Nucleophilic Substitution of Nitroaromatic Halides by Electrogenerated Polysulphide lons in Dimethylacetamide

Meriem Benaïchouche, "Gérard Bosser," Jacky Paris *," and Vincent Plichon^b

^a Laboratoire de Synthèse et d'Etudes Physico-chimiques Organiques, UFR Sciences, Parc de Grandmont 37200 Tours, France

^b Laboratoire de Chimie et Electrochimie des Matériaux Moléculaires, ESPCI, 10, rue Vauquelin, 75231 Paris cedex 05, France

Electrogenerated polysulphide ions S_3^{-} and S_8^{-} readily react with haloaromatics, ArX, activated by nitro electron-withdrawing substituents in dimethylacetamide. Nucleophilic substitutions on fluoro-2,4-dinitrobenzene (1a; X = F), halo-4-nitrobenzenes (2a; X = F, Cl, Br, I) and 2-nitrobenzenes (3a; X = F, Cl, Br, I) lead to the coloured arylmonosulphide (1b; X = S⁻) and aryldisulphide (2c-3c; X = S_2⁻) ions. From the reaction kinetics studied by UV-VIS spectrophotometry, the order of reactivity is ArF > ArBr, ArI > ArCI. The proposed S_NAr mechanism implies that the dianions $S_6^{2^-}$ and $S_8^{2^-}$ are the nucleophilic agents ($S_6^{2^-} \gg S_8^{2^-}$) rather than the S_3^{-} and S_4^{-} radical anions.

The nucleophilic reactivity of polysulphide ions on alkyl halides in protic media has been the subject of several reports.¹ In dipolar aprotic solvents, stabilization of the ions S_8^{-} and $S_3^{-2,3}$ leads chiefly to dialkyl tri- and tetra-sulphides, according to the overall reactions that take place in dimethylacetamide⁴ (DMA) [reactions (1) and (2)].

$$2 RX + 2 S_3^{\bullet-} \longrightarrow RS_3 R + 3/8 S_8 + 2X^- \qquad (1)$$

$$2 \mathbf{R} \mathbf{X} + \mathbf{S}_8^{2-} \longrightarrow \mathbf{R} \mathbf{S}_4 \mathbf{R} + 1/2 \mathbf{S}_8 + 2\mathbf{X}^-$$
 (2)

These reactions are analogous to those occurring with the superoxide ion $O_2^{\bullet-}$ in the same type of medium ⁵ [reaction (3)].

$$2 RX + 2 O_2^{\bullet-} \longrightarrow RO_2 R + O_2 + 2X^- \qquad (3)$$

In the case of halo aromatics activated by electron-withdrawing groups, the displacement of halide ions by O_2^- has been shown in several instances.⁶⁻⁹ Initial attack occurs *via* an S_NAr mechanism,⁹ for an overall process leading to phenolate ions [reaction (4)].

$$\operatorname{ArX} + 2\operatorname{O}_{2}^{*-} \longrightarrow \operatorname{ArO}^{-} + 3/2\operatorname{O}_{2} + \operatorname{X}^{-} \quad (4)$$

We have recently described the general formation of stable aryl disulphide ions ArS_2^- in DMA by the direct reaction of sulphur on aromatic thiolates^{10,11} [reaction (5)]. It should

$$\operatorname{ArS}^{-} + 1/8 \operatorname{S}_{8} \rightleftharpoons \operatorname{ArS}_{2}^{-}$$
 (5)

thus be possible to obtain ArS^{-}/ArS_{2}^{-} solutions by nucleophilic substitution of polysulphide ions on aryl halides. We report here on the reactivity of S_{3}^{-} and $S_{8}^{2}^{-}$ ions electrogenerated from sulphur towards a series of activated halo compounds ArX [fluoro-2,4-dinitrobenzene (1a; X = F), fluoro-, chloro-, bromo-, iodo-4-nitrobenzene (2a) and -2nitrobenzene (3a) based on a kinetic study of these reactions in DMA. 4-Bromobenzophenone, 2-bromopyridine, bromobenzene and 1-bromonaphthalene were also tested.

Results

Reactions and their rates were followed at 20 °C by UV-VIS absorption spectrophotometry coupled with classic voltammetry, after the addition of ArX derivatives to S_3^{--} and S_8^{2--}

solutions, initially obtained by electrolysis of a defined concentration of sulphur (see the Experimental section).

In the case of compounds reacting with S_3^{-} ions a simplified reaction balance was established, analogous to that for O_2^{-} ions^{7,9} [reaction (6)]. In order to process the results quanti-

$$\operatorname{ArX} + 2 \operatorname{S}_{3}^{*-} \longrightarrow \operatorname{ArS}^{-} + \frac{5}{8} \operatorname{S}_{8} + \operatorname{X}^{-}$$
(6)

tatively, it was necessary to take into account the equilibria of the sulphur/polysulphide³ and aryl disulphide/thiolate¹¹ systems, as well as the characterization of the different chemical species, eqns. (7) and (8).

