Regioselective Synthesis of 5-Alkylthio- and 3-Alkylthioisoxazoles from Acylketene Dithioacetals¹

M.L. Purkayastha, H. Ila,* H. Junjappa*

Department of Chemistry, North-Eastern Hill University, Shillong 793003, Meghalaya, India

A regioselective synthesis of isomeric 5-alkylthio- and 3-alkylthioisox-azoles 3 and 4 has been developed from acylketene dithioacetals 2. Thus the reaction of 2a-l with hydroxylamine hydrochloride in the presence of sodium methoxide in refluxing methanol afforded 3-substituted 5-alkylthioisoxazoles 3a-l in good yields. When compounds 2a-l were reacted with hydroxylamine hydrochloride in the presence of sodium acetate/acetic acid (pH 2.2) in refluxing ethanol/benzene, 3-alkylthioisoxazoles 4a-l were obtained regioselectively in good yields. Mass-spectral fragmentation and the mechanism of the formation of 3 and 4 are discussed.

One of the useful general methods employed for the synthesis of substituted isoxazoles involves the cyclocondensation of hydroxylamine with C_3 units having 1,3-electrophilic centres. A wide structural variety of C_3 components has been used in these reactions with induction of regioselectivity, which is generally influenced either by altering the electrophilicity of the terminal C-atoms in the C-C-C component or by controlling the pH of the reaction medium and the reaction conditions. ^{2a,3}

Hydroxylamine, being an ambident nucleophile, has been shown to exist in the hydroxylamine (NH₂OH) form in neutral and weakly basic medium, while under strongly basic conditions the corresponding aminohydroxy anion (NH₂O⁻) predominates.^{4,5} The nucleophilicities of these species are centred at the N- and O-atoms, respectively. A detailed mechanistic study of the condensation of β -ketoesters with hydroxylamine to give either isoxazolin-3-one or its 5-one isomer at different pH and under different reaction conditions has also been reported.^{6,7} The acylketene dithioacetals 2 can be regarded as masked β -ketoesters; their reaction with hydroxylamine is of interest, since this can yield either 3- or 5-alkylthioisoxazoles, depending on the reaction conditions. A literature survey revealed that the reaction of the doubly acitvated ketene dithioacetals 1a-d with hydroxylamine to give the corresponding 3-methylthioisoxazoles has already been reported.8-10 This reaction is apparently rendered possible by the enhanced electrophilicity of C-2 in 1 due to the presence of two electronwithdrawing substituents at C-1 which facilitate the attack of the nucleophilic N-atom of hydroxylamine at C-2.

As already reported, ¹¹ acylketene *S*,*N*-acetals react with hydroxylamine in a similar manner to give regioselectively 3-aminoisoxazoles by nucleophilic attack of the N-atom at C-2. This reaction may also be rationalized in terms of enhanced electrophilicity of C-2 in *S*,*N*-acetals due to delocalization of the

lone pair of electrons at nitrogen over the 1,3-enone system¹² of 1. We now report a highly regioselective synthesis of both 5-alkylthio-3 and 3-alkylthioisoxazoles 4 by reaction of acylketene dithioacetals 2 with hydroxylamine hydrochloride at different pH values.

Synthesis of 5-Alkylthioisoxazoles 3a-I

When benzoylketene dimethyl dithioacetal (2a) was submitted to the reaction with hydroxylamine hydrochloride (4 equiv) in the presence of sodium methoxide (6 equiv, pH9) in boiling methanol, 5-methylthio-3-phenylisoxazole (3a) was obtained in 78% yield. The ¹H-NMR spectrum of 3a (after work-up) did not indicate any trace of the isomeric 3-methylthioisoxazole (4a). The structure of 3a was confirmed with the help of spectral and analytical data as well as by its alternative synthesis by a reported method (superimposable IR and ¹H-NMR spectra). 5-Ethylthioisoxazole (3b) was prepared under identical conditions and its properties were found to be in agreement with those of a sample prepared by a reported method. ^{14,15} The hitherto unreported compounds 3c-1 were

