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Highly Enantioselective Transfer Hydrogenation of Racemic -

Substituted -keto Sulfonamides via Dynamic Kinetic Resolution  

Zhichao Xionga, Chengfeng Peia, Peng Xuea, Hui Lv*a,b,d and Xumu Zhang*c

Highly enantioselective transfer hydrogenation of -keto 

sulfonamides was developed via dynamic kinetic resolution using a 

chiral Ru(II) catalyst with an azeotropic solution of HCO2H/Et3N as 

a hydrogen donor, affording -substituted -hydroxyl 

sulfonamides in good yields with excellent diastereo- and enantio-

selectivities. This method is featured with  mild conditions, easy 

operation, and  a broad substrate scope which makes it possible to 

find wide applications in  synthesis of nature products and 

biologically active compounds containing -substituted -hydroxyl 

sulfonamides core. 

Sulfa drugs, important synthetic antimicrobial agents 

containing sulfonamide group, have been widely used in clinical 

treatment for more than 80 years.1 Thus, sulphonamides are 

regarded as privileged motifs for lead compounds in drug 

discovery and attracted great attention.2 Great efforts have 

been devoted to the development of efficient methods for 

constructing of functionalized sulfonamides and many 

approaches have been developed.3 However, the asymmetric 

access to-substituted -hydroxyl chiral sulfonamides is still 

rare4 despite these compounds are widely distributed in dugs 

and nature products and exhibit important biological activities 

(Figure 1),5 thus the development of efficient methods for -

substituted -hydroxyl chiral sulfonamides is highly desirable. 

 

In the past decades, dynamic kinetic resolution (DKR) as an 

efficient methodology to obtain optically pure molecules from 

racemic compounds has been widely investigated.6-7 Among 

them, asymmetric hydrogenation of racemic -substituted 

ketones via dynamic kinetic resolution (DKR) has been 

demonstrated to be an efficient and reliable method for the 

synthesis of chiral -substituted β-hydroxyl compounds with 

two contiguous stereocenters. However, most of these 

reactions were conducted under basic condition, making base-

sensitive substrates, such as -halo ketones, unfit for this 

transformation, which greatly limited the substrate scope.8 

Compared with traditional hydrogenation, asymmetric transfer 

hydrogenation(ATH)9 has better compatibility to substrates and 

is more suitable for the reduction of sensitive or complicated 

substrates, such as -halo ketone.10 Even so, when racemic -

halo ketone was used in ATH via dynamic kinetic resolution, the 

dehalogenation product was obtained.  For example, -alkyl -

keto sulfones were well tolerated in ATH via dynamic kinetic 

resolution, but -bromo -keto sulfone only afforded 

debromination product in the same conditions.11 Therefore, to 

develop a general and efficient method for hydrogenation of -

substituted -keto sulfones/sulphonamide with excellent 

compatibility to substrate is still a challenge. Herein, we disclose 

the highly enantioselective transfer hydrogenation of racemic 

-substituted -keto sulfonamides with ruthenium catalyst for 

the synthesis of-substituted -hydroxyl sulfonamides. More  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Biologically active compounds containing chiral -

hydroxyl sulfonamides. 
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importantly, -halo substituted -keto sulfonamides, 

challenging substrates for hydrogenation, are also well-

tolerated in this reaction. 

The asymmetric transfer hydrogenation of racemic 1-phenyl-

2-(piperidin-1-ylsulfonyl) propan-1-one (1a) was chosen as 

model reaction to optimize the reaction conditions. Initially, a 

variety of catalysts were examined. As showned in Table1, when 

half-sandwiched Ru(II)/6-arene catalysts were used (entries 1-

2), they both showed acceptable results, but cat. B did better in 

yield, enantio- and diastereoselectivity. This was probably due 

to the methyl and 2-propyl group on the arene ring and thus 

increased the reactivity and steric hindrance. When Rh (III) or Ir 

(III) complex was employed in this reaction, only moderated 

yields and enantioselectivities were obtained (entry 3-4). This 

might suggest that ruthenium (II) is more suitable for the 

transfer hydrogenation of 1a. Therefore, Ru-tethered cat. E 

developed by Wills group12 was investigated, the reaction 

proceeded very smoothly, affording the desired product in high 

yield with excellent enatio- and diastereoselectivity (entry 5). 

Subsequently, alternative molar ratios of HCO2H/Et3N were 

tested, and the results revealed that a molar ratio of 5:2 is the 

best condition in comparison to that of 3:2 or 1:1(entries 6-7).  