Dimerization ³ of S_3^{*-} :

$$2 \operatorname{S}_{3}^{*-} \rightleftharpoons \operatorname{S}_{6}^{2-} \tag{7}$$

$$K_1 = [S_3^{*-}]^2 [S_6^{2-}]^{-1} = 0.07 \text{ mol dm}^{-3}$$

Disproportionation ³ of S_8^{2-} :

$$S_8^{2-} \xrightarrow{} 2S_3^{-} + \frac{1}{4}S_8 \tag{8}$$

$$K_2 = [S_3^{*-}]^2 [S_8]^{1/4} [S_8^{2-}]^{-1} = 6.0 \times 10^{-5} \text{ (mol dm}^{-3})^{5/4}$$

When thiolate ions (2b) or (3b) react with sulphur, $ArS_2^$ ions (2c-3c) are obtained according to equilibrium (5) defined by the constant $K_3 = [ArS_2^-][ArS^-]^{-1}[S_8]^{-1/8}$ with $K_3 = 0.53$ (mol dm⁻³)^{-1/8} (2) and $K_3 = 14.0$ (3).¹¹ The stability of $ArS_2^$ ions decreases when the electron attraction effect is enhanced in the aromatic ring¹¹ and 2,4-dinitrophenyl disulphide ions (1c) were not observed from the evolution of spectra when sulphur was added on ArS^- ions (1b).

Fig. 1 (a) Evolution of UV–VIS absorption spectra during the addition of fluoro-2,4-dinitrobenzene to an S(-1/3) solution $C_0 = 1.15 \times 10^{-3}$ mol dm⁻³. The thickness of the cell was 0.1 cm; $y = [ArX]/C_0 = 0$ (1); 1/54 (2); 1/27 (3); 1/18 (4); 1/13.3 (5); 1/10.5 (6); 1/8.9 (7); 1/7.6 (8); 1/6.7 (9). (b) Reaction ArX (1a) + S(-1/3). y = 1/6.7 (9); 1/4.5 (10); 1/3.4 (11); 1/2.8 (12); 1/2.3 (13); 1/2.1 (14).

Spectrophotometric (λ_{max} , ε_{max}) and electrochemical characteristics (half-wave potentials of oxidation, O, or reduction, R) are summarized in Table 1.

In the concentration range chosen and with the experimental set-up used, reaction rates could be followed when the kinetic constants were within a defined interval (see the Experimental section). Under these conditions, the equilibrium states between species S_6^2/S_3^- [eqn. (7)], S_8^2/S_3^- [eqn. (8)] and ArS_2^-/ArS^- [eqn. (5)] were reached 'instantaneously'.

Stoichiometry of ArX + S_3^- Reactions.—Non-activated substrates such as bromobenzene and 1-bromonaphthalene were unreactive towards polysulphide ions. Similarly, when 2bromopyridine or 4-bromobenzophenone were added to $S_3^$ solutions in the ratio $[ArX]/[S_3^-]_0 = 10$, reaction did not occur to any appreciable extent. It occurred with a significant rate only in the case of halo(nitro)aromatic compounds 1a, 2a and 3a.

The reaction is fast with fluoro-2,4-dinitrobenzene. When this derivative was added to a solution of S_3^- ions in the

Fig. 2 Evolution of voltammograms during the reaction of ArX (1a) with S(-1/3). Same conditions as for Figs (1(a)–(b). Rotating golddisc electrode $\Omega = 1000$ rev min⁻¹, diameter = 2 mm; *E vs.* reference Ag/AgCl, KCl sat. in DMA/N(Et)₄ ClO₄ 0.1 mol dm⁻³.

proportion $y = [ArX]/[S_3^-]_0$, the stoichiometric study was based on the spectral changes shown in Figs. 1(*a*) and (*b*) and on the voltammetry recordings (Fig. 2).

For values of y less than 1/7 (curves 1-8, Fig. 1), the absorption of S_3^- ions ($\lambda_{max} = 617$ nm) decreased, whilst the absorption of ArS⁻ ions at $\lambda = 480$ nm increased; there was an isosbestic point at 540 nm. The consumption of S₈ arising from reaction (6) leads to $S_8^2^-$ ions according to eqn. (8) and is practically quantitative because of the excess of S_3^- ions and the value of K_2 . The presence of S_8^{2-} ions, masked by ArS⁻ ions at 515 nm, was detected at 360 nm (see Table 1). The spectral changes correspond to the balance (9) of reactions (6) + (8):

$$\operatorname{ArX} + 7 \operatorname{S}_{3}^{\bullet-} \longrightarrow \operatorname{ArS}^{-} + 5/2 \operatorname{S}_{8}^{2-} + X^{-}$$
(9)

The molar absorption coefficients at 540 nm calculated for S_3^- (1400 dm³ mol⁻¹ cm⁻¹), ArS⁻ (2000) and S_8^{2-} (3400) justify the isosbestic point at this wavelength. For 1/7 < y < 1/2, [Fig. 1(*b*)] the absorption of ArS⁻ at 480 nm continued to increase at the expense of the residual absorption of S_3^- ions and especially that of S_8^{2-} ions which were consumed (decrease in A_{360} and λ_{is} at 390 nm). Sulphur was then detected on the voltammograms (Fig. 2) by the appearance and increase of its reduction wave R₁ ($E_{1/2} = -0.34$ V vs. reference). For 0 < y < 1/2, the oxidation currents of ArS⁻ ($E_{1/2} = +0.92$ V and +0.60 V) increased while that of the S₃⁻ and S₈²⁻ ions ($E_{1/2} = -0.20$ V) decreased.

