

Mendeleev Communications

Lanthanide complexes based on ethyl 2-hydroxymethylidene-3-oxobutanoate

Yulia S. Kudyakova,* Denis N. Bazhin, Yanina V. Burgart and Victor I. Saloutin

I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russian Federation. Fax: +7 343 374 5954; e-mail: kud@ios.uran.ru

DOI: 10.1016/j.mencom.2016.01.021

The reaction of europium(III) or terbium(III) chlorides with ethyl 2-hydroxymethylidene-3-oxobutanoate in the presence of 2,2'-bipyridine (2,2'-bipy) resulted in the luminescent complexes $[LnL_3] \cdot 2,2'$ -bipy (L = ethyl 2-hydroxymethylidene-3-oxobutanoate, Ln = Tb^{III} or Eu^{III}), whose molecular structure has been determined by X-ray analysis.

The synthesis of new trivalent rare earth complexes is of great interest due to their wide applications in medicine and materials science.^{1–3} The substituents of ligands influence the properties of metal complexes.^{4–7} The use of β -diketones in complexation with rare earth metal ions is an efficient approach to metal complexes possessing very bright luminescence.^{8,9} However, organic ligands based on 2-substituted 1,3-dicarbonyl compounds are less examined.

Here we studied ethyl 2-(hydroxymethylidene)-3-oxobutanoate with different substituents in carbonyl fragments as a ligand for the preparation of the luminescent complexes of europium(III) and terbium(III).

Tricarbonyl-substituted derivatives can be synthesized from β -dicarbonyl compounds by (i) acylation with acyl halides under basic conditions^{10–12} or (ii) condensation with triethyl orthoformate with the subsequent hydrolysis.¹³ To obtain target non-symmetric tricarbonyl compound **2**, 2-ethoxymethylidene-3-oxobutanoate **1** was initially synthesized by a known procedure¹⁴ in 83–87% yield *via* the condensation of ethyl acetoacetate with triethyl orthoformate in the presence of acetic anhydride. The following hydrolysis of an ethoxy substituent in ester **1** afforded ethyl 2-hydroxymethylidene-3-oxobutanoate **2** (Scheme 1).[†] Previously, the hydrolysis of ethoxymethylidene group proceeding through the copper(II) salt formation was reported.¹⁵ In this work, the direct hydrolysis was performed in water at room temperature

Synthesis of ethyl 2-hydroxymethylidene-3-oxobutanoate 2.

Method A. A solution of compound **1** (9.31 g, 0.05 mol) in water (100 ml) was stirred at room temperature for 1 h. Then, the mixture was extracted with Et₂O (2×30 ml). The organic layer was washed with water (3×20 ml) and dried over MgSO₄ for 4 h. The distillation of a crude residue *in vacuo* gave target compound **2** as colorless oil.

Scheme 1 Reagents and conditions: i, H_2O , room temperature; ii, 1% aqueous NaOH, room temperature.

without catalysts. Desired product **2** was isolated by vacuum distillation in 68% yield. The use of a 1% aqueous solution of NaOH in this process decreased the yield of compound **2** to 54% because of formation of ethyl acetoacetate as a by-product.

Published data on the structure of compound **2** are contradictory.^{15–17} For example, the product of hydrolysis of methyl 2-methoxymethylidene-3-oxobutanoate was described¹⁶ as an aldehyde. Hydroxy tautomer **2** was reported¹⁵ to exist as a mixture of two tautomers, whereas only one hydroxy derivative was described more recently.¹⁷ Based on spectral data, the enol form of product **2** was confirmed.[†] Thus, there is one high-frequency absorption band of the ethoxycarbonyl group (1719 cm⁻¹) in the IR spectrum of ester **2** and a low-field OH group signal (17.09 ppm) in the ¹H NMR spectrum. Regardless of the solvent used, enol **2** mainly exists in *E*-form (90%).

