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A highly selective synthesis of sulfoxides from alkenes and 
thiols was established by visible-light photoredox catalysis at 
room temperature. This metal-free transformation protocol, 
which uses inexpensive Rose Bengal as the photocatalyst and 
air as the green oxidant, opens a new door toward the facile 10 

and practical construction of sulfoxides. 

Sulfoxides are extremely valuable organic compounds, which are 
not only frequently found in a large number of nature products 
and pharmacologically active molecules,1 but also serve as the 
versatile building blocks for the construction of various important 15 

chemicals2 and therapeutic agents such as antiulcer,3 antifungal4  
and antiatherosclerotic5 agents in both academic and industrial 
communities. Consequently, sulfoxide functionality strongly 
attracts synthetic pursuit of chemists owing to its structural 
diversity and remarkable biological functions. Traditionally, the 20 

approaches for the synthesis of sulfoxides rely heavily on the 
oxidation of sulfides using stoichiometric amount of peroxides6 

and hypervalent iodine reagents7 with the assistance of various 
transition-metal-catalysts such as iron,8 vanadium,9 copper,10 
titanium,11 cobalt,12 magnesium,13 silver14 and zinc15 salts.  25 

Unfortunately, most of these methods involve the use of some 
toxic metal reagents, and hazardous oxidants or complex reaction 
procedures, which led to the generation of a large volume of 
wastes. Another problematic scenario pertaining to traditional 
methods is that most of them are usually accompanied by over 30 

oxidation of sulfoxide to the sulfone. Recently, the metal-free 
reactions of alkenes and thiols under dioxygen leading to β-oxy 
sulfoxides and β-keto sulfoxides were independently reported by 
Yadav16 and Lei,17 in which the co-oxidation of the olefin carbon 
to form C-O or C=O bond occurred concurrently. In 2016, 35 

Klussmann and co-workers reported a methanesulfonic acid 
(MsOH)-catalyzed selective sulfoxidation of alkenes with thiols 
for the construction of sulfoxides in the presence of tert-butyl 
hydroperoxide.18 Very recently, Chi et al. also presented a one-
pot selective synthesis of sulfoxides from alkenes and thiols using 40 

N-fluorobenzenesulfonimide (NFSI) as a radical initiator  
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and oxidant under nitrogen atmosphere.19 Gracefully successive 
as these metal-free methods could be, there is still a great demand 50 

for the development of more mild, economic, efficient, and 
environmentally-benign methods to selectively construct 
sulfoxides. 
   Visible-light has long been recognized as an ideal chemical 
energy to promote the organic synthetic transformations due to its 55 

clean, inexpensive, and renewable features. In recent years, 
especially after 2008, visible-light photoredox catalysis has 
emerged as a highly versatile and powerful tool for the 
construction of various valuable organic compounds via the 
formation of C-C and C-heteroatom bonds under the mild 60 

conditions.20 Very recently, we also presented a new visible-light 
induced oxysulfonylation of alkenes with sulfinic acids for the 
synthesis of β-ketosulfones with the assistance of excess amounts 
of THBP.21 Molecular oxygen is a green oxidant and oxygen 
source in view of economic and environmental points. Thus, 65 

developing a dioxygen activation by photoredox catalysis for the 
functionalization of organic molecules has recently 
attracted significant interests from the synthetic community.22 As 
a part of our continued studies focusing on the synthesis of 
sulfur-containing compounds,23 herein, we wish to report a facile 70 

and efficient visible-light-induced method for the selective 
construction of sulfoxides via Rose Bengal-catalyzed 
sulfoxidation of alkenes with thiols using molecular oxygen (air) 
as the oxidant and oxygen source (eqn (1)).  
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   Initially, we started the investigation of visible-light-induced 
sulfoxidation reaction using styrene 1a and 4-methylbenzenethiol 
2a as the model substrates in the presence of Eosin Y (5 mol %). 
The model reaction was carried out by exposure to air in 
CH3CN/H2O (v/v = 1/1) under irradiation with 3 white LED 80 

lamps. To our delight, the desired product 3a was obtained in 
15% yield after 2 h (Table 1, entry 1). Inspired by this result, a 
series of metal-free photocatalysts such as Na2-eosin Y, Eosin B, 
Rose Bengal, Rhodamine B, and Acridine Red were investigated 
(Table 1, entry 2-6). Among the above photocatalysts tested, 85 

Rose Bengal was demonstrated the highest catalytic activity 
leading to the desired product 3a in 53% yield (Table 1, entry 4).  
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Table 1 Optimization of the reaction conditions 
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Photocatalysts:

 