There was no spectral change when y was greater than 1/2, in compliance with the final balance (6), except for a slight decrease in A_{480} . The fact that the diarylsulphide Ar₂S could be obtained by reaction (10) could explain the slow decrease of

$$ArX + ArS^{-} \xrightarrow{k_1} Ar_2S + X^{-}$$
(10)

the ArS^- concentration. The study of the rates of these reactions will be discussed below.

In the case of ArX derivatives **2a** and **3a**, substitutions of S_3^{-} were slow. ArS₂⁻ ions are among the products expected from the simultaneous presence of sulphur and thiolate ions in solution. Spectral changes occurring when fluoro-2-nitrobenzene was added are shown in Fig. 3; at the beginning of the reaction (curve 2) the absorption at $\lambda \sim 500$ nm increased at the expense of A_{617} (S_3^{-}), as a result of the formation of ArS⁻ ($\lambda_{max} = 502$ nm) and S_8^{2-} ions ($\lambda_{max} = 515$ nm) rather than ArS₂⁻ based on the values of K_2 and K_3 . At the end of the

Table 1 Spectrophotometric and electrochemical characteristics of sulphur polysulphide ions 3,11 and aryldisulphide/thiolate ions 11 in DMA. Half-wave potentials at a rotating gold-disc electrode vs. reference 12 Ag/AgCl, KCl sat. in DMA/Et₄NClO₄ 0.1 mol dm⁻³.

Parameter	S ₈	S ₈ ²⁻	S ₆ ²⁻	S'3_	ArS ⁻		ArS_2^-			
					1b	2b	3b	1c	2c	3c
$\frac{\lambda_{\max}/nm}{(\epsilon/10^3)}$ dm ³ mol ⁻¹ cm ⁻¹	262 (8.0)	360 (7.8) 515 (4.1) 617 ^a (0.9)	460 (3.2) 345 (11.6)	617 (3.8)	480 (27.0)	502 (30.0)	502 (2.0)	 617 <i>°</i> (10.0)	600 (11.0) 617 ^a (3.6)	681 (5.0)
Wave $(E_{1/2}/\mathbf{V})$	$R_1(-0.34)$ $R_2(-1.10)$	$R_2(-1.10)$ $O_1(-0.20)$	$R_2 O_1$	\mathbf{R}_{2} \mathbf{O}_{1}	O(+0.92)	O(+0.67)	O(+0.55)	O (0.60) ^b	O(+0.27)	O (0.05)

^{*a*} Absorption of the species at $\lambda = 617$ nm. ^{*b*} In the presence of sulphur, the catalytic oxidation of ArS⁻ ions (1b) is observed at 0.60 V because of the formation of ArS⁻ ions 1c in the lone diffusion layer (see Fig. 2).

Fig. 3 Visible spectral changes during the reaction of fluoro-2nitrobenzene with S_3^- ions. $C_0 = 6.0 \times 10^{-3} \text{ mol dm}^{-3}$; $\xi_t = 0$ (1); 0.21 (2); 0.91 (3).

reaction (curve 3), only products ArS^- and above all ArS_2^- ($\lambda_{max} = 681$ nm) were detected. Regardless of the nature of X and the progress of the substitutions, these two types of ion were localized on the voltammograms by the same catalytic oxidation wave of ArS^- ions by sulphur, described elsewhere¹¹ $[E_{1/2} = +0.05$ V with 3 and +0.27 V with 2].

 $\operatorname{ArS}^{-} + 1/8 \operatorname{S}_{8} \longrightarrow \operatorname{ArS}_{2}^{-}$ (5)

$$\operatorname{ArS}_{\overline{2}} - e^{-} \longrightarrow \frac{1}{2} \operatorname{Ar}_{2} \operatorname{S}_{2} + \frac{1}{8} \operatorname{S}_{8}$$
(11)

Reactivity of ArS^- and ArS_2^- Ions on ArF Derivatives.—The fact that ArS^-/ArS_2^- solutions were obtained with derivatives 2 and 3 predicts that the reactions of ArS_x^- ions (x = 1 or 2) on aromatic halides occur very slowly in comparison with the substitution of polysulphide ions. This was verified by a study of their reactivity towards ArF compounds, fluorine generally being the best nucleofugic leaving group in S_NAr processes.¹³ When the reactions occurred, the method was identical with that we recently described when comparing the nucleophilicities of nitrophenyl mono- and di-sulphides towards alkyl halides;¹⁴ ArF compounds were first added to the solutions of thiolate ions arising from the electroreduction of diaryl disulphides Ar_2S_2 (**1c**-**3c**) and the changes in maximum absorption of $ArS^$ ions were recorded. Fluoro derivatives were also added to ArS^-/ArS_2^- solutions with defined initial composition, for $Ar = o_-$, *p*-nitrophenyl (see the Experimental section); in this case, the competitive reactions (10) and (12) were followed by recording the evolution of the maximum absorptions of ArS^- (2b, 3b) or ArS_2^- (3c) ions.

$$\operatorname{ArS}_{2}^{-} + \operatorname{ArF} \xrightarrow{k_{2}} \operatorname{ArS}_{2}\operatorname{Ar} + F^{-}$$
(12)

Processing of the results¹⁴ (Table 2), reveals that the reactions are second order. With compounds 3, the determination of k_1 easily led to that of k_2 according to the model of concurrent reactions.

