1505

CBI Prodrug Analogs of CC-1065 and the Duocarmycins

Dale L. Boger,* Christopher W. Boyce, Robert M. Garbaccio, Mark Searcey, Qing Jin

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA

Fax +1(858)7847550; E-mail: boger@scripps.edu Received 12 April 1999

Abstract: The preparation of a small series of CBI-indole₂ prodrugs is detailed.

Key words: prodrugs, cytoxicity, CBI-indole₂, duocarmycins

CC-1065 and the duocarmycins (1–3) are the parent members of a class of potent naturally occurring antitumor antibiotics which derive their biological properties through the sequence selective alkylation of duplex DNA.^{1,2} In the course of our efforts on the evaluation of analogs bearing deep-seated structural modifications in the alkylation subunit, we described the first preparation and examination of agents containing the 1,2,9,9a-tetrahydrocyclopropa[*c*]benz[*e*]indol-4-one (CBI) alkylation subunit.³ In these studies, the CBI-based analogs are chemically more stable (4×), biologically more potent (4×), and considerably more synthetically accessible than the corresponding agents incorporating the natural CPI alkylation subunit of CC-1065.³ (+)-CBI-indole₂ (4), a simplified agent within our early series of analogs, not only exhibited cytotoxic potency comparable to that of the (+)-CC-1065 and greater $(4\times)$ than that of (+)-CPI-indole₂ (U71,184),⁴ but it also exhibited potent and efficacious in vivo antitumor activity.⁵ It is known that duocarmycin and CPI prodrugs formed by acylation of the C4 phenol of appropriate seco precursors such as 5 may show improved pharmacokinetics, synthesis scaleup safety, storage stability and safety, as well as improved efficacy⁶ and two such compounds, KW-21897 and carzelesin (U-80,244),8 are currently undergoing clinical development. Herein, we describe the synthesis and evaluation of six prodrug derivatives of (+)-CBI-indole₂ which have become especially attractive for their therapeutic properties.

Synthesis

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & &$

ÓMe (+)-3, (+)-duocarmycin A The *N*,*N*-dialkylcarbamoyl derivatives of *seco*-CBIindole₂ ($\mathbf{5}$)⁵ were prepared in good yields by treatment of $\mathbf{5}$ with 4-nitrophenyl chloroformate (Et₃N, THF) to afford

(+)-5, (+)-seco-CBI-indole₂

Synthesis 1999, No. SI, 1505–1509 ISSN 0039-7881 © Thieme Stuttgart · New York

to the DNA binding subunit including the safety issues surrounding large scale intermediate handling and the examination of alternative right-hand subunits. Treatment of $13^{3.5}$ with 4-nitrophenyl chloroformate (Et₃N, CH₂Cl₂) afforded the carbonate intermediate which was reacted immediately with 1-methylpiperazine (14, 47%). Similarly, treatment of 13 with acetic anhydride (NaHCO₃, CH₂Cl₂) gave the acetate in good yield (15, 92%). Deprotection of both 14 and 15 under acidic conditions (3.3 M HCl/ EtOAc) followed by direct coupling with 16^5 (EDCI, DMF) gave the two prodrugs in good yield (42% for 7, 58% for 10).

In Vitro Cytotoxicity Activity

the carbonate as an intermediate, followed by the addition of dimethylamine (6, 97%) or 1-methylpiperazine (7, 63%). Reaction of 5 with phenyl or methyl isocyanate (Et₃N, CH₂Cl₂) gave the *N*-phenylcarbamoyl derivative 8 (86%) and *N*-methylcarbamoyl derivative 9 (57%). Treatment of 5 with acetic anhydride (Et₃N, THF, 73%) produced 10 while esterification of 5 with the acid 12⁶ (EDCI, DMAP, CH₂Cl₂, 89%) gave 11.

