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Thiol-catalyzed direct generation of acyl radicals and their
intramolecular addition to olefins of alkenals gave 2-sub-
stituted five- and six-membered cyclic ketones in reasonably
good yields. The combination of odorless tert-dodecanthiol
and AIBN or V-40 was the initiator of choice among surveyed
radical generators for the cyclization of alkenals. Aldehydes
having electron-deficient olefins cyclized more easily than
those having unactivated olefins.

Development of atom economical transformation is an
important strategy in synthetic organic chemistry.1 A
good example of an atom economical transformation is
an addition reaction, in which all elements in the starting
substrates remain in the products. Herein, we describe
the formation of various 2-substituted cyclic ketones via
thiol-catalyzed addition reactions of acyl radicals to
internal olefins.

We have already reported cyclization reactions of
ω-oxo-R,â-unsaturated esters through a tandem conju-
gate addition-intramolecular aldol reaction initiated by
lithium thiolate.2,3 The reaction of 1a with lithium phen-
ylmethanethiolate 2 gave stereoselectively cyclic â-hy-

droxy-â′-thioalkanoate 3 in 95% yield (Scheme 1, path
A). We then expected that the chemistry of S-centered
radical 4 might enable the same transformation with a
catalytic amount of an initiator.4 However, the reaction
of 1a with phenylmethanethiol (1.2 equiv) and AIBN (0.6
equiv) in refluxing toluene did not give the expected
product 3 but ketoester 5a in 74% yield (Scheme 1, path
B). The reaction seemed to proceed via acyl radical
intermediate 6.5,6 This type of cyclization has been
achieved with acyl radicals7 generated by a homolytic
cleavage of C-S,8 C-Se,9 and other carbon-heteroatom
bonds10 and by coupling of carbon-centered radicals with
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SCHEME 1. Cyclization of ω-Oxo-alkenoate 1a in
an Anionic (Path A) and a Radical (Path B) Mode

TABLE 1. The Radical Cyclization Reaction of 1a with
Various Thiols Initiated by AIBN

entry thiol/RSH time (h) yield (%)a

1b Bn 4 63 (18)
2 Ph 6 16 (76)
3 t-Bu 6 74 (16)
4 2,4,6-(Me)3C6H2CH2 6 44 (53)
5 Ph3C 6 2 (96)
6b t-C12H25 19 89 (<3)
7b none 22 trace (98)
8 NHPIc 23 20 (17)

a The numbers in parentheses are the recovery yields of 1a. b In
refluxing benzene (1 M). c N-Hydroxyphthalimide (NHPI) was used
instead of a thiol.
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carbon monooxide.11 However, there is no example of this
cyclization12,13 through direct generation of acyl radicals
from formyl alkenoates.14,15

We first examined the reaction of ω-oxo-alkenoate 1a
in benzene or toluene (1 M) with several thiols using
AIBN (0.3 equiv) as a radical initiator (Table 1). The
reaction with a catalytic amount of phenylmethanethiol
gave 5a in 63% yield (entry 1). The use of benzenethiol
reduced the yield to 16% probably because phenylthiyl
radical is too stable (bond dissociation energy (BDE) in
kJ/mol: RS-H ) 366, PhS-H ) 349, Ac-H ) 374)16 to
abstract hydrogen from the formyl group efficiently (entry

2). Bulkier 2-methyl-2-propanethiol improved the yield
to 74% (entry 3), but the results with 2,4,6-trimethyl-
phenylmethanethiol and triphenylmethanethiol were less
satisfactory (entries 4 and 5). Finally, bulky tert-dode-
canethiol,5 which has a much higher boiling point
(227-248 °C) than the reaction temperature, gave the
best result to provide 5a in 89% yield (entry 6). Without
thiols and under thoroughly deoxygenated conditions no
reaction proceeded and 1a was recovered in high yield
(entry 7).17 With N-hydroxyphthalimide (NHPI)14a,b in-
stead of a thiol, the yield of 5a was poor (entry 8). It is
also important to note that bulky and stench-free18 thiols
prevent formation of hemithioacetals with the aldehyde
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TABLE 2. The Acyl Radical Cyclization Reaction of 1, Using tert-Dodecanethiol and AIBN or V-40a