From the kinetic studies of the reactions with fluoro-2nitrobenzene, the reactivity of aryldisulphide ions 2c, 3c appears to be higher than that of the corresponding thiolates 2b, 3b. These results agree with the enhanced nucleophilicities of ArS_2^- ions towards alkyl halides.¹⁴ However, ArS_x^- ions (x = 1,2) generated by substitution of polysulphide ions on haloaromatics 2a, 3a are only slightly (Ar = o-nitrophenyl) or not at all (Ar = p-nitrophenyl) reactive towards the corresponding substrates ArX.

Kinetic Studies of the Reactions of Polysulphide Ions S(-1/3)with Halo(nitro)benzenes **2a** and **3a**.—The kinetic study was carried out with initial solutions of substrate ArX at concentration $[ArX]_0$ and of sulphur S(-1/3) such that $C_0 = [S_3^{-1}]_0 + 2[S_6^{2-1}]_0$, based on the recording of the absorbance at the wavelength of the S_3^{-1} ions ($\lambda_{max} = 617$ nm) as a function of time. The progress ξ_i of the reaction is defined by eqn. (13).

$$\xi_{t} = \frac{[\text{ArX}]_{0} - [\text{ArS}]_{t}}{0.5C_{0}}$$
(13)

The order of the reaction concerning S_3^- ions was initially determined for derivatives (2) by the initial-rate method. For $0 < \xi_t < 0.1$, the overall reaction (9) can be considered alone, since the formation of ArS_2^- is negligible in comparison with that of S_8^{2-} ions as a first approximation.

$$\operatorname{ArX} + 7 \operatorname{S}_{3}^{\bullet-} \longrightarrow \operatorname{ArS}^{-} + 5/2 \operatorname{S}_{8}^{2-} + \operatorname{X}^{-} \qquad (9)$$

$$v_{t} = -\frac{d[ArX]_{t}}{dt} = -\frac{1}{7}\frac{dC_{t}}{dt} = -\frac{1}{7}\left(1 + \frac{4[S_{3}^{*-}]}{K_{1}}\right)\frac{d[S_{3}^{*-}]_{t}}{dt} = k_{obs}[ArX]_{t}[S_{3}^{*-}]_{t}^{n} \quad (14)$$

The initial rate v_0 was easily deduced from the absorption changes of S_3^{-} ions at 617 nm, corrected by that of S_8^{2-} ions. For each ArX (**2a**) derivative (X = F, Cl, Br, I) the determination of v_0 for five pairs of values (C_0 , [ArX]₀) with $4 \times 10^{-4} < C_0 < 3 \times 10^{-3}$ mol dm⁻³ led to the determination

Table 2 Rate constants k_x^{a} (dm³ mol⁻¹ s⁻¹) of the reactions between thiolate or disulphide ions (1b/c-3b/c) with ArF compounds in DMA at 20.0 \pm 0.5 °C. Ionic strength = 0.1 mol dm⁻³.

ArS _x ⁻	x	$1a\left(X=F\right)$	2a (X = F)	3a (X = F)
1	1	2.3		
2	1 2	f ^b f	Nr° Nr	Nr 0.7×10^{-3}
3	1 2	f f		$\begin{array}{r} 0.12 \ \times \ 10^{-2} \\ 2.20 \ \times \ 10^{-2} \end{array}$

^{*a*} Mean values $\pm 8\%$ from duplicate runs. ^{*b*} f = fast with respect to experimental conditions ($k_x > 100$). ^{*c*} Nr = no reaction after addition of [ArF] = 5.0×10^{-2} mol dm⁻³ in [ArS_x⁻] = 10^{-3} mol dm⁻³.

Table 3 Experimental values of order relative to S_3^- and rate constants k_{obs}^a (dm⁶ mol⁻² s⁻¹) of the reactions between halo-4-nitrobenzene **2a** and S(-1/3) ions at 20.0 ± 0.5 °C. Ionic strength = 0.1 mol dm⁻³.