An alternative synthesis of the prodrugs of *seco*-CBIindole₂ was also explored. There are a number of advantages to an approach in which the prodrug substituent is added to the alkylation subunit, followed by its coupling Consistent with past observations, each of the prodrugs exhibited an in vitro cytotoxic activity in the L1210 assay that was essentially equivalent to that of 4 and 5. Since the *O*-acylated or *O*-alkylated derivatives of **5** cannot as effectively alkylate DNA and would be expected to be >100x less potent, the cytotoxicity of the derivatives 6–11 indicate that each prodrug is effectively hydrolyzed to release 5 which serves as the penultimate precursor to the active constituent 4. The agents were further examined in a human colon carcinoma cell line (HCT116) and two resistant variants. HCT116/VM46 overexpresses the cell surface protein gp 170 and embodies the MDR phenotype while HCT116/VP35 is resistant to topoisomerase II inhibitors by virtue of its lower expression. In these cell lines, the carbamate prodrugs incorporating a tertiary amine were inactive presumably because of the lack of CBI Prodrug Analogs of CC-1065 and the Duocarmycins

hydrolysis, but the remainder exhibited potent cytoxic activity essentially equipotent or more potent, against both the wild type and resistant cell lines. We had reported previously this behavior for $2,^5$ and the results suggest that the agents may prove especially effective against resistant variants of tumor cell lines and particularly useful in combination therapy or in relapse chemotherapy. The results of more detailed comparative in vitro and in vivo testing of **4–11** will be disclosed in due course.

Table 1. In Vitro Cytotoxic Activity

	IC ₅₀ (pM)			
compound	L1210	HCT116 wild type	HCT116/VM4 (MDR)	6 HCT116/VP35 (reduced topo II)
(+) -2	10	30	10	2
(+)-4	10	100	60	10
(+)-5	20	80	100	30
(-)-5	6000			
(+)-6	35	>1600	>1600	>1600
(+)-7	30	>1500	>1500	>1500
(+)-8	5	150	400	300
(-)-8	15000			
(+)- 9	10	50	100	50
(+)-10	30	100	350	150
(+)-11	35	150	450	250
vincristine		4000	200000	6000
doxorubicin		250000	2500000	600000

3-[5'-(((1H-Indol-2''-yl)carbonyl)amino)-1H-indol-2'-yl)carbonyl]-1-(chloromethyl)-5-[[(dimethylamino)carbonyl]oxy]-1,2-dihydro-3H-benz[*e***]indole (6)**

A solution of **5** (2.8 mg, 5.2 µmol) in THF (0.3 mL) was treated with 4-nitrophenylchloroformate (2.8 mg, 14.0 µmol) and Et₃N (1.6 µL, 11.2 µmol) and stirred at 25 °C for 2.5 h under Ar. Me₂NH (8.4 µL, 2 M solution in THF, 16.8 µmol) was added and the solution was stirred for an additional 3 h at 25 °C. The mixture was concentrated and directly subjected to chromatography (PTLC, 20×20 cm, 50% THF/hexanes) to yield **6** (3.1 mg, 97%) as a light yellow film. (+)-(1*S*)-**6**: [α]²⁵_D+54 (*c* = 0.16, DMF).

¹H NMR (DMF- d_7 , 400 MHz): δ = 11.69 (s, 1H), 11.56 (s, 1H), 10.18 (s, 1H), 8.23 (d, 1H, J = 1.8 Hz), 8.17 (s, 1H), 7.90 (d, 1H, J = 8.1 Hz), 7.78 (d, 1H, J = 8.8 Hz, partially obscured by DMF), 7.55 (dd, 1H, J = 1.8, 8.8 Hz), 7.46 (d, 1H, J = 7.4 Hz), 7.43 (m, 1H), 7.39 (s, 1H), 7.37 (m, 1H), 7.31 (m, 2H), 7.14 (d, 1H, J = 1.5 Hz), 7.05 (m, 1H), 6.88 (m, 1H), 4.79 (m, 1H), 4.62 (dd, 1H, J = 2.2, 10.6 Hz), 4.29 (m, 1H), 3.99 (dd, 1H, J = 3.3, 11.0 Hz), 3.91 (dd, 1H, J = 7.4, 11.0 Hz), 3.10 (s, 3H), 2.84 (s, 3H).

IR (film) $v_{max} = 3286, 2934, 1704, 1633, 1558, 1524, 1463, 1417, 1317, 1313, 1246, 1172 cm⁻¹.$

FAB/HRMS (NBA/CsI) m/z = 738.0862 (M+Cs⁺, C₃₄H₂₈N₅O₄Cl requires 738.0864).