Although ethyl 2-hydroxymethylidene-3-oxobutanoate **2** is an O,O,O-tridentate ligand, there was no data on its metal complexes so far. We showed that the reaction of compound **2** with lanthanide chlorides (TbCl₃ and EuCl₃) gave complexes **3a**, b^{\ddagger} (Scheme 2). To fulfill the coordination number of a lanthanide

[‡] Lanthanide complexes **3** (general procedure). Compound **2** (1.58 g, 10 mmol) and 2,2'-bipyridine (0.47 g, 3 mmol) were added to a solution of NaOH (0.40 g, 10 mmol) in ethanol (50 ml). The resulting mixture was stirred at room temperature for 15 min. Then, the previously prepared solution of TbCl₃ or EuCl₃ (3 mmol) in water (5 ml) was added dropwise and the reaction mixture was stirred at room temperature. After 5 h, a precipitate was filtered. After filtrate evaporation, Et₂O (10 ml) was added to the crude residue with the formation of a solid. The precipitate was filtered and crystallized from hexane–Et₂O (3:1) mixture to give complexes **3a,b** as white solids.

[†] All commercially available reagents and solvents were used without additional purification.

The ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 spectrometer (400 MHz) in CDCl₃. The IR spectra were obtained on a Perkin-Elmer Spectrum One spectrometer (FT-IR) (400–4000 cm⁻¹). Elemental analysis was performed using a Perkin-Elmer PE 2400 (series II CHNS-O EA 1108) analyzer. Melting points were measured on a Stuart SMP3 apparatus in open capillaries. The luminescence spectra were recorded on a Varian Cary Eclipse spectrofluorimeter within 286–800 nm wavelength range with selective luminescence excitation at $\lambda_{exc} = 281$ (for **3a**) and 276 nm (for **3b**). Reactions were monitored by TLC with 0.20 mm Alugram Sil G/UV254 pre-coated silica gel plates (60 F₂₅₄).

Method B. A solution of ethyl 2-ethoxymethylidene-3-oxobutanoate **1** (9.31 g, 0.05 mol) in 1% aqueous NaOH (200 ml) was stirred at room temperature for 1 h. Then, the reaction mixture was treated with a 10% aqueous solution of HCl to reach pH 6 and extracted with Et_2O (2×30 ml). The product was isolated as described in *method A*.

Yield of **2**, 5.38 g (68%) (A), 4.27 g (54%) (B), bp 75–76 °C (10 Torr). IR (KBr, ν/cm^{-1}): 2985, 2938 (C–H), 1719 (br., C=O), 1636 (C=C), 1265, 1078 (C–O). ¹H NMR, δ : 9.19 (d, 1H, CH, J 6.1 Hz), 17.09 (d, 1H, OH, J 6.1 Hz); E (90%): 1.33 (t, 3H, OCH₂Me, J 7.1 Hz), 2.56 (s, 3H, Me), 4.26 (q, 2H, OCH₂Me, J 7.1 Hz); Z (10%): 1.39 (t, 3H, OCH₂Me, J 7.1 Hz), 2.53 (s, 3H, Me), 4.39 (q, 2H, OCH₂Me, J 7.1 Hz). ¹³C NMR, δ : E: 14.23 (CH₂), 26.28 (*Me*CH₂), 60.30 (*Me*CO), 107.92 (*C*=COH), 165.03 (*C*O₂Et), 187.32 (CHOH), 199.49 (MeCO). Found (%): C, 52.98; H, 6.37. Calc. for C₇H₁₀O₄ (%): C, 53.16; H, 6.28.

Scheme 2

ion, 2,2'-bipyridine (2,2'-bipy) was used as a co-ligand. Coordination compounds of Tb^{III} and Eu^{III} exhibit strong ionic fluorescence due to efficient energy transfer from a triplet state of the organic ligand to the resonance level of a lanthanide ion.¹⁸ For this reason, the luminescence spectrum of a substance is mostly determined by the complexing ion.