Х	n	k_{obs}	
F	2.06	120	
Cl	1.95	30	
Br	1.98	67	
I	2.00	90	

^a k_{obs} values $\pm 10\%$

of *n* and the evaluation of k_{obs} , eqn. (15). The results are listed in Table 3.

$$\log v_0 / [\text{ArX}]_0 = \log k_{\text{obs}} + n \log [\text{S}_3^{--}]_0 \qquad (15)$$

The second order obtained for S_3^- led us to propose that the $S_6^2^-$ ions are effective nucleophilic agents in the substitution of polysulphide ions (S(-1/3) on activated aromatic halides. The

Fig. 5 Kinetic studies of the reaction of iodo-4-nitrobenzene with S_3^- ions. Same conditions as for Fig. 4. Calculations assuming first order (\blacksquare) and second order (\bigcirc) with respect to S_3^- ions. $k_{obs} = 9.08 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$.

hypothesis of a trimolecular process in the rate-determining step is relatively improbable. The rate is thus characterized by eqn. (16) with $k_3 = k_{obs} K_1$.

$$v_t = k_3 [\text{ArX}]_t [\text{S}_6^2]_t$$
 (16)

A precise kinetic study was then carried out with the halonitrobenzene series (2a) and (3a). At $\lambda = 617$ nm, only the absorptions of the S₃⁻, S₈²⁻ and ArS₂⁻ ions need be considered (Table 1).

$$A_{617}^{t}/1 = \varepsilon_{3}[S_{3}^{*-}]_{t} + \varepsilon_{8}[S_{8}^{2-}]_{t} + \varepsilon_{2}[ArS_{2}^{-}]_{t} \quad (17)$$

For $0 < \xi_t < 0.1$, side reactions of ArX with the S_8^{-} , ArS⁻ and ArS₂⁻ ions were neglected. In these conditions, the concentrations of species in solution are linked by 'instantaneously' established equilibria (7), (8) and (5), with constants K_1 , K_2 and K_3 , and by the conservation equations of charges and of the initial concentrations of Ar derivative and sulphur. The concentrations were determined for each reaction by a calculation program using a dozen values chosen for ξ_t . A_{617} , calculated by means of eqn. (17), led to time t, noted on the experimental curve and corresponding to ξ_t . Concentrations [ArX]_t, [S₈⁻]_t and [ArS₂⁻]_t could be expressed as a simple polynomial, as a function of [S₃⁻]_t (noted Y_t), from their changes with time; one example is shown in Fig. 4.

$$[\operatorname{ArX}]_t = a_0^{\operatorname{Ar}} + a_1^{\operatorname{Ar}} Y_t \tag{18}$$

$$[S_8^{2^-}]_t = a_0^8 + a_1^8 Y_t \tag{19}$$

$$[\operatorname{ArS}_{2}^{-}]_{t} = a_{0}^{2} + a_{1}^{2}Y_{t} + a_{2}^{2}Y_{t}^{2}$$
(20)

The combination of eqns. (17)-(20) enabled $[S_3^{--}]_t = f(t)$ to be obtained. A simple kinetic equation was then deduced from eqn. (16) for v_t and tested by assuming first or second order with reference to S_3^{--} (see Fig. 5 linked to the experimental

$$\int_{Y_0}^{Y_t} F(Y_t) \, \mathrm{d}Y = k_{\mathrm{obs}} t \tag{21}$$

Table 4 Rate constants k_3^a and k_4^a (dm³ mol⁻¹ s⁻¹) of the reactions of S_6^{2-} and S_8^{2-} ions on halo-4-nitrobenzenes 2a and -2-nitrobenzenes 3a at 20.0 \pm 0.5 °C. Ionic strength = 0.1 mol dm⁻³

Ar		F	Cl	Br	I
2	k ₃ k ₄	9.1 0.13	2.2 0.021	5.5 0.11	6.4 0.11
3	k_3	10.8 0.13	1.3	2.3	2.1

Mean values of k_3 and k_4	\pm 5% from deviation	of several kinetic runs.
--------------------------------	-------------------------	--------------------------

Fig. 6 Kinetic studies of the reaction of bromo-4-nitrobenzene with 0.1375 dm³ mol⁻¹ s⁻¹.

$$F_n(Y_t) = -a_1^{\rm Ar} [(a_0^{\rm Ar} + a_1^{\rm Ar} Y_t) Y_t^n]^{-1}$$
(22)

conditions of Fig. 4) eqns. (21) and (22) with n = 1 or 2, depending on the assumed order.

That the reaction was second order with respect to S_3^{-} , as previously deduced from the study of the initial rates, was confirmed in all cases and no significant autoacceleration, caused by the possible reaction of S_8^{2-} ions with ArX, was observed. The rate constants k_3 of the reactions of S_6^{2-} ions with aromatic halides 2a and 3a are listed in Table 4.

Kinetic Studies of the Reactions of S_8^{2-} Ions with Some Halo(nitro)benzenes.—Solutions of S_8^{2-} ions were obtained by partial electrolysis of concentrated solutions of sulphur, close to saturation (see the Experimental section). The concentrations $[S_3^{*-}]_0$ and $[S_6^{2-}]_0$ calculated from constants K_1 and K_2 , were always very small in comparison with $[S_8^{2^-}]_0$ deduced from the spectrum ($\lambda_{max} = 515$ nm). The study of the reactivity of S_8^{2-} ions with halo-4-nitrobenzenes 2a was carried out in a manner similar to that of S(-1/3) ions, based on $A_{502} = f(t)$ recordings. At 502 nm, only the absorptions of S_8^{-} and ArS⁻ need be taken into consideration (Table 1).

$$A_{502}^{t}/1 = \varepsilon_{8}[S_{8}^{2^{-}}]_{t} + \varepsilon_{1}[ArS^{-}]_{t}$$
(23)