3-[5'-(((1H-Indol-2''-yl)carbonyl)amino)-1H-indol-2'-yl)carbonyl]-1-(chloromethyl)-5-[[(4-methyl-1-piperazinyl)carbonyl]oxy]-1,2-dihydro-3H-benz[*e***]indole (7)**

A solution of **5** (2.0 mg, 3.7 μ mol) in CH₂Cl₂ (0.1 mL) was treated with 4-nitrophenylchloroformate (7.5 mg, 37 μ mol) and Et₃N (5.0

 μ L, 37 μmol) and stirred at 4 °C for 2.5 h under Ar. 1-Methylpiperazine (6.2 μL, 56 μmol) was added and the solution was allowed to warm to 25 °C. After 12 h, the mixture was concentrated and directly subjected to chromatography (PTLC, 20 × 10 cm, THF) to yield **7** (1.5 mg, 63%) as a beige film, (+)-(1*S*)-**7**: [α]²⁵_D +24 (*c* = 0.08, DMSO).

1507

¹H NMR (DMS*O*-*d*₆, 400 MHz): δ = 11.70 (s, 1H), 11.65 (s, 1H), 10.19 (s, 1H), 8.32 (s, 1H), 8.24 (s, 1H), 8.07 (d, 1H, *J* = 9.5 Hz), 7.85 (d, 1H, *J* = 8.1 Hz), 7.69 (d, 1H, *J* = 8.1 Hz), 7.66 (m, 2H), 7.53 (m, 2H), 7.45 (d, 1H), 7.43 (s, 1H), 7.29 (s, 1H), 7.21 (dd, 1H, *J* = 1.9, 8.4 Hz), 7.10 (dd, 1H, *J* = 1.9, 8.5 Hz), 4.92 (m, 1H), 4.67 (d, 1H, *J* = 9.2 Hz), 4.44 (s, 1H), 4.10 (m, 2H), 4.05 (m, 2H), 3.82 (m, 1H), 3.51 (m, 1H), 3.45 (m, 2H, obscured by H₂O), 3.17 (d, 2H, *J* = 7.0 Hz), 2.30 (s, 3H).

IR (film) $\nu_{max} = 3310,\,2925,\,1734,\,1653,\,1559,\,1478,\,1405,\,1368,\,1335\ cm^{-1}.$

FAB/HRMS (NBA/CsI) m/z = 661.2347 (M+H⁺, C₃₇H₃₃N₆O₄Cl requires 661.2330).

3-[5'-(((1*H*-Indol-2"-yl)carbonyl)amino)-1*H*-indol-2'-yl)carbonyl]-1-(chloromethyl)-5-[[(phenylamino)carbonyl]oxy]-1,2-dihydro-3*H*-benz[*e*]indole (8)

A solution of **5** (1.9 mg, 3.6 µmol) in CH₂Cl₂ (0.3 mL) was treated with phenylisocyanate (1.7 µL, 16.0 µmol) and Et₃N (2.5 µL, 18.0 µmol) and stirred at 25 °C for 6 h under Ar. The mixture was concentrated and directly subjected to chromatography (PTLC, 20×20 cm, 50% THF/hexanes) to yield **8** (2.0 mg, 86%) as a light yellow film, (+)-(1*S*)-**8**: [α]²⁵_D+31 (*c* = 0.08, DMF); (-)-(1*R*)-**8**: [α]²⁵_D-35 (*c* = 0.02, DMF).

¹H NMR (DMF- d_7 , 400 MHz): $\delta = 11.79$ (s, 1H), 11.77 (s, 1H), 10.56 (br s, 1H), 10.31 (s, 1H), 8.51 (s, 1H), 8.43 (s, 1H), 8.15 (d, 1H, J = 8.4 Hz), 8.10 (d, 1H, J = 8.4 Hz), 7.71 (m, 4H), 7.65 (d, 1H, J = 8.4 Hz), 7.57 (m, 4H), 7.40 (t, 2H, J = 8.1 Hz), 7.37 (d, 1H, J = 1.5 Hz), 7.27 (t, 1H, J = 7.0 Hz), 7.11 (m, 2H), 5.03 (t, 1H, J = 10.7 Hz), 4.86 (dd, 1H, J = 1.8, 10.7 Hz), 4.53 (m, 1H), 4.23 (dd, 1H, J = 3.3, 11.0 Hz), 4.13 (dd, 1H, J = 7.0, 11.0 Hz).

