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Despite impressive advances over the years,[1] there are still
important transformations that lack catalytic asymmetric
variants. While Lewis acid catalyzed additions of allylsilanes
to carbonyl compounds[2] and acetals[3] have been well studied
using catalytic,[4] as well as auxiliary-based methods to control
absolute configuration,[5] to the best of our knowledge, there
are no effective methods for catalyzing the asymmetric 1,4-
addition of allyltrimethylsilane to unsaturated carbonyl com-
pounds.[6] In that regard, we report herein a catalytic
enantioselective conjugate addition of allyltrimethylsilane to
various activated cyclic enones with selectivities surpassing
98% ee. The 1,4-addition of the air- and moisture-stable
nucleophile to unsaturated carbonyl compounds proceeds to
> 95% conversion in the presence of Cu(OTf)2 (10 mol%)
with the commercially available di(tert-butyl)bis(oxazoline)
(box) ligand (2).[7] We show how these products can be
functionalized to a variety of useful enantiomerically
enriched systems.

Our initial studies into the development of a chiral Lewis
acid catalyst indicated that simple cyclic and acyclic a,b-
unsaturated carbonyls (ketones and esters) did not react with
a variety of metal–ligand combinations.[8] We therefore
sought to activate the substrate by installation of a second
electron-withdrawing/chelating group at the a-position of the
enone (i.e., 1). In the presence of Cu(OTf)2 (7 mol%) and
bis(oxazoline) ligand 2 (8 mol%) in Cl(CH2)2Cl, we obtained
the desired 1,4-allyl-addition product 3 in > 95% conversion
(after 30 min at 0 8C) and 72% ee as a mixture of keto–enol
tautomers (Scheme 1). Alternative solvents (CH2Cl2, Et2O,
toluene, EtOAc, etc.) and metal salts, including other copper
salts, resulted in lower selectivities.[9] Other chiral ligands
(e.g., peptide-based,[10] salen,[11] Trost ligand[12]) led to high
conversion (> 95%), but with low selectivity (< 5% ee).

To identify a more effective catalyst, we prepared and
screened approximately 40 mono- and bis(oxazoline) ligands.
A selection of the bis(oxazoline) ligands studied are illus-
trated in Table 1. Phenylglycine- and phenylalanine-derived
ligands (7 and 8, respectively) gave high conversions, but low

enantioselectivities were observed (Table 1, entries 5 and 6).
Modifying the gem-dimethyl head group of ligand 2 to a
cyclopropyl (5) or cyclobutyl head group (6) has been
reported to change the bite angle at the metal center, often
with drastic changes in selectivity.[13] In this case, however,
these modifications had minimal effects on the selectivity
(72% ee with 2 vs. 70% ee with 5 and 6, Table 1, entries 3 and
4). A methylene linker was also examined, but the selectivity
dropped significantly to 11% ee (Table 1, entry 1). A triden-
tate Py-box ligand 9,[14] bearing an additional Lewis basic
moiety, resulted in diminished conversion (Table 1, entry 7).
We also tested unsymmetrical bis(oxazoline) and mono(ox-
azoline) ligands.[9] Ligand 10 delivered the desired product
efficiently, but in low enantioselectivity (38% ee, Table 1,
entry 8). Shorter and longer linkers between the oxazoline

Scheme 1. Copper/box-catalyzed asymmetric allylation of activated
enone substrate 1.

Table 1: Ligand evaluation studies for an enantioselective Hosomi–
Sakurai conjugate allylation.[a]

Entry Ligand R1 R2 Conv. [%] ee [%]

1 4 H tBu >95 11
2 2 CH3 tBu >95 72
3 5 -(CH2)2- tBu >95 70
4 6 -(CH2)3- tBu >95 70
5 7 CH3 Ph >95 10
6 8 CH3 Bn >95 <5
7 9 – – >5 n.d.[b]

8 10 – – >95 38

[a] The reaction and conditions used are shown in Scheme 1, except the
reaction time was 14 h. [b] Not determined.
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rings were introduced, such as in oxalate- and phthalic acid-
derived ligands; however, these ligands did not lead to
improved results compared to ligand 2.[9] In addition, we also
investigated the effect of additives upon the reaction.[15]

Various desiccants (e.g., molecular sieves, MgSO4), as well
as Lewis basic additives were tested, yet none of these
resulted in enhanced selectivities.[9]

We found that the enantioselectivity could be improved
by changing the solvent to CH2Cl2, thus allowing for lower
reaction temperatures. When run at �78 8C in CH2Cl2, with
ligand 2 (11 mol%) and Cu(OTf)2 (10 mol%), product 3 was
obtained in 78% yield and 90% ee (Table 2, entry 1; cf.
Table 1, entry 2).