Concurrent reactions (24) and (25) should also be considered

$$ArX + S_6^2 \xrightarrow{k_3} ArS^- + 5/8 S_8 + X^-$$
(24)

$$ArX + S_8^{2-} \xrightarrow{k_4} ArS^- + 7/8 S_8 + X^-$$
 (25)

These correspond to the same formation balance for the mixture ArS⁻/ArS⁻₂, since the sulphur concentration remained practically constant. From eqns. (5) and (8), we obtain eqns. (26) and (27).

$$[ArS_{2}^{-}]_{t} = \gamma [ArS^{-}]_{t}$$
 with $\gamma = [S_{8}]^{1/8}K_{3}$ (26)

$$[S_8^{2^-}]_t = \beta [S_3^{*^-}]_t^2$$
 with $\beta = [S_8]^{1/4} K_2^{-1}$ (27)

Assuming that the reactions are first order with respect to S_8^{2-} , as for S_6^{2-} , the rate of substitution of polysulphide ions is expressed by formula (28).

$$v_{t} = -\frac{d[ArX]_{t}}{dt} = (1 + \gamma)\frac{d[ArS^{-}]_{t}}{dt} = (k_{3}[S_{6}^{2^{-}}]_{t} + k_{4}[S_{8}^{2^{-}}]_{t})[ArX]_{t} \quad (28)$$

$$v_{t} = k_{abs}[ArX]_{t}[S_{8}^{2^{-}}]_{t} \quad (29)$$

 $v_t = k'_{\text{obs}}[\text{ArX}]_t[\text{S}_8^{2-}]_t$

 $k'_{\rm obs} = k_4 + k_3 (K_1 \beta)^{-1}$ with

and
$$[ArX]_t = [ArX]_0 - [ArS^-]_t (1 + \gamma)$$

On the basis of the conservation of mass equations, $[ArS^-]$, and $[S_8^{2-}]_{t}$ can be easily calculated for different chosen values of ξ_t and a simple expression of $[S_8^{2-}]_t$ as a function of $[ArS^{-}]_{t} = Z_{t}$ is accessible in the form of eqn. (30). $[ArS^{-}]_{t}$

$$[\mathbf{S}_{8}^{2^{-}}]_{t} = a'_{0}^{8} + a'_{1}^{8}Z_{t}$$
(30)

was then deduced from the experimental variation of A_{502} = f(t) and the following kinetic equation [eqn. (31)] could be

$$\int_{Z_0}^{Z_t} F(Z_t) \mathrm{d}Z = k'_{\mathrm{obs}} t \tag{31}$$

established with $(1 + \gamma) F(Z_t)^{-1} = a'_0^8 R_0 + [a'_1^8 R_0 - a'_0^8(1 + \gamma)]Z_t - a'_1^8(1 + \gamma)Z_t^2$ and $R_0 = [ArX]_0$.

Calculations confirmed first order with reference to S_8^{2-} for all the substitutions of aromatic halides 2a (see Fig. 6 for one example) and led to the constants k_4 listed in Table 4. The same method was applied with fluoro-2-nitrobenzene, based on changes in $A_{681} = f(t)$. In this case, the competitive reaction ArX + ArS₂⁻ ($k_2 = 2.2 \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ from Table 2) caused an autoacceleration phenomenon shown on the integrations for $\xi_t > ca$. 1/6, and the decrease in absorption of ArS_2^- when ArF was in excess.

Discussion

There is no reaction in DMA between S_3^{*-} ions and nonactivated ArX substrates, such as bromobenzene or 1-bromonaphthalene. This enables the probability of an S_{RN}1 mechanism^{15,16} to be eliminated, where the initial step involves electron transfer, leading to the anion radical ArX^{•-}.

$$ArX + S_3^{*-} \longrightarrow ArX^{*-} + 3/8 S_8$$
 (32)

The fact that reactions are observed only with haloaromatics activated by strong electron-withdrawing NO₂ substituents is consistent with an S_NAr mechanism, often observed in dipolar aprotic media.¹³ In the course of substitution of $O_2^{\bullet-}$ ions, the formation of the σ complex ArXO₂⁻ was revealed by cyclic voltammetry.⁹ The S₈²⁻/S₄^{*-} equilibrium has been proposed for polysulphide ions S(-1/4),¹⁷ as established for S(-1/3) between S₆²⁻ and S₃^{*-,2,3} The analogy of the reactivity of O₂^{*-}

Table 5Calculated charge distribution on anionic sulphur chains $S_x^{y^{-1}}$ from Meyer et al.¹⁸S-S-S ---

1 2 3						
x	у	S (1)	S(2)	S(3)	S(4)	
3	-1	-0.38	-0.24			
4	-1	-0.34	-0.16			
6	-2	-0.50	-0.30	-0.20		
8	-2	-0.47	-0.27	-0.15	-0.11	

ions with S(-1/3) or S(-1/4), observed particularly in the case of alkyl halides,⁴ is consistent with the initial addition of anion radicals S_3^- or S_4^- and obtaining intermediate complexes $ArXS_3^-$ and $ArXS_4^-$. Based on our study, order 2 for S_3^- and order 1 for S_8^{2-} led us to propose that the dianions S_6^{2-} and S_8^{2-} were effective nucleophiles during substitutions, with the following order of reactivity: $S_6^{2-} > S_8^{2-} \gg S_3^{--}$, S_4^{--} . This observation may be perhaps interpreted in terms of electrondensity distribution on the sulphur atoms of the different ions. The results of calculations carried out by Meyer *et al.*,¹⁸ using the extended Hückel method (Table 5), show that the charge is more diffuse in the anion radicals.