The structure of complex **3a** was refined by XRD analysis (Figure 1).[§] The complex formation occurs through the coordination of a Tb^{III} ion with three ligands and one 2,2'-bipy molecule. The central Tb^{III} cation is bonded with the oxygen atoms of hydroxyl and acyl groups and its coordination sphere is saturated through coordination with the nitrogen atoms of 2,2'-bipy. The complex has a trigonal prismatic geometry.

Figure 1 ORTEP view of complex 3a (thermal ellipsoids at a 50% probability at 295 K).

Terbium(III) (2,2'-*bipyridine)-tris(ethyl-2-hydroxymethylidene-3-oxo-butanoate)* **3a.** Yield, 2.08 g (88%), mp 135–136 °C. IR (DRA, ν/cm^{-1}): 3060, 2984 (C–H), 1700 (br.), 1639 (C=O), 1604 (C=C). Found (%): C, 47.34; H, 4.45; N, 3.50. Calc. for $C_{31}H_{35}N_2O_{12}Tb$ (%): C, 47.34; H, 4.49; N, 3.56.

Europium(III) (2,2'-bipyridine)-tris(ethyl-2-hydroxymethylidene-3-oxo*butanoate*) **3b**. Yield, 2.15 g (92%), mp 106–107 °C. IR (NPVO, *v*/cm⁻¹): 3061, 2984 (C-H), 1699, 1635 (C=O), 1608 (C=C). Found (%): C, 47.85; H, 4.48; N, 3.60. Calc. for $C_{31}H_{35}N_2O_{12}Eu~(\%)$: C, 47.76; H, 4.53; N, 3.59. § Crystallographic data for 3a. The single crystal (colorless prism, 0.20×0.14×0.07 mm) of complex 3a ($C_{31}H_{35}N_2O_{12}Tb$) was used for X-ray analysis at 295(2) K on an Xcalibur 3 diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) and a CCD detector. Crystal is triclinic, space group $P\bar{1}$ with a = 11.5924(7), b = 11.7977(5)and c = 13.1915(9) Å, $\alpha = 93.542(5)^{\circ}$, $\beta = 102.551(6)^{\circ}$, $\gamma = 106.352(5)^{\circ}$, $V = 1675.15(17) \text{ Å}^3$, Z = 2. On the angles $2.84 < \theta < 30.51^\circ 19043$ reflections were measured, among them 10059 unique reflections ($R_{int} = 0.0248$), 6282 reflections with $I > 2\sigma(I)$. Completeness to $\theta_{\text{max}} = 26.00$ is 99.3%. The structure was solved by a direct method and refined by full-matrix least squares at F^2 using the SHELXTL program package.¹⁹ All nonhydrogen atoms were refined anisotropically, the positions of the hydrogen atoms were calculated as a riding model in isotropic approximation. An absorption correction was not applied ($\mu = 2.174 \text{ mm}^{-1}$). Goodness of fit at F^2 0.988; final R values $[I > 2\sigma(I)]$, $R_1 = 0.0282$, $wR_2 = 0.0486$; R value (all reflections) $R_1 = 0.0563$, $wR_2 = 0.0486$. Largest difference peak and hole were 2.032 and -0.669 eÅ⁻³.

CCDC 1408322 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* http://www.ccdc.cam.ac.uk.

Figure 2 Photoluminescence spectrum of terbium(III) complex 3a in ethanol.

Figure 3 Photoluminescence spectrum of europium(III) complex 3b in ethanol.

Under photoexcitation, complexes **3a,b** have luminescence characteristic of terbium and europium (green and red, respectively). The luminescence spectrum of **3a** (Figure 2) contained characteristic luminescence bands corresponding to the ${}^{5}D_{4} \rightarrow {}^{7}F_{j}$ (j = 6, 5, 4, 3) electron transitions of Tb^{III} at 490, 546, 583 and 621 nm, respectively; the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition of Tb^{III} at 546 nm was the strongest. In the fluorescence emission spectrum of europium complex **3b** (Figure 3), five emission peaks were observed, which were attributed to the ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ (j = 0, 1, 2, 3, 4) transitions at 580, 592, 612, 654 and 705 nm, respectively; the strongest transition of Eu^{III} was the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ at 612 nm.

