73 (7H, m), 3.04 (1H, t, J=12.4 Hz), 4.21 (1H, d, J=12.4 Hz), 4.98 (1H, d, J=10.2 Hz). ¹³C-NMR (CDCl₃) δ : 13.2, 14.4, 21.6, 21.7, 21.7, 26.6, 32.0, 46.0, 47.5, 48.0, 49.6, 118.8, 171.0, 207.3. IR (KBr) cm⁻¹; 1630 (amide C=O), 1710 (C=O), 2240 (C=N). HR-MS m/z: Found 289.1791 (Calcd for $C_{16}H_{23}N_3O_2$) 289.1790).

cis-1-Benzoyl-3,5-dicyanoethyl-4-oxo-piperidine, 7c As

described for the preparation of **7a**, the amine **6** (4.18 g, 20.36 mmol) was acylated with benzoyl chloride (4.36 g, 31.02 mmol) and triethylamine (6.21 g, 61.37 mmol) in CH₂Cl₂ (20 ml), and purified by silica gel chromatography (CH₂Cl₂/MeOH/28% NH₄OH=180:9:1): colorless crystal, yield 4.36 g (67%); mp 100 °C. (¹H-NMR was unanalyzable by the rotation obstacle of Ph group.) ¹³C-NMR (CDCl₃) δ : 14.0, 21.6, 46.5, 47.5, 49.7, 51.4, 118.7, 126.2, 128.0, 129.7, 134.0, 169.5, 207.1. IR (KBr) cm⁻¹; 1640 (amide C=O), 1720 (C=O), 2240 (C=N). HR-MS *m/z*: Found 309.1503 (Calcd for C₁₈H₁₉N₃O₂ 309.1477).

all *trans*-2-Acetyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridine, 3a, all *cis*-2-Acetyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridine, 4a Palladium on carbon (1.5 g, 5% w/w) was added to a solution of dinitrile 7a (3.06 g, 12.37 mmol) in AcOH (240 ml) and the mixture was hydrogenated at 4.5 atm and room temperature for 48 h. The suspension was filtered off, and the solvent was evaporated. The residue was diluted with CH_2Cl_2 , and the organic phase was washed with aqueous NaOH (10% w/v). The organic phase was dried over anhydrous NaSO₄ and evaporated, and the residue was purified by chromatography on silica gel ($CH_2Cl_2/MeOH/28\%$ NH₄OH=140:9:1) to give matrine-type derivative **3a** as a pale yellow oil (319 mg, 1.43 mmol, 12%) and allomatrine-type derivative **4a** as a pale yellow oil (223 mg, 1.03 mmol, 8%).

3a: ¹H-NMR (CDCl₃) δ : 1.43—1.79 (10H,m), 1.90—2.00 (1H, m), 2.09 (3H, s), 2.09—2.11 (2H, m), 2.79 (2H, d, J=12.7 Hz), 3.01 (1H, dd, J=12.5, 12.9 Hz), 3.32 (1H, ddd, J=1.7, 4.3, 12.9 Hz), 3.57 (1H, t, J=12.9 Hz), 4.24 (1H, ddd, J=1.7, 4.3, 12.5 Hz). ¹³C-NMR (CDCl₃) δ : 20.9, 21.1, 27.4, 27.5, 35.2, 36.3, 40.7, 46.0, 56.7, 56.8, 62.6, 168.3. IR (Film) cm⁻¹; 1645 (amide C=O). HR-MS *m/z*: Found 222.1715 (Calcd for C₁₃H₂₂N₂O 222.1732).

4a: ¹H-NMR (CDCl₃) δ : 0.92—1.02 (2H, m), 1.31 (1H, t, $J=9.6\,\text{Hz}$), 1.39—1.51 (2H, m), 1.65—1.73 (6H, m), 1.98—2.03 (2H, m), 2.08 (3H, s), 2.21 (1H, dd, J=12.2, 13.2 Hz), 2.77 (1H, dd, J=12.2, 13.1 Hz), 2.86 (2H, d, $J=11.3\,\text{Hz}$), 3.65 (1H, ddd, J=2.3, 3.8, 13.2 Hz), 4.56 (1H, ddd, J=2.3, 3.8, 13.2 Hz), 4.56 (1H, ddd, J=2.3, 3.8, 13.2 Hz). ¹³C-NMR (CDCl₃) δ : 21.4, 24.5, 28.0, 28.1, 39.2, 40.1, 46.4, 51.5, 56.1, 56.2, 71.2, 168.6. IR (Film) cm⁻¹; 1640 (amide C=O). HR-MS *m/z*: Found 222.1707 (Calcd for C₁₃H₂₂N₂O 222.1732).