The mechanism can thus be summarized by eqns. (33)-(35).

$$\operatorname{ArX} + \operatorname{S}_{x}^{2-} \xrightarrow{k} \operatorname{ArS}_{x}^{-} + X^{-} \quad \text{slow} \quad (33)$$

$$\operatorname{ArS}_{x}^{-} \longrightarrow \operatorname{ArS}_{2}^{-} + \frac{(x-2)}{8} \operatorname{S}_{8} \quad \text{fast}$$
 (34)

$$ArS_2^- \longrightarrow ArS^- + 1/8 S_8$$
 fast (35)

Arylpolysulphide ions arising from the initial slow step are rapidly transformed into the stable ions ArS_2^- and ArS^- in the equilibrium.

Of all the ArX derivatives studied, fluorine is the best nucleofuge of the halogens, as is generally the case for S_NAr reactions. The order of reactivity, F > Br, I > Cl, is the same as that noted during the reaction between halo(nitro)benzenes and the KO₂-crown ether complex in benzene.⁶

The nucleophilicity of $S_6^{2^-}$ ions towards activated aryl halides in DMA is equivalent to that noted for O_2^{-} ions in DMF⁷ (at 20 °C $k = 9.0 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ for the reactions 4-NO₂C₆H₄F + O_2^{-} and k < 2.0 with 4-NO₂C₆H₄Cl). Their reactivity is higher than that of benzenethiolate ions¹⁹ considered to be among the most powerful nucleophilic agents ($k = 4.0 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ with 4-NO₂C₆H₄F and 0.25 with 4-NO₂C₆H₄I in DMF at 25 °C).

Experimental

Materials and Equipment.—Aryl halides, diaryl disulphides, sulphur and dimethylacetamide were commercially available reagent-grade products. Sulphur and diaryl disulphides were recrystallized from benzene. DMA distilled under reduced nitrogen pressure was added to 0.1 mol dm⁻³ tetraethylammonium perchlorate as the supporting electrolyte, stored over 4 Å molecular sieves and used within one week of distillation.

Electrochemical equipment, electrodes and the thermostatted flowthrough cell have been described previously.³ Absorption spectra were obtained with a Kontron Uvikon 930 spectrophotometer.

Generation of S_3^{-} , S_8^{-} and ArS^-/ArS_2^- Solutions.—All initial anionic solutions were prepared by controlled-potential electro-

lysis. The course of the reaction was followed by classic voltammetry with a rotating gold-disc electrode. Their composition was determined precisely from the UV–VIS spectra, using known spectrophotometric characteristics (Table 1) and the values of constants K_1 , K_2 and K_3 . Electrolysis was carried out in the cell with a large gold grid electrode as the cathode on 35 cm³ of sulphur or diaryl disulphide solutions. The cathodic and anodic compartments were separated by No. 4 sintered porous glass.

 S_3^{-} solutions were prepared by the electroreduction of S_8^{-3} on the plateau of its second reduction wave R_2 (at E = -1.3 V vs. reference), up to 8/3 F mol⁻¹ S₈, according to eqn. (36).

$$S_8 + 8/3 e^- \longrightarrow 8/3 S_3^{*-}$$
 (36)

All initial concentrations, C_0 used for the kinetic runs were included between 5×10^{-4} and 6×10^{-3} mol dm⁻³. As an example, for $C_0 = 5 \times 10^{-3}$ mol dm⁻³, $[S_3^{*-}]_0 = 4.44 \times 10^{-3}$ mol dm⁻³ and $[S_6^{2-}]_0 = 0.28 \times 10^{-3}$ mol dm⁻³. Solutions of S_8^{2-} , the concentration of which was always close

Solutions of S_8^{-7} , the concentration of which was always close to 2×10^{-3} mol dm⁻³, were obtained by partial electrolysis of concentrated sulphur solutions ³ (of the order of 8×10^{-3} mol dm⁻³) on the plateau of its first reduction wave R₁ (at E =-0.7 V vs. reference) according to eqns. (37) and (8).

$$S_8 + 2 e^- \longrightarrow S_8^{2-} \tag{37}$$

$$\mathbf{S}_8^{2-} \longleftrightarrow 2 \, \mathbf{S}_3^{*-} + 1/4 \, \mathbf{S}_8 \tag{8}$$

The presence of an excess of sulphur shifts the disproportionation equilibrium to the left. Thus, the reactivity of $S_8^{2^-}$ ions with fluoro-4-nitrobenzene was studied using a solution of initial composition $[S_8^{2^-}]_0 = 1.43 \times 10^{-3} \text{ mol dm}^{-3}, [S_3^{-^-}]_0 = 0.39 \times 10^{-3} \text{ mol dm}^{-3}, [S_6^{2^-}]_0 = 2.2 \times 10^{-6} \text{ mol dm}^{-3}$ and $[S_8]_0 = 6.0 \times 10^{-3} \text{ mol dm}^{-3}$.

