Tetrahedron Letters xxx (xxxx) xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols

Maddali L.N. Rao*, Suresh Meka

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

ARTICLE INFO

Article history: Received 1 December 2019 Revised 14 January 2020 Accepted 24 January 2020 Available online xxxx

Keywords: Triarylbismuth reagents Iodophenylmethanols Biarylmethanols Pd-catalysis

ABSTRACT

An atom-efficient procedure for the synthesis of functionalized biarylmethanols *via* the Pd-catalyzed cross-coupling reactions of differently functionalized iodophenylmethanols and triarylbismuth reagents is described. This protecting group-free direct couplings of 2-, 3- or 4-iodophenylmethanols with triarylbismuth reagents afforded biarylmethanols in good to high yields.

© 2020 Elsevier Ltd. All rights reserved.

Functionalized biaryls are significant scaffolds prevalent in several pharmaceuticals and natural products leading to the development of several new approaches for their synthesis [1,2]. In particular, the alcohol functionality in these skeletons allows easy modification to other desired functional groups. It also serves as an alternative electrophile for C–C bond formations [3]. Importantly, limited synthetic methods, including cross-coupling approaches, have been reported for the synthesis of biarylmethanols [4]. The development of atom-economic cross-coupling methods using triarylbismuth reagents as threefold organometallic coupling partners is an ongoing interest [5-7]. It led to the present study of utilising protecting group-free cross-couplings of iodophenylmethanols with triarylbismuth reagents under Pd-catalyzed conditions for the synthesis of biarylmethanols. This effort is in continuation of our interest in developing atom-economic crosscoupling methods using triarylbismuth reagents under Pd-catalyzed conditions [5,6].

Our investigation to develop an efficient method for the synthesis of substituted biarylmethanols was carried out using protecting group-free 2-iodophenylmethanol **1a** in the cross-coupling reaction with $Bi(p-tolyl)_3$ under Pd-catalyzed conditions. These results are summarized in Table 1. The proposed cross-coupling reaction was initially screened with different Pd-catalytic systems using KOAc in NMP (Table 1, entries 1–4). This resulted in the develop-

* Corresponding author. *E-mail address:* maddali@iitk.ac.in (M.L.N. Rao).

https://doi.org/10.1016/j.tetlet.2020.151676 0040-4039/© 2020 Elsevier Ltd. All rights reserved. ment of $Pd(OAc)_2/P(o-tolyl)_3$ as a more efficient system to deliver the desired biarylmethanol **2a** in 74% yield (Table 1, entry 4).

Other catalytic systems including Pd(OAc)₂/PPh₃, PdCl₂(PPh₃)₂, and Pd(PPh₃)₄ gave **2a** in 64–68% yield (Table 1, entries 1–3). The desired coupling reaction was further screened in different solvents including DMA, DMF, and DMSO (Table 1, entries 5-7). These solvents provided product 2a in 60-71% yield. Hence, further screening was carried out in NMP with different bases (Table 1, entries 8-10). However, the use of different bases did not provide higher yields in comparison to the yield obtained with KOAc (Table 1, entry 4). At this stage, we screened the coupling with 4 equiv. of KOAc which gave 2a in 44% yield (Table 1, entry 11). The control reaction carried out without catalyst and base resulted in no cross-coupling product (Table 1, entry 12). The above screening thus provided the standard protocol with $Pd(OAc)_2$ (0.1 equiv.), P(o-tolyl)₃ (0.4 equiv.), KOAc (6 equiv.), TBAB (3 equiv.), NMP (3 mL) at 110 °C for 4 h (Table 1, entry 4) to deliver biarylmethanol 2a in high yield.

Under these established conditions, the threefold coupling of various triarylbismuth reagents was tested with 2-iodophenylmethanol **1a** and the results are given in Table 2. The cross-couplings with $Bi(p-tolyl)_3$ and $Bi(m-tolyl)_3$ reagents proceeded efficiently to give the corresponding biarylmethanols **2a** and **2d** in 74% and 85% yield, respectively. Similarly, triphenylbismuth also reacted well to give biphenylmethanol **2b** in 84% yield. Further cross-couplings with $Bi(p-anisyl)_3$ and $Bi(m-anisyl)_3$ gave biarylmethanols **2c** and **2e** in 82% and 84% yield, respectively. Other

Please cite this article as: M. L. N. Rao and S. Meka, Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2020.151676