IR (film): $v_{max} = 3318, 2916, 2838, 1723, 1614, 1557, 1515, 1465, 1418, 1335, 1240 \text{ cm}^{-1}$.

FAB/HRMS (NBA/CsI) m/z = 654.1932 (M+H⁺, C₂₈H₂₈N₅O₄Cl requires 654.1908).;

3-[5'-(((1*H*-Indol-2"-yl)carbonyl)amino)-1*H*-indol-2'-yl)carbonyl]-1-(chloromethyl)-5-[[(methylamino)carbonyl]oxy]-1,2-dihydro-3*H*-benz[*e*]indole (9)

A sample of **5** (3.1 mg, 5.8 µmol) was dissolved in CH₂Cl₂ (0.3 mL) and treated with methyl isocyanate (15 µL, 10% solution in CH₂Cl₂, 26.0 µmol) and Et₃N (4 µL, 29.0 µmol). The resulting solution was stirred at 25 °C for 12 h under Ar. The mixture was concentrated and directly subjected to flash chromatography (silica gel, 1.5×5 cm, 75% THF/hexanes) to yield **9** (2.4 mg, 57%) as a beige film, (+)-(1*S*)-**9**: [α]²⁵_D+56 (*c* = 0.11, THF).

¹H NMR (DMF- d_7 , 400 MHz): $\delta = 11.76$ (s, 2H), 10.29 (s, 1H), 8.41 (s, 1H), 8.38 (s, 1H), 8.09 (d, 1H, J = 8.4 Hz), 7.98 (d, 1H, J = 8.4 Hz), 7.88 (m, 1H), 7.72 (dd, 1H, J = 1.8, 8.8 Hz), 7.69 (d, 1H, J = 9.5 Hz), 7.60 (m, 3H), 7.51 (m, 2H), 7.33 (s, 1H), 7.25 (m, 1H), 7.09 (m, 1H), 4.99 (m, 1H), 4.82 (dd, 1H, J = 1.8, 11.0 Hz), 4.48 (m, 1H), 4.18 (dd, 1H, J = 3.0, 11.0 Hz), 4.08 (dd, 1H, J = 7.3, 11.0 Hz), 2.86 (d, 3H, J = 4.4 Hz).

IR (film): ν_{max} = 3290, 2952, 1738, 1633, 1615, 1557, 1520, 1417, 1315, 1246, 1139 $cm^{-1}.$

FAB/HRMS (NBA/CsI): *m*/*z* 724.0751 (M+Cs⁺, C₃₃H₂₆N₅O₄Cl requires 724.0728).

3-[5'-(((1*H*-Indol-2"-yl)carbonyl)amino)-1*H*-indol-2'-yl)carbonyl]-5-(acetyloxy)-1-(chloromethyl)-1,2-dihydro-3*H*-benz[*e*]indole (10)

A sample of **5** (1.4 mg, 2.6 µmol) was dissolved in THF (0.1 mL) and treated with Ac₂O (1.2 µL, 13.1 µmol) and Et₃N (0.7 µL, 5.2 µmol). The resulting solution was stirred at 25 °C for 8 h under Ar. The mixture was concentrated and directly subjected to chromatography (PTLC, 20 × 10 cm, 50% THF/hexanes) to yield **10** (1.1 mg, 73%) as a beige film. (+)-(1*S*)-**10**: $[\alpha]^{25}_{D}$ +42 (*c* = 0.12, DMF).

¹H NMR (DMF- d_7 , 400 MHz): $\delta = 11.79$ (s, 1H), 11.77 (s, 1H), 10.32 (s, 1H), 8.43 (d, 1H, J = 1.9 Hz), 8.37 (s, 1H), 8.13 (d, 1H, J = 8.4 Hz), 8.02 (m, 1H, obscured by DMF), 7.74 (dd, 1H, J = 2.0, 8.9 Hz), 7.70 (d, 1H, J = 8.6 Hz), 7.66 (m, 1H), 7.61 (s, 1H), 7.59 (m, 1H), 7.53 (m, 2H), 7.36 (d, 1H, J = 1.7 Hz), 7.28 (m, 1H), 7.10 (m, 1H), 5.02 (t, 1H, J = 10.8 H), 4.85 (dd, 1H, J = 2.3, 11.0 Hz), 4.51 (m, 1H), 4.21 (dd, 1H, J = 3.4, 11.3 Hz), 4.12 (dd, 1H, J = 7.0, 11.1 Hz), 2.56 (s, 3H).