 

Table 1 Influence of the catalyst on the ATH-DKR of 1a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspired by these promising results, we investigated the 

solvent effects in the presence of 2 mol% cat. B by using formic 

acid/triethylamine (molar ratio 5:2) as hydrogen source. As 

shown in Table 2, the solvents tested here have no influence to 

the enantioselectivity and all of them afford desired product 

with excellent enantioselectivity, but it have an important 

impact on the yield. When the reaction was conducted in EtOH, 

dioxane, toluene, only moderated yields were obtained. When 

MeOH, THF, CH3CN, DMF were employed as solvents, this 

reaction proceeded very smoothly, affording target product in 

excellent yields with high diastereo- and enantioselectivities. 

It’s worth noting that this reaction also proceeded very well in 

the mixture of HCO2H/Et3N. Due to the relatively high 

diastereoselectivity, DMF was chosen as the best solvent. 

Subsequently, the reaction temperature was evaluated, and the 

results disclosed that decreasing temperature lead to a 

relatively low yield (entries 9-10). 

 

Table 2 Influence of the solvents on the ATH-DKR of 1a 

 

 

 

 

 

 

 

 

 

Entry solvent yield (%)b Ee(%)c drd 

1 MeOH >99 >99 12:1 

2 EtOH 50 >99 12:1 

3 THF >99 >99 12:1 

4 Dioxane 36 >99 15:1 

5 CH3CN >99 >99 15:1 

6 Toluene 45 >99 15:1 

7 DMF >99 >99 >20:1 

8e - >99 >99 15:1 

9f DMF 90 99 20:1 

10g DMF 95 98 20:1 

a Unless otherwise noted, all reactions were carried out with a substrate/catalyst ratio 

of 50:1 at 60 ºC  for 12 h. b Isolated yield. cDetermined by HPLC analysis using a chiral 

stationary phase. dDetermined by 1H NMR spectroscopy.e 1 mL HCO2H/Et3N mixture was 

used. f room temperature, 24h. g 40 ºC, 18h. 

Under the optimal reaction conditions, the substrate scope 

was investigated. As shown in Table 3, the electronic properties 

and the position of substituent group on benzene ring has no 

influence on the reaction, all -substituted -aryl keto 

sulfonamides examined here can be hydrogenated efficiently, 

giving desired products with good yield, high enantioselectivity 

and excellent diastereoselectivity (2a-2g). Replacing aryl group 

by polycyclic aromatic group or heteroaromatic group, such as 

naphthyl and thienyl, this reaction also proceeded very well (2h-

2i).  When piperdinyl group of sulfonamide was changed to 

pyrrolyl group, morpholinyl group or dimethyl group (2j-2l), 

there are no influence to this reaction. In addition, -methyl -
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keto sulfone was also worked very well in this reaction (2m).13 

It is worthy to note that this reaction exhibited a good tolerance 

to various -functional group substituted -keto sulfonamides. 

When the substituent R changed to a sensitive halogen group, 

it also gave target products with excellent results (2n-2o). To the 

best of our knowledge, this work represents the first example 

to construct -halo β-hydroxy compounds with two contiguous 

chiral centers by reduction of -halo ketones via dynamic 

kinetic resolution. 

 

Table 3 ATH-DKR results of 1a-1oa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a All reactions were carried out with a substrate/catalyst ratio of 50:1 at 60 oC for 12 h.  

bIsolated yield. cDetermined by HPLC analysis using a chiral stationary phase. 

dDetermined by 1H NMR spectroscopy. dThe reaction was conducted at room 

temperature for 18 h. 

In order to demonstrate the potential practical application of 

this reaction, a gram scale reaction was performed at 60oC in 

presence of 0.5 mol% catalyst loading. As shown in Scheme 1, 

the reaction proceeded smoothly, affording 2a in 95% yield with 

99% enantioselectivity and 20:1 diastereoselectivity. 

 

 

 

 

 

 

 

 

Scheme 1 Gram scale reaction. 

In summary, we have developed an efficient and practical 

strategy for the synthesis of -substituted -hydroxyl 

sulfonamides by a tethered Ru (II) complex catalyzed transfer 

hydrogenation of racemic -Substituted -keto sulfonamides. 

The reaction features wide substrate scope, high yield, excellent 

diastereo- and enantioselectivity, which make it possible to find 

wide applications in the synthesis of biologically active 

compounds containing -hydorxy sulfonamides core. Further 

investigation on asymmetric hydrogenation of -functionalized 

ketones is also underway in our laboratory. 
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An efficient enantioselective transfer hydrogenation of racemic -substituted -keto 

sulfonamides via dynamic kinetic resolution have been achieved, affording -substituted -

hydroxyl sulfonamides in good yields and excellent diastereo- and enantioselectivities. 
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