Solutions of ArS⁻ ions (1b-3b) such as 6×10^{-4} mol dm⁻³ (1b and 2b) < [ArS⁻]₀ < 5 × 10⁻³ (3b) were generated in a similar way by reduction of symmetrical disulphides at a fixed potential on their bielectronic wave,²⁰ according to the overall reaction (38).

$$\operatorname{Ar}_2 S_2 + 2 e^- \longrightarrow 2 \operatorname{Ar} S^- \tag{38}$$

The addition of defined quantities of a sulphur solution at 9×10^{-3} mol dm⁻³ in the case of derivatives 2 and 3 led to solutions ArS⁻/ArS⁻₂.

Rate Measurements.—A small volume of concentrated solution of ArX compounds ($V_{max} = 1 \text{ cm}^3$) was added to solutions S(-1/3), S(-1/4) or ArS^-/ArS_2^- at 20.0 ± 0.5 °C. Changes in absorbance were recorded vs. time at 617 nm (ArX + S₃⁻), 502 nm (ArX + S₈⁻), or at λ_{max} for the ions ArS^- 1b, 3b or ArS_2^- 3c (reactions $ArS^- + ArX$). This enabled the kinetic characteristics reported in this study to be deduced. The precision of results was assigned for the 'fast' reactions by the transfer of the solution from the reaction medium to the spectrophotometric cell (1 = 1 mm pathlength), which took about 8 s. In addition, solutions of S₃⁻ and S₈²⁻ ions were slightly sensitive to reoxidation and their concentrations diminished by 2 to 3% per hour. In these conditions, the rate constants of the reactions $ArX + S_6^{2-}(k_3)$ and $ArX + S_8^{2-}(k_4)$ can be evaluated in the intervals

$$5000 > k_3/\text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1} > 3 \times 10^{-4}$$
$$20 > k_4/\text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1} > 3 \times 10^{-4}$$

References

- 1 (a) E. Reid in Organic Chemistry of Bivalent Sulphur, Chemical Publishing Co., New York, 1960, vol. 3, p. 362; (b) L. Field in Organic Chemistry of Sulphur, ed. S. Oae, Plenum Press, New York, 1977, p. 303 and references cited therein.
- 2 (a) R. D. Rauh, F. S. Shuker, J. M. Marston and S. Brummer, J. Inorg. Nucl. Chem., 1977, 39, 1761; (b) F. Seel, H. J. Guttler, G. Simon and A. Wieckowski, Pure Appl. Chem., 1977, 49, 45.
- 3 J. Paris and V. Plichon, *Electrochim. Acta*, 1981, 26, 1823 and references cited therein.
- 4 J. Paris and V. Plichon, Nouv. J. Chim., 1984, 8, 733.
- 5 D. T. Sawyer and M. J. Gibian, *Tetrahedron*, 1979, 35, 1471 and references cited therein.
- 6 A. Frimer and I. Rosenthal, Tetrahedron Lett., 1976, 2809.
- 7 F. Magno, G. Bontempelli and M. M. Andreuzzi Sedea, J.
- Electroanal. Chem., 1979, 97, 85.
 8 H. Sagae, M. Fujihira, K. Komazawa, H. Lund and T. Osa, Bull. Chem. Soc. Jpn., 1980, 53, 2188.
- 9 M. Gareil, J. Pinson and J. M. Savéant, Nouv. J. Chim., 1981, 5, 311.
- 10 G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Chem. Commun.,
- 1988, 720.
 11 M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 1, 31.

- 12 M. Bréant, J. Georges, J. L. Imbert and D. Schmitt, Ann. Chim. (Paris), 1971, 6, 245.
- 13 (a) J. A. Zoltewicz, *Top. Curr. Chem.*, 1975, **59**, 33; (b) L. Balas, D. Jhurry, L. Latxague, S. Grelier, Y. Morel, M. Hamdani, N. Ardoin and D. Astruc, *Bull. Soc. Chim. Fr.*, 1990, **127**, 401 and references cited therein.
- 14 M. Benaïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 8, 1421.
- 15 J. F. Bunnett, Acc. Chem. Res., 1978, 11, 413.
- 16 C. F. Bernasconi, Chimia, 1980, 34, 1.
- 17 R. J. H. Clark and D. G. Cobbold, Inorg. Chem., 1978, 17, 3169.
- 18 B. Meyer, L. Peter and K. Spitzer in *Homoatomic Rings, Chains and Macromolecules of Main-group Elements*, ed. A. L. Rheingold, Elsevier, 1977, 477.
- 19 A. J. Parker, Chem. Rev., 1969, 69, 1.
- 20 (a) P. E. Iversen and H. Lund, Acta Chem. Scand., Ser. B, 1974, 28, 827; (b) J. R. Bradbury, A. F. Masters, A. C. MacDonnell, A. A. Brunette, A. M. Bond and A. G. Wedd, J. Am. Chem. Soc., 1981, 103, 1959.

Paper 0/05488G Received 6th December 1990 Accepted 29th January 1991