In summary, we synthesized luminescent europium(III) and terbium(III) complexes based on an O,O,O-tridentate ligand, ethyl 2-hydroxymethylidene-3-oxobutanoate. The regiospecific coordination of the lanthanide ion to the oxygen atoms of a 1,3-dicarbonyl moiety was demonstrated.

This work was supported by the Presidium of the Ural Branch of the Russian Academy of Sciences (project no. 15-21-3-7) and the State Program for Supporting of Leading Scientific Schools of the Russian Federation (grant no. NSh-8922.2016.3).

References

- 1 S. V. Eliseeva and J. C. G. Bünzli, Chem. Soc. Rev., 2010, 39, 189.
- 2 L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini and E. Tondello, *Coord. Chem. Rev.*, 2010, 254, 487.
- 3 L. D. Carlos, R. A. S. Ferreira, V. de Zea Bermudez, B. Julian-Lopez and P. Escribano, *Chem. Soc. Rev.*, 2011, **40**, 536.
- 4 J. Kido and Y. Okamoto, Chem. Rev., 2002, 102, 2357.
- 5 T. Jin, S. Tsutsumi, Y. Deguchi, K. Machida and G. Adachi, J. Alloys Compd., 1997, 252, 59.
- 6 N. V. Zolotareva, V. V. Semenov and A. V. Cherkasov, *Mendeleev Commun.*, 2014, 24, 182.
- 7 N. S. Beloborodov, S. I. Levchenkov, L. D. Popov, V. V. Lukov, I. N. Shcherbakov, G. G. Alexandrov and V. A. Kogan, *Mendeleev Commun.*, 2014, 24, 219.

- 8 H. F. Li, P. F. Yan, P. Chen, Y. Wang, H. Xu and G. M. Li, *Dalton Trans.*, 2012, **41**, 900.
- 9 J. Shi, Y. Hou, W. Chu, X. Shi, H. Gu, B. Wang and Z. Sun, *Inorg. Chem.*, 2013, **52**, 5013.
- 10 D. N. Bazhin, E. V. Shchegol'kov, Yu. S. Kudyakova, Ya. V. Burgart and V. I. Saloutin, *Russ. Chem. Bull.*, *Int. Ed.*, 2011, **60**, 929 (*Izv. Akad. Nauk, Ser. Khim.*, 2011, 907).
- 11 D. N. Bazhin, E. V. Shchegol'kov, Yu. S. Kudyakova, K. V. Shcherbakov, Ya. V. Burgart and V. I. Saloutin, *Russ. J. Gen. Chem.*, 2012, **82**, 116 (*Zh. Obshch. Khim.*, 2012, **82**, 120).
- 12 D. N. Bazhin, Yu. S. Kudyakova, Ya. V. Burgart and V. I. Saloutin, *Tetrahedron Lett.*, 2012, **53**, 1961.
- 13 Yu. S. Kudyakova, D. N. Bazhin, M. V. Goryaeva, Ya. V. Burgart and V. I. Saloutin, *Russ. Chem. Rev.*, 2014, 83, 120.

- 14 L. Crombie, D. E. Games and A. W. G. James, J. Chem. Soc., Perkin Trans. 1, 1979, 464.
- 15 R. M. Coates and S. J. Hobbs, J. Org. Chem., 1984, 49, 140.
- 16 M. Mukoyama, S. Isayama, K. Kato, S. Inoki and T. Takai, JP Patent
- 1990/02209846, 1990 (*Chem. Abstr.*, 1991, **114**, 61542).
 17 E. E. Emelina and B. A. Ershov, *Zh. Org. Khim.*, 1994, **30**, 846 (in Russian).
- 18 R. E. Whan and G. A. Crosby, *J. Mol. Spectrosc.*, 1962, **8**, 315.
- 19 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.

Received: 26th June 2015; Com. 15/4661