Table 1. 5-Alkylthioisoxazoles 3 Prepared

Product	R ¹	R ²	Reaction Time (h)	Yield ^a (%)	mp (°C) ^b	Molecular Formula ^c or Lit. Data	MS $(70 \text{ eV})^d$ $m/z \ (\%)$
3a	Ph	Me	10	78	40 (CHCl ₃ /hexane)	39-4013	191 (M ⁺ , 42); 144 (100); 116 (29); 77 (70)
3b	Ph	Et	15	58	viscous liquid	(bp 96–98/ 0.05 Torr) ¹⁴	205 (M ⁺ , 28); 144 (100); 116 (24); 77 (53)
3c	Ph	n-Pr	18	61	viscous liquid	C ₁₂ H ₁₃ NOS (219.3)	219 (M ⁺ , 39); 144 (100); 116 (21)
3 d	$4-\text{MeC}_6\text{H}_4$	Me	15	77	51 (CHCl ₃ /hexane)	C ₁₁ H ₁₁ NOS (205.3)	205 (M ⁺ , 10); 158 (100); 130 (38); 91 (39)
3e	4-ClC ₆ H ₄	Me	13	71	61 (CHCl ₃ /hexane)	C ₁₀ H ₈ CINOS (225.7)	227 (12), 225 (M ⁺ , 31); 180 (36), 178 (100); 152 (16), 150 (50); 113 (9), 111 (22)
3f	4-MeOC ₆ H ₄	Me	12	72	64 (CHCl ₃ /hexane)	$C_{11}H_{11}NO_2S$ (221.3)	221 (M ⁺ , 37); 174 (100); 146 (86)
3g	4-BrC ₆ H ₄	Me	10	71	95 (CHCl ₃ /hexane)	C ₁₀ H ₈ BrNOS (270.1)	271 (30); 269 (M ⁺ , 28); 224 (98); 222 (100); 196 (41); 194 (44); 157 (21); 155 (22)
3h	2,4-Cl ₂ C ₆ H ₃	Me	15	70	48 (CHCl ₃ /hexane)	C ₁₀ H ₇ Cl ₂ NOS (260.1)	261 (19); 259 (M ⁺ , 26); 214 (73); 212 (100); 186 (30); 184 (53)
3i	4-EtOC ₆ H ₄	Me	12	76	54-55 (CHCl ₃ /hexane)	$C_{12}H_{13}NO_2S$ (235.3)	235 (M ⁺ , 33); 188 (100); 160 (29); 132 (70)
3j	2-naphthyl	Me	12	68	79 (CHCl ₃ /hexane)	$C_{14}H_{11}NOS$ (241.3)	241 (M ⁺ , 37); 194 (100); 166 (43); 127 (91)
3k	4-pyridyl	Me	15	68	99 (CHCl ₃ /hexane)	$C_9H_8N_2OS$ (192.2)	192 (M ⁺ , 100); 145 (100); 117 (29); 79 (90)
31	2-furyl	Me	15	63	83 (CHCl ₃ /hexane)	$C_8H_7NO_2S$ (181.2)	181 (M ⁺ , 96); 134 (100); 106 (74)

^a Yield of pure isolated product based on 2.

d Measured on a Jeol D-300 Mass spectrometer.

b Uncorrected, measured on a Thomas Hoover melting point appara-

^c Satisfactory microanalyses: $C \pm 0.28$, $H \pm 0.31$, N + 0.27.

SYNTHESIS

similarly obtained from acylketene dithioacetals 2c-1 and hydroxylamine hydrochloride. Also, when the reaction of 2a with hydroxylamine hydrochloride (4 equiv) was performed using only an equivalent quantity of sodium methoxide (4 equiv) to neutralize the hydrochloride salt (pH7), isoxazole 3a was obtained in comparable yields. The use of other bases, such as potassium hydroxide, potassium carbonate, sodium acetate, or pyridine gave either a mixture of isomeric isoxazoles or other undesired product mixtures. However, when the reaction of 2a with hydroxylamine hydrochloride was performed in the presence of barium hydroxide in boiling ethanol (pH 5.6), isoxazole 3a was obtained exclusively in 70% yield, the isomeric isoxazole 4a not being detectable in the reaction mixture. It was therefore apparent that the strength of the base employed was not a critical factor with regard to the observed regioselectivity.