M.L.N. Rao, S. Meka/Tetrahedron Letters xxx (xxxx) xxx

Table 1

2

Entry	Catalyst/Ligand	Base	Solvent	Yield 2a (%)
1	Pd(OAc) ₂ /PPh ₃	KOAc	NMP	64
2	$PdCl_2(PPh_3)_2$	KOAc	NMP	66
3	Pd(PPh ₃) ₄	KOAc	NMP	68
4	$Pd(OAc)_2/P(o-tolyl)_3$	KOAc	NMP	74
5	$Pd(OAc)_2/P(o-tolyl)_3$	KOAc	DMA	60
6	$Pd(OAc)_2/P(o-tolyl)_3$	KOAc	DMF	71
7	$Pd(OAc)_2/P(o-tolyl)_3$	KOAc	DMSO	63
8	$Pd(OAc)_2/P(o-tolyl)_3$	K ₃ PO ₄	NMP	61
9	$Pd(OAc)_2/P(o-tolyl)_3$	K ₂ CO ₃	NMP	52
10	Pd(OAc) ₂ /P(o-tolyl) ₃	Cs ₂ CO ₃	NMP	65
11	Pd(OAc) ₂ /P(o-tolyl) ₃	KOAc	NMP	44 ^d
12	_	-	NMP	-

^a Reagents and conditions: **1a** (0.75 mmol, 3 equiv.), Bi(p-tolyl)₃ (0.25 mmol, 1 equiv.), Pd catalyst (0.025 mmol, 0.1 equiv.), ligand (0.1 mmol, 0.4 equiv.), base (6 equiv.), TBAB (3 equiv.), 110 °C, 4 h, solvent (3 mL).

Isolated yield.

KOAc (4 equiv.).

triarylbismuth reagents with different aryl and alkoxy substituents gave the corresponding biarylmethanols 2f, 2g, 2j, 2k-2n in 70-88% yield. Further study of triarylbismuth reagents with 4-fluoro and 4-chloro functionality afforded the corresponding biarylmethanols 2h and 2i in 63% and 59% yield, respectively. Thus, the threefold cross-coupling of 1 equiv. of triarylbismuth reagents with 3 equiv. of **1a** gave different functionalized biarylmethanols in good to high vields.

We further explored the protecting group-free cross-coupling of 3-iodophenylmethanol **1b** with different triarylbismuth reagents under the above Pd-catalyzed conditions (Table 3). The initial coupling of 3-iodophenylmethanol **1b** with triphenylbismuth gave the corresponding biarylmethanol 3a in 81% yield. Other cross-couplings performed using electron-rich triarylbismuth reagents with 4-methyl, 4-methoxy, 3-methoxy, and 4-benzyloxy groups afforded differently functionalized biarylmethanols 3b-3e in 74-84% yield. The cross-coupling carried out with a 4-fluoro functionalized triarylbismuth reagent gave biarylmethanol 3f in 77% yield. Also, the cross-couplings of trinaphthalen-2-ylbismuth and tris (benzo[d][1,3]dioxol-5-yl)bismuthane furnished biarylmethanols 3g and 3h in 85% and 74% yield, respectively.

Next, we studied the protecting group-free cross-coupling of 4iodophenyl-methanol (1c) with different triarylbismuth reagents under the above Pd-catalyzed conditions (Table 4). The cross-coupling of 4-iodophenylmethanol 1c with triphenylbismuth afforded biarylmethanol 4a in 85% yield. Subsequent couplings of 4iodophenylmethanol with electron-rich triarylbismuth reagents functionalized with 4-methyl, 4-methoxy, 3-methoxy, 4-ethoxy, 4-isoproxy, and 3,5-dimethoxy groups gave the corresponding biarylmethanols 4b-4g in 78-91% yield. Similarly, the coupling reaction of tri(naphthalen-2-yl)bismuth also proved to be efficient giving the corresponding biarylmethanol **4h** in 75% yield.

To further expand the general synthetic scope, a few reactions were carried out with differently functionalized iodophenylmethanols such as 2-iodo-3,4,5-trimethoxyphenylmethanol (1d), 5-iodo-2-methoxyphenyl-methanol (1e) and

Table 2

f 2 is down how when at he was (1 a) with DiA Coupli

pings c	$\begin{array}{c} & OH \\ & OH \\ & & H^{T} \\ & & H^{T} \\ 1a \\ (3 equiv.) \end{array}$	Pd(OAc) ₂ (0.1 equiv.) P(o-tolyl) ₃ (0.4 equiv.) KOAc (6 equiv.) TBAB (3 equiv.) NMP, 110 °C, 4 h	-OH - Ar .)
Entry	Triarylbismuths	Products	Yield (%) ^b
1	Ві — Ме	CH 2a	74%
2	ві —	OH 2b	84%
3		OH 2c	82%
4	Bi	OH Me	85%
5	Bi	OH OMe	84%
6	Bi		88%
7		2g O'Pr	85%
8	Bi	2h	63%
9			59%
10		2j OMe	85%
11	ві (75%
12	ві –		72%
13	Bi - OBn 3	OH 2m	75%
14			70% DMe