all *trans*-2-Pentanoyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridine, 3b, all *cis*-2-Pentanoyloctahydropyrido[3,2,1*ij*][1,6]naphthyridine, 4b As described for the preparation of 3a and 4a, the dinitrile 7b (2.93 g, 10.12 mmol) was hydrogenated with Pd–C (2.0 g, 5% w/w) in AcOH (200 ml), and purified by silica gel chormatography (CH₂Cl₂/MeOH/ 28% NH₄OH=140:9:1): yielded matrine-type derivative 3b as a pale yellow oil (517 mg, 1.96 mmol, 19%) and allomatrine-type derivative 4b as a pale yellow oil (298 mg, 1.13 mmol, 11%).

3b: ¹H-NMR (CDCl₃) δ : 0.93 (3H, m), 1.29—1.70 (14H, m), 1.95 (2H, dd, J=10.7, 11.4 Hz), 2.18 (1H, br), 2.32 (2H, t, J=8.7 Hz), 2.79 (2H, d, J=10.7 Hz), 3.00 (1H, dd, J=12.5, 13.0 Hz), 3.37 (1H, d, J=9.4 Hz), 3.54 (1H, dd, J=12.4, 12.5 Hz), 4.26 (1H, d, J=13.0 Hz). ¹³C-NMR (CDCl₃) δ : 13.3, 20.6, 21.8, 26.9, 27.1, 32.1, 35.0, 36.1, 40.3, 44.7, 56.3, 62.2, 170.1. IR (Film) cm⁻¹; 1630 (amide C=O). HR-MS *m/z*: Found 264.2219 (Calcd for C₁₆H₂₈N₂O 264.2202).

4b: ¹H-NMR (CDCl₃) δ: 0.88—1.03 (5H, m), 1.27—1.45 (5H, m), 1.54—1.68 (8H, m), 1.9—2.02 (2H, m), 2.20 (1H, dd, J=4.13 Hz), 2.33 (2H, dt, J=3.8, 7.5 Hz), 2.72 (1H, dd, J=11.4, 13.3 Hz), 2.86 (2H, d, J=11.5 Hz), 3.70 (1H, ddd, J=2.3, 3.5, 13.3 Hz), 4.58 (1H, ddd, J=2.3, 3.5, 13.0 Hz). ¹³C-NMR (CDCl₃) δ: 13.4, 21.8, 24.1, 26.8, 27.5, 32.1, 38.7, 39.6, 45.8, 50.0, 55.5, 70.6, 170.1. IR (Film) cm⁻¹; 1645 (amide C=O). HR-MS *m/z*: Found 264.2215 (Calcd for C₁₆H₂₈N₂O 264.2202).

all *trans*-2-Benzoyloctahydropyrido[3,2,1-*ij*][1,6]naphthyridine, 3c, all *cis*-2-Benzoyloctahydropyrido[3,2,1*ij*][1,6]naphthyridine, 4c As described for the preparation of 3a and 4a, the dinitrile 7c (3.90 g, 12.61 mmol) was hydrogenated with Pd–C (2.0 g, 5% w/w) in AcOH (130 ml), and purified by silica gel chromatography (CH₂Cl₂/MeOH/ 28% NH₄OH=140:9:1): yielded matrine-type derivative 3c (520 mg, 1.83 mmol, 15%) and allomatrine-type derivative 4b (380 mg, 1.34 mmol, 11%) as colorless crystals.

3c: mp 115 °C. (¹H-NMR was unanalyzable by the rotation obstacle of Ph group.) ¹³C-NMR (CDCl₃) δ : 21.1, 27.5, 27.6, 35.4, 36.6, 41.5, 47.2, 57.0, 62.9, 126.6, 128.2, 129.2, 136.3, 170.0. IR (KBr) cm⁻¹; 1630 (amide C=O). HR-MS *m/z*: Found 284.1873 (Calcd for C₁₈H₂₄N₂O 284.1889).