Entry Photocatalyst (mol%) Solvent Yield (%)b 

1 Eosin Y (5) CH3CN/H2O (1:1) 15 
2 Na2-eosin Y (5) CH3CN/H2O (1:1) 36 
3 Eosin B (5)  CH3CN/H2O (1:1) 26 
4 Rose Bengal (5) CH3CN/H2O (1:1) 53 
5 Rhodamine B (5) CH3CN/H2O (1:1) 16 
6 Acridine Red (5) CH3CN/H2O (1:1) 14 
7 Rose Bengal (5) DME/H2O (1:1) 35 
8 Rose Bengal (5) EtOH/H2O (1:1) 89 
9 Rose Bengal (5) THF/H2O (1:1) 7 
10 Rose Bengal (5) DCE/H2O (1:1) 45 
11 Rose Bengal (5) Toluene/H2O (1:1) 17 
12 Rose Bengal (5) 1,4-dioxane/H2O (1:1) 21 
13 Rose Bengal (5) Acetone/H2O (1:1) 20 
14 Rose Bengal (5) EtOH/H2O (2:1) 69 
15 RoseBengal (5) EtOH 32 
16 RoseBengal (5) H2O 46 
17 RoseBengal (1) EtOH-H2O (1:1) 17 
18 RoseBengal (2) EtOH-H2O (1:1) 23 
19 RoseBengal (10) EtOH-H2O (1:1) 84 

20 Rose Bengal (5) EtOH-H2O (1:1) 67c 
21 Rose Bengal (5) EtOH-H2O (1:1) 62d 
22 RoseBengal (5) EtOH-H2O (1:1) 0e 
23     -- EtOH-H2O (1:1) trace 
a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), photocatalyst (1-10 
mol %), solvent 2 ml), 3W white LED lamps, rt, air, 2h. DME: 1,2-5 

dimethoxyethane; DCE: 1,2-dichloroethane; THF: tetrahydrofuran; b 

Isolated yields based on 1a. c 3W blue LED lamps. d 3W green LED 
lamps. e Without visible-light irradiation. 

Further optimization of solvents found that the reaction 
performed in EtOH/H2O (v:v = 1/1) gave the best yield (89%) of 10 

3a (Table 1, entries 7-16). Notably, this visible-light-induced 
sulfoxidation reaction also proceeded smoothly in water (Table 1, 
entry 16). The increase or reduction of the amount of photoredox 
catalysts did not improve the reaction efficiencies (Table 1, 
entries 17-19). In addition, the desired product was also obtained 15 

in 67% and 62% yields when the reaction was conducted under 
irradiation with 3 W blue and green LED lamps (Table 1, entries 
20 and 21). It should be noted that this sulfoxidation reaction did 
not occur in the absence of visible-light irradiation and only a 
trace amount of product was detected without photocatalyst 20 

(Table 1, entries 22 and 23). 
With the optimized conditions in hand, we then examined the 

generality of this visible-light initiated sulfoxidation of alkenes  

Table 2 Results for visible-light inditated sulfoxidation of alkenes with 
thiols leading to sulfoxides ab 25 
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a Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), Rose Bengal (5.0 
mol%), EtOH-H2O (2 mL, v1/v2=1:1), 3W white LED lamps, rt, air, 2h. b 

Isolated yields based on 1. c phenylacetylene was used (0.2 mmol). 30 

with thiols (Table 2). Gratifyingly, both electron donating and 
electron-withdrawing aromatic substituents were tolerated in the 
terminal alkenes, and the reaction worked well with the styrene 
bearing electron donating groups (3a-3h). It should be noted that 
a range of functional groups such as methoxy, halogen, 35 

chloromethyl and nitro groups were compatible with this reaction, 
and the corresponding products could be used for further 
transformation. The reaction of more sterically demanding α-
methylstyrene with 4-methylbenzenethiol proceeded smoothly to 
produce the desired product 3i in 60% yield. Notably, heterocycle 40 

aromatic alkene such as 2-vinylpyridine could also work well in 
this reaction to give the expected product 3j in 90% yield. 
Nevertheless, the corresponding products (3k-3m) were obtained 
in relatively low yields when aliphatic alkenes such as 
cyclopentene, hex-1-ene, and methyl acrylate were used as the 45 

substrates. The scope of this sulfoxidation reaction was further 
expanded to a series of thiols. In general, aryl thiols bearing 
electron-rich or -poor groups on the aryl rings were all suitable 
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substrates leading to the corresponding products in moderate to 
good yields (3n−3t). It was found that various aliphatic thiols 
with the long aliphatic chains were also well compatible with the 
reactions to deliver the corresponding products 3u-3x in good 
yields. To our delight, heterocycle alkylthiol such as thiophen-2-5 

ylmethanethiol could also be employed in this transformation to 
give the product 3y in 60% yield. In addition, when aromatic 
alkyne such as phenylacetylene was tested in the present reaction 
system, the corresponding vinylsulfoxide product 3z was 
obtained in 29% yield. Nevertheless, only a trace amount of 10 

product was detected when aliphatic alkyne such as hex-1-yne 
was employed in this reaction system. 