Synthesis of 3-Alkylthioisoxazoles 4a-1

When acylketene dithioacctal 2a was submitted to the reaction with hydroxylamine hydrochloride in the presence of sodium acetate in a boiling mixture of acetic acid, ethanol, water, and benzene¹⁶ (pH 2.2), the product isolated in 65% yield was characterized as 3-methylthio-5-phenylisoxazole (4a) on the basis of spectral and analytical data and by comparison of its melting point with that reported.¹⁷ Similarly, the other 3-alkylthioisoxazoles 4b-1 were prepared from acylketene dithioacetals 2b-1 in 51-68% overall yields. In these reactions, the regioisomeric products 3 were not detected, except for the reactions of 2b and 2c, in which cases the ¹H-NMR spectra of the products showed the presence of a small amount (< 5%) of the corresponding 5-alkylthio isomers 3b and 3c, respectively, along with compounds 4b or 4c as the major products.

The isomeric isoxazoles 3 and 4 have the same $R_{\rm f}$ (benzene/hexane, 1:1) and their separation from mixtures was difficult to achieve by column chromatography. The $^1\text{H-NMR}$ spectra of 3 and 4 could be used to analyse the mixture of isomers formed from 2b or 2c since the SCH₃ and H-4 protons of 3 and 4 give close together but separated signals, although the independent spectra could not be used to correctly identify the respective regioisomer. A clear distinction of the 5- and 3-alkylthio regioisomers could be made by means of their mass-spectral fragmentation (Tables 1 and 2). The 5-alkylthioisoxazoles 3 show characteristic peaks due to loss of SR2 and COSR2

fragments ($M^+ - 47$ and $M^+ - 75$ in the case of 5-methylthio isomer) suggesting that the alkylthio group is adjacent to the ring O-atom. Similarly, the mass spectra of the 3-alkylthioisoxazoles exhibit a low-intensity peak for the ($M^+ - SR^2$) fragment whereas the base peak corresponds to the RCO fragment (m/z = 105 for 4a), showing that the aryl group is adjacent to

Table 2. 3-Alkylthioisoxazoles 4 Prepared

Prod- uct	R ¹	R ²	Yield ^a (%)	mp (°C) ^b	Molecular Formula ^e or Lit. Data	MS $(70 \mathrm{eV})^{\mathrm{d}}$ $m/z \ (\%)$
4a	Ph	Me	65	56-57 (CHCl ₃ /hexane)	56-57 ¹⁷	191 (M ⁺ , 62); 144 (10); 105 (100)
4b	Ph	Et	63	50-51 (CHCl ₃ /hexane)	51-52 ¹⁷	205 (M ⁺ , 100); 144 (50); 105 (100)
4c	Ph	n-Pr	64	41-42 (CHCl ₃ /hexane)	41-4217	219 (M ⁺ , 16); 144 (24); 105 (100)
4d	4-MeC ₆ H ₄	Me	68	64-65 (CHCl ₃)	C ₁₁ H ₁₁ NOS (205.3)	205 (M ⁺ , 38); 158 (7); 119 (100)
4e	4-CIC ₆ H ₄	Me	62	107–108 (CHCl ₃ /hexane)	$C_{10}H_8CINOS (225.7)$	227 (29); 225 (M ⁺ , 79); 180 (2); 178 (5); 141 (65); 139 (100)
4f	4-MeOC ₆ H ₄	Me	63	74-75 (CHCl ₃ /hexane)	C ₁₁ H ₁₁ NO ₂ S (221.3)	221 (M ⁺ , 42); 174 (10); 135 (100)
4g	$4-\operatorname{BrC}_6H_4$	Me	63	120-121 (CHCl ₃ /hexane)	$C_{10}H_8B\pi NOS (270.1)$	271 (48); 269 (M ⁺ , 48); 224 (11); 222 (9); 185 (100); 183 (100)
4h	$2,4$ - $\text{Cl}_2\text{C}_6\text{H}_3$	Me	58	110-111 (CHCl ₃ /hexane)	C ₁₀ H ₇ Cl ₂ NOS (260.1)	261 (28); 259 (M ⁺ , 41); 226 (11); 224 (28); 175 (90); 173 (100)
4i	4-EtOC ₆ H ₄	Me	60	78-79 (CHCl ₃ /hexane)	$C_{12}H_{13}NO_2S$ (235.3)	235 (M ⁺ , 56); 188 (4); 149 (100)
4j	2-naphthyl	Me	66	110-111 (CHCl ₃ /hexane)	C ₁₄ H ₁₁ NOS (241.3)	241 (M ⁺ , 53); 194 (8); 155 (100)
4k	4-pyridyl	Me	51	96-97 (CHCl ₃ /hexane)	C ₉ H ₈ N ₂ OS (192.2)	192 (M ⁺ , 74); 145 (19); 106 (100)
41	2-furvl	Me	68	56-57 (CHCl ₃ /hexane)	$C_8H_7NO_2S$ (181.2)	181 (M ⁺ , 40); 134 (30); 95 (42)