a In toluene or PhCl, V-40 was used as an initiator, whereas AIBN was used in benzene. b The numbers in parentheses are the recovery
yields of 1. c In 1 M solution. d Cis:trans ) 5:6. e With 1.5 equiv of the initiator. f With 3.0 equiv of the thiol. g At 100 °C. h With 0.6 equiv
of V-40. i V-40 was added in two portions (0.3 equiv each). j Cis:trans ) 2:3.
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as well as conjugate addition to the R,â-unsaturated
ester. Dimethylzinc or triethylborane-initiated radical
reaction19 was not applicable in this thiol-catalyzed acyl
radical cyclization.20

Full conversion of 1a was achieved when the reaction
was conducted in refluxing chlorobenzene (bp 132 °C) to
give 5a in 90% yield (Table 2, entry 1). At higher
temperature, 1,1′-azobis(cyclohexanecarbonitrile) (V-40),
which has a much longer half-life (2 h/100 °C) than AIBN
(7 min/100 °C),21 was the initiator of choice. Other
formylalkenoates also underwent this cyclization reac-
tion. Six-membered cyclic alkanoates 5b and 5c were
obtained from 1b and 1c in 85% and 78% yield, respec-
tively (entries 2 and 3). Formation of benzene-fused rings
was also possible to give 5d and 5e from 1d and 1e in
73% and 76% yield, respectively (entries 4 and 5). In
contrast to the brilliant, carbene-catalyzed cyclization
reactions,12 an electron-withdrawing methoxycarbonyl
group is not essensial for the cyclization reaction to
proceed. Mono-, di- and trialkyl-substituted alkenes 1f-j
can be utilized as an acyl radical acceptor to give the
corresponding cyclized products in good yields (entries
6-10). It is noteworthy that a relatively high concentra-
tion for an intramolecular reaction (1-0.1 M) is ap-
plicable to obtain the products in good yields without
formation of any byproducts from an intermolecular
reaction.

The reaction seems to proceed through a radical chain
process shown in Scheme 2.5 The thermal decomposition
of AIBN initiates the reaction by the formation of
cyanoalkyl radical 7, which abstracts a hydrogen from

thiol 8 to give thiyl radical 9. Hydrogen abstraction from
1a by 9 produces acyl radical 6 which cyclizes to give 10.22

Hydrogen exchange with thiol 8 gives product 5a and
thiyl radical 9 to propagate the chain reaction.

Table 2 shows that the stability of cyclized radical
intermediate 10 strongly influences the yields of the
products. Thus, alkenes 1a-e and 1j having good radical
stabilizing substituents (BDE in kJ/mol: R-C-H of ethyl
propanoate ) 400, t-Bu-H ) 400)16 gave the products
in better yields (entries 1-5 and 10) than 1f-h, which
give less stable primary or secondary alkyl radicals (BDE
in kJ/mol: Et-H ) 421, iPr-H ) 411) as intermediates
(entries 6-8). The hydrogen abstraction from thiol 8 by
more stable benzylic radical (BDE in kJ/mol: R-C-H of
PhPr ) 366) is probably so slow that the reaction of 1i is
less efficient (entry 9).

In conclusion, we have developed a thiol-catalyzed
intramolecular addition reaction of a formyl group to an
olefin to give a variety of 2-substituted cyclic ketones in
reasonably good yields. Because the aldehyde hydrogen
atom is transferred to the product via a thiol, this
reaction is quite atom economical.

Experimental Section
The General Procedure for Cyclization of Alkenal

(Table 2, Entry 2). Methyl (2-oxocyclohexane)acetate (5b):
V-40 (37 mg, 0.15 mmol) was added to a solution of alkenal 1b
(85 mg, 0.50 mmol) and tert-dodecanethiol (30 mg, 0.15 mmol)
in dry toluene (5 mL). The solution was degassed three times
by the freeze-thaw procedure. The mixture was then refluxed
under argon atmosphere for 19 h. The crude reaction mixture
was directly purified by silica gel column chromatography
(hexane/ether 4/1) to give cyclic ketone 5b (73 mg, 85%)23 as a
colorless oil.
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SCHEME 2. Plausible Radical Chain Mechanism
for the Cyclization Reaction
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