A series of control experiments were further carried out to 
better understand the possible mechanism of this transformation. 
As shown in eqn (2), when TEMPO (2,2,6,6-tetramethyl-1-15 

piperidinyloxy, a well-known radical scavenger) was added in the 
model reaction system, the reaction was extremely inhibited and 
only a trace amount of product 3a was detected, suggesting that a 
radical process might be involved in the present reaction. 
Moreover, only a trace amount of product 3a was detected when 20 

the model reaction was conducted under nitrogen atmosphere 
(eqn (3)). Also, 18O-labeling experiment was performed to 
determine the source of oxygen in sulfoxide. When the reaction 
of 1a and 2a was conducted in the presence of EtOH/H2O18 under 
air, the corresponding product 3a was isolated in 80% yield and 25 

none of O18-3a was detected (eqn (4)). These results indicate that 
air (O2) is essential for this reaction and the oxygen atom of 
sulfoxide came from dioxygen (air). Furthermore, none of the 
desired product was detected when the reaction of styrene 1a with 
1,2-diphenyldisulfane was carried out under standard conditions, 30 

which showed the disulfide might not be involved in this 
transformation (eqn (5)). In addition, when the model reaction 
was carried out for 20 min, the desired product 3a was obtained 
in 14% yield along with the formation of sulfide 7a in 74% yield 
(eqn (6)). Furthermore, when the preformed sulfide 7a was added 35 

separately under the standard conditions, the desired product 3a 
was obtained in 77% yield, suggesting that sulfide might be the  
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key intermediate in the present reaction system (eqn (7)). 
Moreover, an on/off visible light irradiation experiment was 40 

carried out to verify the effect of photo irradiation, and showing 
that the continuous irradiation of visible light is necessary for 
promoting the present transformation (Figure 1). In addition, 
fluorescence quenching experiments were also investigated to 
prove an energy transfer process between thiol 2a and Rose 45 

Bengal (Stern-Volmer studies) (see Figures 2 and 3). Indeed, it 
was found that the emission intensity of excited Rose Bengal 
(RB*) was dramatically diminished along with the increasing of 
the amount of thiol 2a. On the contrary, none of such effect was 
observed when styrene 1a was added separately (see ESI†).  50 

 

Figure 1. Visible light irradiation on/off experiment 

 

Figure 2 Quenching of Rose Bengal fluorescence emission in the 
presence of thiol 2a. 55 
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Figure 3. Stern-volmer plots. 

On the basis of the above results and referring to previous 
literatures,24,25 a possible reaction pathway was thus proposed as 
shown in Scheme 1. Initially, Rose Bengal was converted to the 60 

excited RB* under the visible-light irradiation. Then, a single 
electron transfer from thiol 2 to RB* afforded the radical cation 4 
and RB•− radical anion. The oxidation of RB•− by dioxygen (air) 
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generated the ground state Rose Bengal and O2

•−. Subsequently, 
the radical cation 4 is deprotonated by O2

•− leading to the 
stabilized thiyl radical 5. Next, the addition of thiyl radical 5 to 
alkene 1 would lead the formation of alkyl radical 6. Furthermore, 
a hydrogen atom transfer (HAT) process underwent between thiol 5 

2 and alkyl radical 6 to give sulfide intermediate 7 along with the 
regeneration of the thiyl radical 5. Finally, the sensitized 
photooxidation of sulfide 7 with dioxygen produced the desired 
sulfoxide 3.25 
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Scheme 1. Postulated reaction pathway 

   In summary, a rapid and facile approach to the visible-light 
induced selective sulfoxidation reaction of alkenes with thiols has 
been developed using air as the environmentally-benign oxidant. 
A series of biologically important sulfoxides could be 15 

conveniently and efficiently prepared in moderate to good yields 
using of simple and readily available materials. The present 
method is of great value from both green chemistry and organic 
synthesis perspectives because of its desirable features including 
operation simplicity, high atom efficiency, eco-energy source, 20 

green solvent, metal-free catalysis and ambient conditions. The 
application of this powerful system to the synthesis of other 
sulfur-containing compounds is currently underway in our 
laboratory. 
    25 
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