ring O-atom. Thus, the crucial mass-spectral fragment in distinguishing 3 and 4 is the aroyl cation, which is not formed in the case of 3.

In summary, the isomeric 5-alkylthio- 3 or 3-alkylthioisoxazoles 4 can be obtained at will from the same reactant by simply using the appropriate reaction conditions. The regioselective formation of 3 is achieved by using barium hydroxide or sodium methoxide, both in equivalent or excess amounts, in the pH range from 5 to 9. The predominant species up to pH 10 has been shown⁶ to be the neutral hydroxylamine molecule; this proves that the role of the base in these reactions is limited to the release of free hydroxylamine from its salt; it does not exert an effect on 2 which is apparently converted into the isoxazole 3 via oxime 6. On the other hand, in the presence of sodium

Table 3. Spectral Data of Compounds 3 and 4

	IR $(KBr)^a$ $v(cm^{-1})$	1 H-NMR (CDCl ₃ /TMS) b δ , J (Hz)	¹³ C-NMR (CDCl ₃ /TMS) ^e δ
3a	1540, 1500, 1450,	2.56 (s, 3H, SCH ₃); 6.33 (s, 1H, H-4); 7.33–7.61 (m,	15.46 (SCH ₃); 100.07 (C-4); 126.74, 128.90, 130.09
	1400	$3 H_{arom}$); 7.31–8.15 (m, $2 H_{arom}$)	(CH _{phenyl}); 128.95 (C-1' _{phenyl}); 162.99 (C-3); 168.05 (C-5)
3b	1540, 1500, 1460,	1.36 (t, 3H, $J = 7$, CH ₃ CH ₂); 3.03 (q, 2H, $J = 7$,	15.14 (CH ₃); 27.79 (SCH ₂); 102.18 (C-4); 126.70, 128.90,
	1400	SCH ₂ CH ₃); 6.33 (s, 1H, H-4); 7.25–7.46 (m, 3H _{arom}); 7.53–7.82 (m, 2H _{arom})	130.08 (CH _{phenyl}); 128.95 (C-1' _{phenyl}); 162.95 (C-3); 166.85 (C-5)
3c	1540, 1500, 1455,	0.98 (t, 3H, $J = 7$, CH ₃); 1.67 (sext, 2H, $J = 7$,	(0-3)
-	1392	$SCH_2CH_2CH_3$); 2.97 (t. 2H, $J = 7$, $SCH_2CH_2CH_3$);	
		6.36 (s, 1H, H-4); 7.25-7.58 (m, 3H _{arom}); 7.60-7.86 (m,	
	1740 4510 1510	2H _{arom})	
3d	1610, 1540, 1510, 1438, 1420	2.32 (s, 3 H, CH ₃); 2.50 (s, 3 H, SCH ₃); 6.22 (s, 1 H, H-4); 7.14 (d, $J = 8,2 H_{arom}$); 7.58 (d. $J = 8,2 H_{arom}$)	
3e	1614, 1541, 1505,	2.58 (s, 3H, SCH ₃); 6.23 (s, 1H, H-4); 7.35 (d, J	15.40 (SCH ₃); 99.79 (C-4); 128.00, 129.18 (CH _{arom})