^a Reagents and conditions: **1a** (0.75 mmol, 3 equiv.), BiAr₃ (0.25 mmol, 1 equiv.), Pd(OAc)₂ (0.025 mmol, 0.1 equiv.), P(o-tolyl)₃ (0.1 mmol, 0.4 equiv.), KOAc (1.5 mmol, 6 equiv.), TBAB (0.75 mmol, 3 equiv.), NMP, 110 °C, 4 h. ^b Isolated yields.

2n

^c Homo-coupled biaryls from BiAr₃ were obtained in minor amounts.

Please cite this article as: M. L. N. Rao and S. Meka, Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2020.151676

^c Homo-coupled bitolyl from Bi(*p*-tolyl)₃ was obtained in minor amounts.

M.L.N. Rao, S. Meka/Tetrahedron Letters xxx (xxxx) xxx

Table 3

Couplings of 3-iodophenylmethanol 1b with BiAr3 reagents.^{a,b,c}

^a Reagents and conditions: **1b** (0.75 mmol, 3 equiv.), BiAr₃ (0.25 mmol, 1 equiv.), Pd(OAc)₂ (0.025 mmol, 0.1 equiv.), P(o-tolyl)₃ (0.1 mmol, 0.4 equiv.), KOAc (1.5 mmol, 6 equiv.), TBAB (0.75 mmol, 3 equiv.), NMP, 110 °C, 4 h.

^b Isolated yields.

^c Homo-coupled biaryls from BiAr₃ were obtained in minor amounts.

3-iodo-4-methoxyphenylmethanol (**1f**) and different triarylbismuth reagents under the above Pd-catalyzed conditions (Table 5).

These studies afforded the corresponding functionalized biarylmethanols **5a-5d** in good to excellent yields. It is important to note that product **5b** is a well-known precursor for the synthesis of eupomatilone [8].

This study thus established the general cross-coupling ability of protecting group-free 2-iodo, 3-iodo and 4-iodophenyl-methanols in threefold coupling reactions with different triarylbismuth reagents under Pd-coupling conditions. The established conditions proved to be very efficient as demonstrated by the generalized cross-couplings with differently substituted iodophenylmethanols [4].

In summary, a convenient method was established for the atom-efficient synthesis of differently functionalized biarylmethanols *via* the cross-couplings of different iodophenylmethanols and triarylbismuth reagents. These reactions involving

Table 4

Couplings of 4-iodophenylmethanol 1c with BiAr₃ reagents.^{a,b,c}

HO I + Ar Bi Ar Ar		Pd(OAc) ₂ (0.1 equiv.) $P(o-tolyl)_3$ (0.4 equiv.) KOAc (6 equiv.) TBAB (3 equiv.)	HO Ar 4a-4h
(3 equiv.)		NMP, 110 °C, 411	(3 equiv.)
Entry	Triarylbismuths	Products	Yield (%) ^b
1	Bi	HO	85%
2	Bi	HO	
		4b	
3	Bi	HO	OMe 87%
	5	4c	
4	Bi	HO 4d	OMe 84%
5	Bi-(C)-OEt)	HO	OEt 85%
6	Bi-(O'Pr)3	HO HO 4f	O'Pr 91%
7		HO 4g	OMe 85% OMe
8	вің 🏹)3	HO	75%
		4h	

^a Reagents and conditions: 1c (0.75 mmol, 3 equiv.), BiAr₃ (0.25 mmol, 1 equiv.), Pd(OAc)₂ (0.025 mmol, 0.1 equiv.), P(o-tolyl)₃ (0.1 mmol, 0.4 equiv.), KOAc (1.5 mmol, 6 equiv.), TBAB (0.75 mmol, 3 equiv.), NMP, 110 °C, 4 h.
 ^b Isolated yields.

^c Homo-coupled biaryls from BiAr₃ were obtained in minor amounts.

threefold couplings from triarylbismuth reagents afforded functionalized biarylmethanols in good to high yields [9]. The direct cross-couplings carried out with iodophenylmethanols without invoking alcoholic group protection/deprotection protocols for the synthesis of biarylmethanols under palladium coupling conditions is noteworthy and is expected to be highly useful in organic synthesis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge the financial support (Project No. EMR/2017/005221) received from Science and Engineering Research Board (SERB), New Delhi. S.M. also acknowledges the research fellowship from the CSIR, New Delhi.