With this optimal chiral catalyst, we examined the scope
of the catalytic enantioselective Hosomi–Sakurai allylation
(Table 2). Five-, six-, and eight-membered ring substrates
were effectively allylated with commercially available allyl-
trimethylsilane. The six-membered ring enone 11, with gem-
dimethyl substitution at the 6-position, gave excellent enan-
tioselectivity (97% ee, 65% yield). For sterically hindered
substrates 13 and 15, higher reaction temperatures were

required for high conversions, resulting in decreased selectiv-
ities (55% ee and 64% ee, respectively). The smaller five-
membered ring substrate 17 was also allylated in moderate
selectivity (70% ee, 69% yield). As shown in entry 6, the
eight-membered ring enone 19 gave superior results, with the
reaction being carried out at room temperature (> 98% ee,
65% yield).[16] The use of the more nucleophilic methallyl-
trimethylsilane[17] with these substrates led to the correspond-
ing 1,4-addition products with lower enantioselectivities
(< 50% ee) even with slow addition of the nucleophile.
Presumably, the decrease in selectivity is due to a competitive,
non-catalyzed background reaction with this more reactive
nucleophile.

As illustrated in Scheme 2, the optically enriched allylated
products offer functionalities that can be transformed into a

variety of synthetically useful building blocks. For example,
the methyl ester can be readily decarboxylated by using
Krapcho@s method (3!21).[18] Likewise, enolization and
alkylation of the allylated product 3, followed by ring-closing
metathesis (RCM) with ruthenium alkylidene 22,[19] and
decarboxylation generates the decalin system 23. Through
the use of different ring-sized starting enones, this method
offers rapid entry into optically enriched bicyclic systems. In
the presence of second-generation Hoveyda–Grubbs catalyst
24, substrate 18 undergoes cross-metathesis with methylacry-
late to obtain selectively the E-alkene (18!25). Alterna-
tively, the ketoester functionality can be transformed into an
enolphosphate group (18!26).[20]

In conclusion, we have developed the first catalytic
enantioselective Hosomi–Sakurai conjugate allylation of
cyclic unsaturated ketoesters. The protocol does not require
special catalysts and/or preparation of the nucleophile;
Cu(OTf)2 and the ligand are both commercially available, as
well as the relatively moisture-, oxygen-, and thermally-stable
allyltrimethylsilane nucleophile. Products obtained from the
reaction are easily functionalized to a variety of useful
building blocks for target- and diversity-oriented synthesis.
Expansion of the substrate and nucleophile scope, as well as
applications to natural product synthesis are currently under
investigation.

Table 2: Copper-catalyzed enantioselective Hosomi–Sakurai conjugate
allyation of unsaturated ketoesters.[a]

Entry Enone Product t [h]
(T [8C])

Yield
[%][a]

ee
[%][b]

1[d] 45
(�78) 78 90

2[e] 48
(�50) 65 97

3[f ] 15
(0)

51 55

4[f ] 38
(23)

77[c] 64

5[g] 15
(�78) 69 70

6[d] 17
(23)

65 >98

[a] Yields of isolated products after silica gel chromatography. [b] Deter-
mined by GLC or HPLCwith a chiral stationary phase; see the Supporting
Information for details. [c] Yields of isolated products after decarbox-
ylation of the ester (2 steps). [d] Conditions: 2 (11 mol%), Cu(OTf)2
(10 mol%), allyltrimethylsilane (5 equiv) in CH2Cl2, N2. [e] CH2Cl2/
Cl(CH2)2Cl (5:1) as solvent. [f ] Cl(CH2)2Cl as solvent. [g] 3 equiv of
allyltrimethylsilane.

Scheme 2. Representative functionalizations of allylated products.
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Experimental Section
Representative procedure: Cu(OTf)2 (14.1 mg, 38.9 mmol) and ligand
2 (12.6 mg, 42.8 mmol) were weighed into a 13D 100 mm test tube in a
glovebox. The test tube was sealed with a rubber septum and then
removed from the glovebox. CH2Cl2 (1.65 mL) was added under N2.
The solution was stirred for 10 min at 23 8C. A solution of enone 1
(60.0 mg, 0.39 mmol) in CH2Cl2 (0.3 mL) was added at 23 8C, at which
point the solution turned dark purple-brown. The reaction mixture
was cooled to �78 8C and allyltrimethylsilane (309 mL, 1.95 mmol)
was added dropwise. The septum was wrapped with Teflon tape and
the mixture was stirred at�78 8C for 45 h. The reaction was quenched
with saturated aqueous NH4Cl at �78 8C, and was then allowed to
warm to room temperature. The layers were separated and the
aqueous layer was extracted with CH2Cl2 (3 D 1.5 mL). The organic
layers were combined, dried over Na2SO4, filtered, and concentrated.
The residue was purified by silica gel column chromatography (10:1
to 5:1, hexanes/Et2O) to yield product 3 as a pale yellow oil mixture of
keto–enol tautomers (59.0 mg, 0.30 mmol, 78% yield).
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