IR (film): $v_{max} = 3294$, 2925, 1717, 1653, 1559, 1507, 1457, 1405, 1368, 1335 cm⁻¹.

FAB/HRMS (NBA/CsI): m/z = 709.0630 (M+Cs⁺, C₃₃H₂₅N₄O₄Cl requires 709.0619).

3-[5'-(((1*H*-Indol-2"-yl)carbonyl)amino)-1*H*-indol-2'-yl)carbonyl]-1-(chloromethyl)-5-[4-(4-methyl-1-piperazinyl)-1,4-dioxobutoxy]-1,2-dihydro-3*H*-benz[*e*]indole (11)

A sample of **5** (3.5 mg, 5.8 µmol) was dissolved in CH₂Cl₂ (0.3 mL) and treated with **12**⁶ (1.5 mg, 7.5 µmol), EDCI (2.6 mg, 13.0 µmol) and catalytic dimethylaminopyridine (DMAP). The resulting solution was stirred at 25 °C for 2 h under Ar. The mixture was diluted with H₂O (5 mL), and extracted with EtOAc (3 × 5 mL). The organic layers were combined, washed with brine (5 mL), dried (Na₂SO₄), and concentrated under reduced pressure. Semi-preparative reverse-phase HPLC (Waters Bondapak C-18 column, 300 Å, 25 × 100 mm, 70% CH₃OH/30% (0.07% TFA/H₂O), 10 mL/min) afforded **11** (4.2 mg, 89%) as a beige film, (+)-(1*S*)-**12**: $[\alpha]^{25}_{D}$ +35 (*c* = 0.15, THF).

¹H NMR (DMF- d_7 , 400 MHz): $\delta = 11.76$ (s, 1H), 11.75 (s, 1H), 10.30 (s, 1H), 8.41 (s, 1H), 8.36 (s, 1H), 8.11 (d, 1H, J = 8.8 Hz), 7.98 (d, 1H, under DMF), 7.72 (dd, 1H, J = 1.8, 8.8 Hz), 7.69 (d, 1H, J = 9.5 Hz), 7.64 (m, 1H), 7.60 (m, 2H), 7.51 (m, 2H), 7.33 (s, 1H), 7.25 (m, 1H), 7.09 (m, 1H), 5.00 (m, 1H), 4.83 (dd, 1H, J = 1.7, 11.0 Hz), 4.51 (m, 1H), 4.20 (dd, 1H, J = 3.3, 11.4 Hz), 4.10 (dd, 1H, J = 7.0, 11.0 Hz), 3.5 (m, 3H, under H₂O), 3.12 (m, 3H), 3.00 (m, 6H), 2.75 (s, 3H).

IR (film): $v_{max} = 3282$, 1757, 1653, 1521, 1465, 1418, 1314, 1202, 1138 cm⁻¹.

FAB/HRMS (NBA/CsI): m/z 849.1594 (M+Cs⁺, C₄₀H₃₇N₆O₅Cl requires 849.1568).

3-(*tert*-Butyloxycarbonyl)-1-(chloromethyl)-5-[[(4-methyl-1-piperazinyl)carbonyl]oxy]-1,2-dihydro-3*H*-benz[*e*]indole (14)

A solution of **13** (3.0 mg, 9.0 µmol) in CH₂Cl₂ (0.3 mL) was treated with 4-nitrophenyl chloroformate (3.6 mg, 18 µmol) and Et₃N (3 µL, 21 µmol) and stirred at 25 °C for 2 h. 1-Methylpiperazine (15 µL, 0.13 µmol) was added and the mixture was stirred for 16 h, diluted with CH₂Cl₂ (10 mL) and washed with 10% aq NaHCO₃ (5 x 10 mL). The organic layer was dried (MgSO₄), concentrated and subjected to chromatography (PTLC, 20 × 20 cm, 10% CH₃OH/EtOAc) to give **14** (2 mg, 47%) as a colorless film, (–)-(1*S*)-**14**: [α] ²⁵_D –7.7 (*c* = 0.35, CH₂Cl₂).