-	1440, 1420	$= 8.2 H_{arem}$); 7.66 (d, $J = 8.2 H_{arem}$)	127.23, 136.11 (C-1', C-4' _{phenyl}); 162.01 (C-3); 168.48 (C
			5)
3f	1620, 1522, 1446	2.52 (s, 3H, SCH ₃); 3.72 (s, 3H, OCH ₃); 6.18 (s, 1H, H-	15.44 (SCH ₃); 55.32 (OCH ₃); 99.86 (C-4); 114.27, 128.12
		4); 6.84 (d, $J = 8.5$, $2 H_{arom}$); 7.59 (d, $J = 8.5$, $2 H_{arom}$)	(CH _{arom}); 121.20, 161.03 (C-1' _{phenyl} , C-4' _{phenyl}); 162.59 (C-3); 167.67 (C-5)
3g	1595, 1535, 1490,	2.61 (s, 3H, SCH ₃); 6.28 (s, 1H, H-4); 7.58 (s, 4H _{arom})	Signor Constant
6	1430, 1418	C / J J C / J J J J J J J J J J J J J J	
3h	1590, 1532, 1488,	2.62 (s, 3H, SCH ₃); 6.26 (s, 1H, H-4); 7.32 (dd, 1H, J	
	1438	= 7, 2, H-5'); 7.48 (d, 1H, J = 2, H-3'); 7.73 (d, 1H, J = 7, H-6')	
3i	1620, 1525, 1446,	= 7, H-6') 1.42 (t, 3 H, J = 7, OCH ₃ CH ₃); 2.60 (s, 3 H, SCH ₃); 4.06	
	1418, 1394	$(q, 2H, J = 7, OCH_2CH_3); 6.22 (s, 1H, H-4); 6.85 (d, J)$	
		= 9, $2H_{arom}$); 7.69 (d, $J = 9$, $2H_{arom}$)	
3j	1602, 1542, 1440,	2.62 (s, 3H, SCH ₃); 6.41 (s, 1H, H-4); 7.33–8.16 (m,	
3k	1398 1600, 1530, 1520,	$7 H_{arom}$) 2.56 (s, 3H, SCH ₃); 6.33 (s, 1H, H-4); 7.60 (d, $J = 8$,	
JR	1437, 1394	$2H_{\text{pyridyl}}$); 6.73 (d, $J = 8$, $2H_{\text{pyridyl}}$)	
31	1611, 1528, 1438	2.62 (s, 3H, SCH ₃); 6.32 (s, 1H, H-4); 6.55 (dd, 1H, J	
		= 3, 1.4, H-4' _{furyl}); 6.91 (d, 1H, J = 3, H-3' _{furyl}); 7.56 (d,	
10	1600 1590 1560	1H, $J = 1.4$, H-5' _{fury})	42.00 (CCUL), 00.07 (C.4), 425.70 429.04 420.22
4a	1600, 1580, 1560, 1482, 1440, 1402,	2.58 (s, 3H, SCH ₃); 6.27 (s, 1H, H-4); 7.17–7.45 (m, 3H _{arom}); 7.49–7.79 (m, 2H _{arom})	13.90 (SCH ₃); 99.07 (C-4); 125.79, 128.91, 130.27 (CH _{phenvl}); 127.18 (C-1' _{phenvl}); 160.89 (C-5); 169.89 (C-3'
	1340	arom/, All arom/	phenyl), 12/110 (C 1 phenyl), 10/103 (C 3), 10/103 (C 3)
4b	1600, 1581, 1562,	1.44 (t, 3H, $J = 7$, CH ₃ CH ₂); 3.10 (q, 2H, $J = 7$,	14.73 (CH ₃ CH ₂); 25.86 (SCH ₂ CH ₃); 102.22 (C-4);
