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Abstract: Enantioselective hydrolysis of methyl ester of (±)-C75 was successfully accomplished by means of Acylase I 

from Aspergillus to afford (2R,3S)-(+)-C75 with 96% e.e. The unreacted methyl ester was recovered with >99% e.e. This 

latter compound was either chemically or enzymatically hydrolyzed to furnish (2S,3R)-(–)-C75 with >99% e.e.  
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INTRODUCTION 

Tetrahydro-4-methylene-2-octyl-5-oxo-3-furancarboxylic 
acid, designated as C75 [1] in the recent literature, is a 
synthetic compound [2]. It belongs to the class of paraconic 
acids which are characterized by the -lactone moiety, an 
alkyl chain at C-2, a carboxylic group at C-3, and a methyl 
or a methylene group at C-4 [3]. Paraconic acids having a 
methylene group at C-4 are in general biologically active 
natural compounds Fig. (1) [4-13]. 
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Fig. (1). Structure of paraconic acids 1-5. 

For example, (2R,3S)-(+)-(1), a toxin that induces 
formation of black spots on the peel of banana, was recently 
isolated from the plant pathogen Lasiodiplodia theobromae 
[4]. (–)-Methylenolactocin (2) isolated from the culture 
filtrate of Penicillium sp. [5] is active against some Gram-
positive bacteria and it prolongs the life span of mice 
inoculated with Ehrlich carcinoma [6]. (+)-Nephrosterinic 
acid (4) was isolated from lichen Nephromopsis endocrocea 
[7] and (+)-protolichesterinic acid (5), isolated from various 
sources of Cetraria [8], from yellow Acarospora species of 
subgenus Xantotallia [9] and from lichens of Parmelia 
species [10], exhibiting in vitro anti-bacterial activity against 
Helicobacter pylori [11], there by inhibiting 5-lipoxygenase 
[12] and it also showed anti-proliferative effects on 
malignant cell-lines and mitogen stimulated lymphocytes in 
vitro [13]. 
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C75 is a fatty acid synthase (FAS) inhibitor and when 
administered in racemic form, it causes anorexia and 
reversible weight loss in rodents [14]. It also shows 
significant in vivo antitumor activity in human cancer cells 
[2a,15], suppresses DNA replication, induces apoptosis in 
tumor cell lines [16] and it is active against mycobacteria of 
the tuberculosis complex [17]. 

A considerable body of synthetic information exists in 
the literature to prepare paraconic acids having a methylene 
group at C-4 in both racemic and enantioselective version 
[3,18]. Among these methods, an efficient route was 
reported by Carlson and Oyler in 1976 [19]. In a slightly 
modified version [2,20] of their procedure, the dianion of 4-
methoxybenzyl itaconate was condensed with aldehydes of 
various chain lengths to give in one step, after rapid 
exposure to strong acid, the desired -methylene- -
butyrolactone carboxylic acid. Both trans- and cis-isomer 
were generated by this method and these diastereomers could 
be separated by flash column chromatography. By this 
procedure, compounds (1) [20], (2) [20], (3) [2], (4) [19] and 

(5) [19] were synthesized in racemic form. 

Here we report the enzymatic resolution of racemic 
methyl ester of C75 with Acylase I [21] as a preliminary 
investigation on the use of enzymatic hydrolysis for the 
obtainment of compounds (1)–(5) in enantiomerically pure 
form. For our present investigation, the methyl ester of C75 
was synthesized in racemic form by exploiting a modified 
procedure with respect to that reported by Carlson and Oyler 
[19]. 

RESULTS AND DISCUSSION 

Synthesis of the Methyl Ester of (±)-C75 

The synthesis of racemic trans methyl ester of C75 (12) 
[17] (Scheme 1) started with the regioselective ring-opening 
of itaconic anhydride (6) with methanol to give itaconic acid 
methyl hemiester 7 [22]. Treatment with lithium 
bis(trimethylsilyl)amide converted the hemiester into the 
corresponding ester enolate (8), which was reacted with 
nonanal. After acidification at –78 °C, a 3:2 mixture of the 
corresponding syn and anti hydroxy acids (9) and (10) was 
obtained. They were not isolated but only identified by 

1
H 

NMR analysis of the crude reaction mixture. Their 
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lactonization into the corresponding cis and trans lactonic 
esters (11) and (12) [23] respectively was accomplished with 
TFA (0.5 eq) in CH2Cl2 at room temperature. Diastereomers 
(11) and (12) were separated by flash chromatography (23% 
and 18% total yield respectively). 

Enzymatic Hydrolyses of the Methyl Ester of C75 

Following the general criteria in developing the most 
suitable procedure for kinetic enzymatic resolution [24] of 
the trans lactone (±)-(12) (Scheme 2), several enzymes were 
screened. Lipases such as Porcine pancreatic lipase (PPL) 
and Lipase from Aspergillus niger (AP12), as well as a 
protease such as -chymotrypsin ( -CT) were inactive. 
Esterases, such as horse liver acetone powder (HLAP) and 
purified Pig liver esterase (PLE), hydrolyzed regioselectively 
the methyl ester group of compound (±)-(12) but without any 
enantioselection. The rate of hydrolysis was higher for PLE 
than for HLAP. 