4c: mp 100 °C. (¹H-NMR was unanalyzable by the rotation obstacle of Ph group.) ¹³C-NMR (CDCl₃) δ : 23.8, 27.2, 38.6, 39.5, 46.3, 51.9, 55.3, 70.4, 126.0, 127.6, 128.7, 135.3, 169.0. IR (KBr) cm⁻¹; 1630 (amide C=O). HR-MS *m/z*: Found 284.1908 (Calcd for C₁₈H₂₄N₂O 284.1889).

all trans-2-Benzyldecahydropyrido[3,2,1-ij][1,6]naphthyridine, 8 To a solution of lithium aluminum hydride $(LiAlH_4)$ (59 mg, 1.55 mmol) in tetrahydrofuran (THF) (2 ml) was added the solution of the amide **3c** (0.32 mg, 1.13 ms)mmol) in THF (1 ml), and then refluxed under nitrogen atmosphere for 2 h. The reaction mixture was quenched with water, and the solvent was evaporated. The residue was dissolved in CH₂Cl₂, washed with saturated K₂CO₃ and brine, dried over Na₂SO₄, and the solvent was evaporated. The residue was purified by silica gel column chromatography $(CH_2Cl_2/MeOH/28\% NH_4OH=190:9:1)$, gave matrine-type derivative 8 as a pale yellow oil (0.25 g, 81%). ¹H-NMR $(CDCl_3) \delta: 1.26 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (6H, m), 1.66 - 2.03 (7H, m), 2.38 - 1.54 (7H, m), 2.38 - 1.54 (7H, m), 1.66 - 1.54 (7H, m), 2.38 - 1.54 (7H, m), 1.66 - 1.54 (7H, m), 2.38 - 1.54 (7H, m), 1.66 - 1.54 (7H, m), 1.54 1.$ 2.55 (4H, m), 2.77 (2H, dm, J=10.9 Hz), 3.53 (2H, s), 7.22—7.34 (5H, aromatic). ¹³C-NMR (CDCl₃) δ : 21.9, 28.2, 29.3, 35.7, 53.4, 57.3, 63.1, 63.3, 126.7, 128.0, 129.0, 138.9. HR-MS m/z: Found 270.2106 (Calcd for C₁₈H₂₆N₂ 270.2096).

all *cis*-2-Benzyldecahydropyrido[3,2,1-*ij*][1,6]naphthyridine, 9 As described for the preparation of 8, the amide 4c (0.34 g, 1.20 mmol) was reduced with LiAlH₄ (60 mg, 1.56 mmol), and purified by silica gel column chromatography (CH₂Cl₂/MeOH/28% NH₄OH=90:9:1): colorless crystal, yield 0.27 g (83%); mp 82 °C. ¹H-NMR (CDCl₃) δ : 0.90 (1H, ddd, *J*=4.9, 11.9, 11.9 Hz), 0.94 (1H, ddd, *J*=4.9, 11.9, 11.9 Hz), 1.53—1.77 (10H, m), 1.94 (2H, ddd, *J*=4.1, 11.2, 11.2 Hz), 2.76 (1H, dm, *J*=9.4 Hz), 2.83 (1H, dm, *J*=11.2 Hz), 3.46 (2H, s), 7.20—7.31 (5H, aromatic). ¹³C-NMR (CDCl₃) δ : 24.8, 28.6, 39.2, 56.3, 59.2, 62.9, 71.5, 126.8, 128.1, 129.0, 138.3. HR-MS *m/z*: Found 270.2150 (Calcd for C₁₈H₂₆N₂ 270.2096).

Acknowledgements This work was supported in part by

a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

- Kamei J., Xiao P., Ohsawa M., Kubo H., Higashiyama K., Takahashi H., Li J.-S., Nagase H., Ohmiya S., *Eur. J. Pharmacol.*, **337**, 223–226 (1997).
- Xiao P., Kubo H., Ohsawa M., Higashiyama K., Nagase H., Yan Y.-N., Li J.-S., Kamei J., Ohmiya S., *Planta Med.*, 65, 230–233 (1999).
- Halfpenny P. R., Horwell D. C., Hughes J., Hunter J. C., Ress D. C., J. Med. Chem., 33, 286—291 (1990).

- 4) Zimmerman D. M., Leander J. D., J. Med. Chem., 33, 895–902 (1990).
- Nagase H., Hayakawa J., Kawamura K., Kawai K., Takezawa Y., Matsuura H., Tajima C., Endo T., *Chem. Pharm. Bull.*, 46, 366–369 (1998).
- Kobashi S., Kubo H., Yamauchi T., Higashiyama K., *Biol. Pharm.* Bull., 25, 1030–1034 (2002).
- Stork G., Brizzolara A., Landesman H., Szmuszkovicz J., Terrell R., J. Am. Chem. Soc., 85, 207–222 (1963).
- Mandell L., Piper J. U., Singh K. P., J. Org. Chem., 28, 3440—3442 (1963).
- Mandell L., Singh K. P., Freeman W. J., J. Am. Chem. Soc., 87, 5234– 5236 (1965).