¹H NMR (CDCl₃, 400 MHz): $\delta = 8.22$ (s, 1H), 7.83 (d, 1H, J = 8.5 Hz), 7.67 (d, 1H, J = 8.3 Hz), 7.47 (dd, 1H, J = 1.8, 8.3 Hz), 7.35 (dd, 1H, J = 1.9, 8.5 Hz), 4.22 (m, 1H), 4.11 (dd, 1H, J = 3.3, 10.5 Hz), 3.93 (dd, 1H, J = 7.4, 11.0 Hz), 3.91 (d, 1H, J = 11.0 Hz), 3.82

(s, 2H), 3.61 (s, 2H), 3.46 (t, 1H, *J* = 11.1 Hz), 2.52 (s, 2H), 2.49 (s, 2H), 1.66 (s, 3H), 1.59 (s, 9H).

IR (film): $v_{max} = 2919$, 1717, 1699, 1520, 1478, 1405, 1368, 1335 cm⁻¹.

FAB/HRMS (NBA/CsI): m/z = 460.2018 (M+H⁺, C₂₄H₃₀N₃O₄Cl requires 460.2003).

Alternative Synthesis of 7

Compound **14** (2.3 mg, 5.0 µmol) was treated with 3.3 M HCl/ EtOAc (0.3 mL) and stirred at 25 °C for 30 min. The solvent was removed under a stream of N₂ and the resulting salt was dried under vacuum. This salt was dissolved in DMF (0.2 mL) and treated with EDCI (2.9 mg, 15 µmol) and **16** (2.9 mg, 8.9 µmol) and stirred at 25 °C. After 16 h, the mixture was concentrated and directly subjected to chromatography (PTLC, 20×20 cm, 10% CH₃OH/CHCl₃) to give **7** (1.4 mg, 42%).

5-(Acetyloxy)-3-(*tert*-butyloxycarbonyl)-1-(chloromethyl)-1,2dihydro-3*H*-benz[*e*]indole (15)

A solution of **13** (3.1 mg, 9.1 µmol) in CH₂Cl₂ (0.3 mL) was treated with Ac₂O (13 µL, 93 µmol, 10 equiv) and NaHCO₃ (7.8 mg, 93 µmol, 10 equiv) and stirred at 25 °C for 19 h. The mixture was concentrated and directly subjected to chromatography (PTLC, 20 × 20 cm, 10% EtOAc/hexanes) to give **15** (3.2 mg, 92%) as a colorless film, (–)-(1*S*)-**15**: $[\alpha]^{25}_{\rm D}$ -15 (*c* = 0.16, EtOAc).

¹H NMR (CDCI₃, 400 Mhz: $\delta = 8.01$ (br s, 1H), 7.78 (d, 1H, J = 8.5 Hz), 7.68 (d, 1H, J = 8.3 Hz), 7.49 (dd, 1H, J = 1.8, 8.3 Hz), 7.35 (dd, 1H, J = 1.9, 8.5 Hz), 4.30 (m, 1H), 4.14 (dd, 1H, J = 3.3, 10.5 Hz), 4.00 (dd, 1H, J = 7.4, 11.0 Hz), 3.91 (d, 1H, J = 11.0 Hz), 3.45 (t, 1H, J = 10.6 Hz), 2.42 (s, 3H), 1.56 (s, 9H).

IR (film): $v_{max} = 2979$, 1769, 1703, 1630, 1595, 1478, 1406, 1368, 1332 cm⁻¹.

FAB/HRMS (NBA/CsI): m/z = 375.1249 (M⁺, C₂₀H₂₂NO₄Cl requires 375.1237).

Alternative Synthesis of 10

Compound **15** (2.7 mg, 7.2 µmol) was treated with 3.3 M HCl/ EtOAc (0.2 mL) and stirred at 25 °C for 30 min. The solvent was removed under a stream of N₂ and the resulting salt was dried under vacuum. This salt was dissolved in DMF (0.2 mL) and treated with EDCI (4.1 mg, 22 µmol) and **16** (2.8 mg, 8.6 µmol) and stirred at 25 °C. After 16 h, the mixture was concentrated and directly subjected to chromatography (PTLC, 20 × 20 cm, 50% EtOAc/hexanes) to give **10** (2.4 mg, 58%).

Acknowledgment

We gratefully acknowledge the financial support of the National Institutes of Health (CA41986), the Skaggs Institute for Chemical Biology, the award of an ACS Medicinal Division fellowship sponsored by Bristol-Myers Squibb (CWB), and the award of an ACS Organic Division fellowship sponsored by Zeneca Pharmaceuticals (RMG).