3

Please cite this article as: M. L. N. Rao and S. Meka, Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2020.151676

M.L.N. Rao, S. Meka/Tetrahedron Letters xxx (xxxx) xxx

Table 5

Couplings of substituted iodophenylmethanols with BiAr₃ reagents.^{a,b,c}

^a Reagents and conditions: 1d/1e/1f (0.75 mmol, 3 equiv.), BiAr₃ (0.25 mmol, 1 equiv.), Pd(OAc)₂ (0.025 mmol, 0.1 equiv.), P(o-tolyl)3 (0.1 mmol, 0.4 equiv.), KOAc (1.5 mmol, 6 equiv.), TBAB (0.75 mmol, 3 equiv.), NMP, 110 °C, 4 h. Isolated vields

Homo-coupled biarvls from BiAr₃ were obtained in minor amounts.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2020.151676.

References

- [1] (a) F. Kloss, T. Neuwirth, V.G. Haensch, C. Hertweck, Angew. Chem. Int. Ed. 57 (2018) 14476-14481;
- (b) F.-X. Felpin, S. Sengupta, Chem. Soc. Rev. 48 (2019) 1150-1193.
- [2] (a) J.-A. Garcia-Lopez, M.F. Greaney, Chem. Soc. Rev. 45 (2016) 6766-6798; (b) J. Wencel-Delord, A. Panossian, F.R. Leroux, F. Colobert, Chem. Soc. Rev. 44 (2015) 3418-3430.
- [3] (a) G. Guillena, D.J. Ramon, M. Yus, Angew. Chem. Int. Ed. 46 (2007) 2358-2364:
 - (b) S.J. Hwang, H.J. Kim, S. Chang, Org. Lett. 11 (2009) 4588-4591;
 - (c) J.K. Laha, K.P. Jethava, S. Patel, K.V. Patel, J. Org. Chem. 82 (2017) 76-85;
 - Y. Jiang, B. Sun, W.-Y. Fang, H.-L. Qin, Eur. J. Org. Chem. (2019) 3190-3194;
 - (e) Y. Kwon, H. Cho, S. Kim, Org. Lett. 15 (2013) 920-923;
 - (f) A.M. Funston, S.V. Lymar, B. Saunders-Price, G. Czapski, J.R. Miller, J. Phys. Chem. B 111 (2007) 6895-6902;
 - (g) Z. Li, X. Xu, G. Li, X. Fu, Y. Liu, Y. Feng, M. Wang, Y. Ouyang, J. Han, Bioorg. Med. Chem. 25 (2017) 6647-6652;
 - (h) Y. Shi, P. Wan, Can. J. Chem. 83 (2005) 1306-1323;
 - (i) M.F. Grunberg, L.J. Gooßen, Chem. Eur. J. 19 (2013) 7334-7337;
 - (j) R. Singha, A. Ahmed, Y. Nuree, M. Ghosh, J.K. Ray, RSC Adv. 5 (2015) 50174-
- 50177
- [4] (a) H.-M. Li, A.-Q. Feng, X.-H. Lou, Bull. Korean Chem. Soc. 35 (2014) 2551-2554;
 - (b) W. Yingchun, L. Xiuying, L. Yajun, P. Yingming, C. Keguang, W. Hengshan, Chem. Res. Chin. Univ. 30 (2014) 614-618;

(c) H.-M. Li, C. Xu, X.-Q. Hao, Z. Li, Z.-Q. Wang, W.-J. Fu, M.-P. Song, Inorg. Chim. Acta 404 (2013) 236-240;

(d) Y. Hatanaka, S. Fukushima, T. Hiyama, Chem. Lett. 18 (1989) 1711-1714;