	1482, 1440, 1400	SCH ₂ CH ₃); 6.30 (s, 1H, H-4); 7.30-7.60 (m, 3H _{arom});	125.80, 128.96, 130.30 (CH _{phenyl}); 127.16 (C-1' _{phenyl}).
4c	1600, 1580, 1561.	7.68–7.80 (m, $2 H_{arom}$) 1.03 (t, $3 H$, $J = 7$, $C H_3 C H_2 C H_2$); 1.78 (sext, $2 H$, $J = 7$,	160.16 (C-5); 169.71 (C-3)
**	1480, 1440, 1340	$CH_3CH_2CH_2$); 3.07 (t, 2H, $J = 7$, $SCH_2CH_2CH_3$); 6.28	
		(s, 1H, H-4); $7.24-7.52$ (m, $3H_{arom}$); $7.52-7.80$ (m,	
4.3	4000 4500 4500	$2H_{arom}$)	
4d	1600, 1583, 1560, 1498, 1403, 1342	2.36 (s, 3H, CH ₃); 2.58 (s, 3H, SCH ₃); 6.22 (s, 1H, H-4);	
4e	1600, 1578, 1479,	7.19 (d, $J = 8.5$, A_2B_2 , $2H_{arom}$); 7.60 (d, $J = 8.5$, $2H_{arom}$) 2.59 (s, 3H, SCH ₃); 6.28 (s, 1H, H-4); 7.46 (d, $J = 8$,	13.86 (SCH ₃); 99.31 (C-4); 127.01, 129.24 (CH _{arom})
	1403, 1339	$2H_{arom}$); 7.72 (d, $J = 8$, $2H_{arom}$)	126.97, 136.34 (C-1' _{phenyl} , C-4' _{phenyl}); 161.04 (C-5); 168.68
			(C-3)
4f	1611, 1598, 1500,	2.48 (s, 3H, SCH ₃); 3.82 (s, 3H, OCH ₃); 6.19 (s, 1H, H-4); 6.82 (d, f, 0.2H, 1); 7.70 (d, f, 0.2H, 1); 6.22 (d, f, 0.2H, 1); 7.70 (d, f, 0.2H, 1); 6.22 (d, f, 0.2H, 1); 7.70 (d, f, 0.2H, 1); 6.22 (d, f, 0.2H, 1); 7.70 (d, f, 0.2H, 1); 6.24 (d, f, 0.2H, 1); 7.70 (d, f, 0.2H, 1); 6.24 (d, f, 0.2H, 1); 6.2	13.91 (SCH ₃); 55.39 (OCH ₃); 97.71 (C-4); 114.37, 127.44
	1419, 1348	4); 6.83 (d, $J = 9$, $2H_{arom}$); 7.70 (d, $J = 9$, $2H_{arom}$)	(CH _{arom}); 119.96 (C-1' _{phenyl}); 160.83 (C-4' _{phenyl}); 161.20 (C-5); 169.91 (C-3)
4g	1600, 1476, 1398,	2.58 (s, 3H, SCH ₃); 6.28 (s, 1H, H-4); 7.56 (s, 4H _{arom})	(5.0), 101/11 (C-3)
-	1340		
4h	1601, 1476, 1399,	2.62 (s, 3H, SCH ₃); 6.76 (s, 1H, H-4); 7.37 (dd, 1H, J	
	1339	= 8, 2, H-5'); 7.52 (d, 1H, <i>J</i> = 2, H-3'); 7.90 (d, 1H, <i>J</i> = 8, H-6')	
4i	1600, 1500, 1402,	= 8, H-6) 1.40 (t, 3H, $J = 7$, OCH ₂ CH ₃); 2.57 (s, 3H, SCH ₃); 4.02	
	1321	$(q, 2H, J = 7, OCH_2CH_3); 6.15 (s, 1H, H-4); 6.85 (d, J)$	
		= 8, A_2B_2 , $2H_{arom}$); 7.59 (d, $J = 8$, A_2B_2 , $2H_{arom}$)	