On the contrary, hydrolysis proved enantioselective when 
performed with two Acylases I. The results obtained using 
Acylases I immobilized on Eupergit

®
 C from Aspergillus sp. 

and Amano Acylase from Aspergillus melleus are reported in 
Table 1. Acylase I from porcine kidney, Grade I, was also 
checked but without any result. 

The reaction was scaled up using both Acylases. We 
observed that while with Acylase I immobilized on 
Eupergit

®
 C, the enantiomeric ratio E decreased from 60 to 

20, that of Amano Acylase increased from 22 to 41. In the 
former case, the acid (+)-(3) was obtained with 86% e.e. 
stopping the reaction at about 50% conversion [28]. After 
recrystallization from light petroleum, its e.e. raised to 98% 
(white solid, m.p. 88–90 °C [lit. [2a] m.p. 76–77 °C for the 
racemic mixture], [ ]D

25
 = +8.4 (c 0.15, MeOH), CD in 

MeOH: 258 +0.26, 225 –10.58). The unreacted ester (–)-
(12) was recovered with 77% e.e. 

With Amano Acylase at 56% conversion value, [29] the 
recovered unreacted ester (–)-(12) had >99% e.e. ([ ]D

25
 = –

O
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Scheme 1. Synthesis of racemic methyl ester of C75, (±)-(12) and its diastereomer (±)-(11). 
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Scheme 2. Enzymatic resolution of the methyl ester of C75. 

 
Table 1. Enantioselective Hydrolyses of (±)-(12) with Acylases I 
 

Entry Enzyme Time Conv.
a
 (%) 

(+)-(3) 

e.e. (%) 
b
 

(–)-(12) 

e.e. (%)
c
 

E
d
 

1 
Acylases I, 

immobilized on Eupergit® Ce 
5h 18 96 21 60 

2 Amano Acylasef 4h 17 90 18 22 

aCalculated values, Ref. [25]. 
bDetermined by chiral HRGC on a ChiraldexTM type G-TA, trifluoroacetyl -cyclodextrin column (40 m x 0.25 mm) (carrier gas He, 180 KPa, split 1:100) of its ethyl ester [26] Rt 

183.6 min for (2R,3S)-(+)-enantiomer and Rt 201.7 min for (2S,3R)-(–)-enantiomer (150°C).  
cDetermined by chiral HRGC on a ChiraldexTM type G-TA, trifluoroacetyl -cyclodextrin column (40 m x 0.25 mm) (carrier gas He, 180 KPa, split 1:100) Rt 155.6 min for (2R,3S)-

(+)-enantiomer and Rt 164.5 min for (2S,3R)-(–)-enantiomer (150 °C). 
dRef. [27]. 
eConditions: compound (±)-(12) (0.034 g, 0.12 mmol), 0.1 M phosphate buffer (10 mL) at pH 7.4, 1 mM CoCl2, 0.1 g of Acylase I immobilized on Eupergit® C 102 U/g, r.t.  
fConditions: compound (±)-(12) (0.050 g, 0.19 mmol), 0.1 M phosphate buffer (10 mL) at pH 7.4, 0.05 g of Amano Acylase 30000 U/g, r.t. 
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7.1 (c 0.42, MeOH), CD in MeOH: 258 –0.30, 223 +9.3), 
while the acid (+)-(3) was isolated with 78% e.e. 

With the purpose of obtaining the enantiomeric lactonic 
acid (–)-(3), the enantiopure lactonic ester (–)-(12) having 
>99% e.e. was subjected to both chemical and enzymatic 
hydrolyses. Chemical hydrolysis was performed with 6N 
HCl [18k,30], while Pig liver esterase (PLE) was used for 
enzymatic hydrolysis. [31] In both cases the enantiomeric 
excess of the ester was retained in the resulting acid and 
optically pure (–)-C75 was obtained with >99% e.e. (m.p. 
88–90 °C, ([ ]D

25
 = –9.5 (c 0.49, MeOH)). 

The (2R,3S) absolute configuration was assigned to the 
dextrorotatory enantiomer of C75 by comparison of its CD 
spectrum ( 258 +0.26, 225 –10.58) with that of (2R,3S)-
(+)-protolichesterinic acid (5) ( 257 +0.32, 220 –9.62) 
[32], whose absolute configuration is known. On the other 
hand, the positive sign of its specific optical rotation was 
already indicative that the absolute configuration of (+)-C75 
was the same as that of (+)-methylenolactocin (2), (+)-
nephrosterinic acid (4) and (+)-protolichesterinic acid (5), 
namely (2R,3S) [18e]. 

CONCLUSION 

Two cases are reported in the literature on enzymatic 
resolution of -methylene- -lactones [33], both bearing the 
alkoxycarbonyl group at the -position. It is known that in 
the presence of a carboxy group the -position greatly favors 
the exo-endo equilibration of the double bond [19], thus 
preventing any chemical resolution. The enzymatic 
resolution reported here is of particular interest. 

Furthermore, this work represents another interesting 
example of the ability of acylases to hydrolyze the ester 
group [34]. 
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