References

 Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1439.
 Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. Chem. Rev. 1997, 97, 787.
 Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3642.
 Boger, D. L. Acc. Chem. Res. 1995, 28, 20.
 Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329. (2) Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1.315. Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986, 19, 230. Warpehoski, M. A. In Advances in DNA Sequence Specific Agents; Hurley, L. H., Ed.; JAI: Greenwich, CT, 1992; Vol. 1, p 217. Hurley, L. H.; Draves, P. H. In Molecular Aspects of Anticancer Drug-DNA Interactions; Neidle, S.; Waring, M., Eds.; CRC: Ann Arbor, 1993; Vol. 1, p 89. Aristoff, P. A. In Advances in Medicinal Chemistry; Maryanoff, B. E., Maryanoff, C. E., Eds; JAI: Greenwich, CT, 1993; Vol. 2, p 67. Warpehoski, M. A.; McGovren, P.; Mitchell, M. A. In Molecular Basis of Specificity in Nucleic Acid-Drug Interactions; Pullman, B.; Jortner, J.; Eds.; Kluwer: Dordrecht, The Netherlands, 1990; 531. (3) Boger, D. L.; Ishizaki, T.; Wysocki, Jr, R. J.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1989, 111, 6461

Boger, D. L.; Ishizaki, T.; Kitos, P. A.; Suntornwat, O. J. Org. Chem. **1990**, 55, 5824.

Boger, D. L.; Yun, W.; Teegarden, B. R. *J. Org. Chem.* **1992**, *57*, 2873.

Boger, D. L.; McKie, J. A. J. Org. Chem. **1995**, 60, 1271. (4) Warpehoski, M. A. Tetrahedron Lett. **1986**, 27, 4103.

- (4) Walpenoski, W. A. Pertanetation Lett. 1966, 27, 4165.
 (5) Boger, D. L.; Ishizaki, T.;. Sakya, S. M.; Munk, S. A.; Kitos, P. A.; Jin, Q.; Besterman, J. M. Bioorg. Med. Chem. Lett.
 - **1991**, *I*, 115. Boger, D. L.; Yun, W.; Han, N. *Bioorg. Med. Chem.* **1995**, *3*, 1429.

- (6) Nagamura, S.; Kanda, Y.; Kobayashi, E.; Gomi, K.; Saito, H. *Chem. Pharm. Bull.* **1995**, *43*, 1530.
- Asai, A.; Nagamura, S.; Saito, H. J. Am. Chem. Soc. 1994, 116.4171. Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.; Takahashi, K.; Sano, H.; Saitoh, Y. Chem. Pharm. Bull. 1995, 43, 378. Nagamura, S.; Asai, A.; Kanda, Y.; Kobayashi, E.; Gomi, K.; Saito, H. Chem. Pharm. Bull. 1996, 44, 1723. Nagamura, S.; Kobayashi, E.; Gomi, K.; Saito, H. Bioorg. Med. Chem. 1996, 4, 1379. Nagamura, S.; Kobayashi, E.; Gomi, K.; Saito, H. Bioorg. Med. Chem. Lett. 1996, 6, 2147. Alberts, S. R.; Erlichman, C.; Reid, J. M.; Sloan, J. A.; Ames, M. M.; Richardson, R. L.; Goldberg, R. M.; Clin. Cancer Res. 1998, 4, 2111. (8) Li, L. H.; DeKoning, T. F.; Kelly, R. C.; Krueger, W. C.; McGovren, J. P.; Padbury, G. E.; Petzold, G. L.; Wallace, T. L.; Ouding, R. J.; Prairie, M. D.; Gebhard, I. Cancer Res. 1992, 52, 4904.

Houghton, P. J.; Cheshire, P. J.; Hallman, J. D.; Houghton, J.
A. *Cancer Chemother. Pharmacol.* 1995, *36*, 45.
Van Tellingen, O.; Nooijen, W. J.; Schaaf, L. J.; Van Der
Valk, M.; Van Asperen, J.; Henrar, R. E. C.; Beijnen, J. H. *Cancer Res.* 1998, *58*, 2410.

Article Identifier:

1437-210X,E;1999,0,SI,1505,1509,ftx,en;C02499SS.pdf