- (e) F. Zeng, Z. Yu, J. Org. Chem. 71 (2006) 5274-5281;
- (f) A.R. Chaudhary, A.V. Bedekar, Tetrahedron Lett. 53 (2012) 6100-6103;
- (g) C.A. Contreras-Celedon, D. Mendoza-Rayo, J.A. Rincon-Medina, L. Chacon-Garcia, Beilstein J. Org. Chem. 10 (2014) 2821-2826;
- (h) M. Maity, U.J. Maitra, Mater. Chem. A 2 (2014) 18952-18958; (i) R.K. Rai, K. Gupta, S. Behrens, J. Li, Q. Xu, S.K. Singh, ChemCatChem 7 (2015) 1806-1812:
- (j) B. Li, Y. Yu, P. Zhao, S. Zhang, Chem. Asian J. 11 (2016) 3550-3556.
- [5] (a) J.-P. Finet, M.L.N. Rao, Triphenylbismuthine in Encyclopedia of Reagents for Organic Synthesis, John & Wiley, 2012;
- (b) S. Shimada, M.L.N. Rao, Top. Curr. Chem. 311 (2012) 199-228. [6] (a) Selected references: M.L.N. Rao, S. Meka New. J. Chem. 42 (2018) 4412-
 - 4418.
 - (b) M.L.N. Rao, S. Meka, Tetrahedron Lett. 60 (2019);

 - (c) M.L.N. Rao, J.B. Talode, J. Asian, Org. Chem. 5 (2016) 98–106;
 (d) M.L.N. Rao, J.B. Talode, V.N. Murty, Beilstein J. Org. Chem. 12 (2016) 2065– 2076:
 - (e) M.L.N. Rao, A. Kumar, Tetrahedron 71 (2015) 5137-5147;
 - (f) M.L.N. Rao, R.J. Dhanorkar, RSC Adv. 4 (2014) 13134-13144;
 - (g) M.L.N. Rao, R.J. Dhanorkar, RSC Adv. 3 (2013) 6794-6798;
 - (h) M.L.N. Rao, D.N. Jadhav, P. Dasgupta, Eur. J. Org. Chem. (2013) 781-788;
 - (i) M.L.N. Rao, D.N. Jadhav, P. Dasgupta, Org. Lett. 12 (2010) 2048-2051;
 - (j) M.L.N. Rao, D.N. Jadhav, D. Banerjee, Tetrahedron 64 (2008) 5762-5772;
 - (k) M.L.N. Rao, D. Banerjee, D.N. Jadhav, Tetrahedron Lett. 48 (2007) 6644-
 - 6647:
 - (1) M.L.N. Rao, D. Banerjee, D.N. Jadhav, Tetrahedron Lett. 48 (2007) 2707-2711;
- (m) M.L.N. Rao, R.J. Dhanorkar, RSC Adv. 6 (2016) 1012-1017.
- [7] (a) B. Cassirame, S. Condon, C. Pichon, J. Mol. Catal. A: Chem. 425 (2016) 94-102:
 - (b) P. Petiot, A. Gagnon, Eur. J. Org. Chem. (2013) 5282-5289;
 - (c) J. Yang, Y. Wu, X. Wu, W. Liu, Y. Wang, J. Wang, Green Chem. 21 (2019) 5267-5273:
- (d) C. Xu, L. Yin, B. Huang, H. Liu, M. Cai, Tetrahedron 72 (2016) 2065-2071.
- [8] Y. Hirokawa, M. Kitamura, M. Mizubayashi, R. Nakatsuka, Y. Kobori, C. Kato, Y. Kurata, N. Maezaki, Eur. J. Org. Chem. (2013) 721-727.

Please cite this article as: M. L. N. Rao and S. Meka, Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2020.151676

M.L.N. Rao, S. Meka/Tetrahedron Letters xxx (xxxx) xxx

[9] Representative cross-coupling procedure: Cross-coupling of **1a** with Bi(p-tolyl)₃: An oven-dried Schlenk tube was charged with (2-iodophenyl) methanol (**1a**) (0.75 mmol, 3 equiv.), Bi(p-tolyl)₃ (0.25 mmol, 1 equiv.), Pd (OAc)₂ (0.025 mmol, 0.1 equiv.), P(o-tolyl)₃ (0.1 mmol, 0.4 equiv.), KOAc (1.5 mmol, 6 equiv.), TBAB (0.75 mmol, 3 equiv.) and NMP (3 mL) under a N₂ atmosphere. The mixture was stirred in an oil bath at 110 °C for 4 h. The

contents were quenched with water (10 mL) at rt and extracted with ethyl acetate (30 mL). The organic extract was washed with brine and dried using MgSQ₄. The organic solvent was removed under reduced pressure to obtain the crude product. It was purified by silica gel chromatography using hexane/ethyl acetate as eluent. The product **2a** was obtained in 74% yield. The spectral characterization data for all the products is given in the Supporting information.

Please cite this article as: M. L. N. Rao and S. Meka, Pd-catalyzed atom-efficient cross-coupling of triarylbismuth reagents with protecting group-free iodophenylmethanols: Synthesis of biarylmethanols, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2020.151676