Table 3. (Continued)

Com- IR $(KBr)^a$ pound $v(cm^{-1})$		¹ H-NMR (CDCl ₃ /TMS) ^b δ , J (Hz)	¹³ C-NMR (CDCl ₃ /TMS)° δ		
4j	1600, 1578, 1569,	2.60 (s, 3H, SCH ₃); 6.36 (s, 1H, H-4); 7.23-8.35 (m,			
•		7H _{arom})			
4k	1598, 1540, 1388, 1350	2.61 (s, 3 H, SCH ₃); 6.46 (s, 1 H, H-4); 7.53 (d, 2 H _{pyridyl}); 8.67 (d, 2 H _{pyridyl})			
41		2.60 (s, 3 H, SCH ₃); 6.25 (s, 1 H, H-4); 6.51 (dd, 1 H, J			
	1378, 1342	= 3, 1.4, H-4' _{furyl}); 6.87 (d, 1H. J = 3, H-3' _{furyl}); 7.51 (d, 1H, J = 1.4, H-5' _{furyl})			

^a Recorded on a Perkin-Elmer 297 Infrared spectrophotometer.

c Recorded on a Bruker WP-80-DS (20.15 MHz) spectrometer.

acetate/acetic acid (pH 2.2), the dominant species is the hydroxylammonium ion with only a small amount of hydroxylamine being present; the latter adds regioselectively to the more electrophilic C-3 of 8 (protonated 2) in the rate-determining step; cyclization then yields the 3-alkylthioisoxazoles 4, while the hydroxylamine is regenerated in the equilibrium mixture.

The reactions described here provide a facile entry to 3- and 5-alkylthioisoxazoles from easily accessible acylketene dithioacetals. Some of the 5-alkylthio-3-arylisoxazoles 3 have been found to exhibit anthelmintic activity. 18,19

The required acylketene dithioacetals 2a-l were prepared according to the earlier reported procedure.²⁰

5-Alkylthio-3-arylisoxazoles 3a-l; General Procedure:

Hydroxylamine hydrochloride (2.80 g. 0.04 mol) is added to a stirred suspension of NaOMe [prepared by dissolving Na (1.38 g. 0.06 mol) in absolute MeOH (30 mL)] and stirring is continued for 10 min. The acylketene dithioacetal 2 (0.01 mol) is added and the mixture is refluxed with stirring for 10–15 h. Methanol is removed under reduced pressure and the residue is poured into ice-cold H₂O (200 mL). In most cases (3a, 3d-l), the isoxazoles 3 separate as pale-colored solids which are isolated by suction and which are pure enough for recording of their spectra. [The ¹H-NMR spectra of 3a-l thus obtained do not show any trace of the isomeric isoxazoles 4 as indicated by the sharp signals of the SCH₃ and H-4 protons]. Products 3a, 3d-l are recrystallized from CHCl₃/hexane for element analysis.

In the case of isoxazoles 3b and 3c, the mixture obtained after pouring the reaction mixture into ice-cold H_2O , is extracted with CHCl₃ $(2\times50\,\text{mL})$, and the organic layer is washed with H_2O $(1\times100\,\text{mL})$, dried (Na_2SO_4) , and evaporated to give 3b or 3c, respectively, as orange viscous liquids which are pure enough for recording of their spectra. The orange viscous liquids are passed through a small column of neutral alumina using CCl₄ as eluent to give the analytically pure products 3b or 3c.

3-Methylthio-5-phenylisoxazole (3a); Typical Procedure using Barium Hydroxide as Base:

Hydroxylamine hydrochloride (2.80 g, 0.04 mol) is added to a stirred suspension of Ba(OH)₂ (10.30 g, 0.06 mol) in 95% EtOH (30 mL) followed by the addition of benzoylketene dimethyl dithioacetal (2a; 2.24 g, 0.01 mol). The mixture is refluxed with stirring for 4 h, EtOH is then removed under reduced pressure, the residue is poured into icecold H₂O (200 mL), and this mixture is acidified with dilute AcOH (5%, 15 mL). The isoxazole 3a thus obtained is isolated by suction and passed through a neutral alumina column using CCl₄ as solvent; yield: 1.30 g (70%); mp 40-41°C (Lit. 13 mp 39-40°C).

3-Alkylthio-5-arylisoxazoles 4a-l; General Procedure:

To a stirred solution of the acylketene dithioacetal 2 (0.01 mol) in benzene (100 mL) + AcOH (100 mL), a solution of NaOAc (2.80 g, 0.034 mol) and NH₂OH·HCl (2.80 g, 0.04 mol) in H₂O (10 mL) is added. The mixture is made homogenous by the addition of EtOH (55 mL) and refluxed for 8-10 h. It is then evaporated to dryness under reduced pressure, and extracted with CHCl₃ (2×50 mL). The CHCl₃ layer is washed with H₂O (2×100 mL), dried (Na₂SO₄), and evaporated to give a dark brown residue, which on TLC (silica gel,

benzene as mobile phase) shows only one spot corresponding to the isoxazole 4 ($R_f0.75$) and some polymeric impurities at the base. The brown residue is filtered through a small neutral alumina column using EtOAc/hexane (1:20) as eluent to give the isoxazole 4 which is pure enough for spectral measurements. [The ¹H-NMR spectra of the products 4a, 4d-1 thus obtained do not show the presence of the regioisomers 3, whereas in the case of isoxazoles 4b and 4c the presence of traces (<5%) of the isomeric isoxazoles 3b and 3c, respectively, is observed.] Products 4a-1 are recrystallized from CHCl₃/hexane for element analyses.

We thank U.G.C. New Delhi for financial assistance under COSSIST program.

Received: 7 March 1988; revised: 25 July 1988

- (1) Part 57 of series on Polarized Ketene S,S- and S,N-acetals; Part 56: Gupta, A. K., Ila, H. *Tetrahedron Lett.* **1987**, 28, 1459.
- (2) Lang, S.A., Lin, Y.-i, in: Katritzky and Rees *Comprehensive Heterocyclic Chemistry*, Vol. 6, Potts, K.T. (ed.), Pergamon Press, New York, 1984: (a) pp. 61–66, (b) pp. 6–7.
- (3) Kashima, C., Shirai, S.-I., Yoshiwara, N., Omote, Y. J. Chem. Soc. Chem. Commun. 1980, 826. Kashima, C., Yoshiwara, N., Shirai, S.-I., Omote, Y. Chem. Lett. 1982, 1455.
- (4) Kashima, C., Yoshiwara, N., Omote, Y. Tetrahedron Lett. 1982, 23, 2955.
- (5) Ly, B., Petrus, F., Verducci, J., Gombeau, D., Pfister-Guillouzo, G. Gazz. Chim. Ital. 1981, 111, 279; C. A. 1982, 96, 84806.
- (6) Jacobsen, N., Kolind-Andersen, H., Christensen, J. Can. J. Chem. 1984, 62, 1940.
- (7) Katritzky, A. R., Barczynski, P., Ostercamp, D. L., Yousaf, T.I. J. Org. Chem. 1986, 51, 4037.
- (8) Dornow, A., Dehmer, K. Chem. Ber. 1967, 100, 2577.
- (9) Gompper, R., Töpfl, W. Chem. Ber. 1962, 95, 2881.
- (10) Rudorf, W.D., Augustin, M. J. Prakt. Chem. 1978, 320, 585.
- (11) Rahman, A., Vishwakarma, J. N., Yadav, R. D., Ila, H., Junjappa, H. Synthesis 1984, 247.
- (12) Greenhill, J.V. Chem. Soc. Rev. 1977, 6, 288.
- (13) Nishiwaki, T., Kitamura, T., Nakano, A. Tetrahedron 1970, 26, 453
- (14) Adembri, G., Nesi, R. J. Heterocycl. Chem. 1967, 4, 54.
- (15) Scarpati, R., Santacroce, C., Sica, D. Gazz. Chim. Ital. 1963, 93, 1706; C.A. 1964, 60, 14488.
- (16) Doorenbos, N.J., Milewich, L. J. Org. Chem. 1966, 31, 3193.
- (17) Tomita, K., Sugai, S., Saito, M. Chem. Pharm. Bull. 1979, 27. 2415.
- (18) Carr, J.B., Hass, D.K. US Patent 3879533 (1975), Shell Oil Co.: C.A. 1975, 83, 72183.
- (19) Carr, J.B., Durham, H.G., Hass, D.K. J. Med. Chem. 1977, 20, 934.
- (20) Chauhan, S.M.S., Junjappa, H. Tetrahedron 1976, 32, 1779.

b Recorded on a Varian EM-390 spectrometer.