Anti-tumor-promoter activity of modified glycyrrhetinic acid derivatives. Synthesis and structure—activity relationships

T Terasawa¹, T Okada¹, H Nishino²

¹Shionogi Research Laboratories, Shionogi and Co Ltd Fukushima-ku, Osaka 553; ²Department of Biochemistry, Kyoto Prefectural University of Medicine, Kawaramachi-dori, Kamigyo-ku, Kyoto 602, Japan (Received 4 October 1991; accepted 2 May 1992)

Summary — A series of modified derivatives of 18α - and 18β -glycyrrhetinic acid was systematically synthesized and their structure-activity relationships investigated for inhibition of the promoter activity of 12-O-tetradecanoylphorbol-13-acetate in vitro. Increased hydrophobicity in the A-ring moiety and the presence of an 11-oxo function were shown to be important for the high inhibition. Replacement of the carboxy to the hydroxymethyl group at the 20-position also enhanced the inhibitory activity.

anti-tumor-promoter activity / modified glycyrrhetinic acid derivatives / structure-activity relationships / hydrophobicity

Introduction

Glycyrrhizin (GL) and 18β-glycyrrhetinic acid (GA), a saponin and its aglycone from licorice root, are known to possess a variety of pharmacological properties including anti-inflammatory, anti-allergic, and anti-ulcer activities [1]. Very recently, we systematically prepared ring A-modified GA derivatives of both 18α - and 18β -series and tested them for inhibition of canine kidney Na+ ,K+-ATPase (Terasawa et al, submitted for publication). Higher inhibitory activity was found with several of the 3deoxygenated derivatives. Nishino et al [3] recently showed that some oleanane-type triterpenes including GA inhibit the tumor-promoting action induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro and in vivo. In addition, they found that replacement of the inherent carboxy by a hydroxymethyl group markedly enhanced the inhibitory activity.

In the present paper, we describe the *in vitro* antitumor promoter activities of synthetic modified GA derivatives and their structure–activity relationships.

Results and discussion

Chemistry

The modified GA derivatives examined in this study are shown in scheme 1. Compounds 2–14 were previously derived by chemical synthesis from commercially available 18α - (1a) and 18β -GA (1b),

respectively. In order to further clarify the effect of the 11-oxo and 20-carboxy groups for structure-activity study, additional compounds 15-20 were prepared. Compounds 15, 16 and 17 were obtained by hydride reduction (Na[(MeOCH₂CH₂O)₂AlH₂] or LiAlH₄) of the corresponding acids or esters followed by oxidation with manganese dioxide. Compounds 18, 19 and 20 were also prepared by similar hydride reduction of the corresponding acids or esters.

Bioassay

The anti-tumor-promoter activity was evaluated by the inhibitory effect on TPA-induced stimulation of $^{32}\mathrm{Pi}$ incorporation into phospholipids of HeLa cells. The assay was carried out as previously described [2–4], where HeLa cells were incubated with one of the test compounds (25 µg/ml) and after 1 h, $^{32}\mathrm{Pi}$ (20 µCi/culture) was added with or without TPA (50 nM). Incubation was continued for 4 h and then the radioactivity incorporated into the phospholipid fraction was measured. Data are expressed as the percentage of inhibition of TPA-enhanced $^{32}\mathrm{Pi}$ incorporation, which is the mean of duplicate experiments.

Structure-activity relationships

Table I shows that the structural modification in the A-ring of 18α - and 18β -GA exerts a slight but significant effect on the inhibitory activity. As compared with the parent GA (1), most of the compounds with

$$CO_2H$$

1 R = α-H, β-OH

2 R = β-H, α-OH

3 R = α-H, β-OCOCH₂CH₂CO₂H

4 R = O

5 R = H₂

6 R = H (Δ^2)

1 1 CO₂H

1 1 CO₂H

1 1 CO₂H

1 1 CO₂H

1 1 R = α-H, β-OH

1 3 R = H₂

1 4 R = H (Δ^2)

1 5 R = α-H, β-OH

1 6 R = H (Δ^2)

1 7 R = H₂

1 18α, b:18β

Scheme 1.

no 3-oxygen function induced a relatively higher inhibition which was retained even in the A-ring contracted derivatives. Thus, increasing the hydrophobicity in ring A led to maximum inhibitory activity with 6 and 11. This tendency agreed with the findings from the *in vitro* Na⁺, K⁺-ATPase inhibition. However, there was one exception – 5 did not show the expected higher inhibitory potency. Substantial enhancement of the inhibitory effect was also observed for removal of the 4,4-dimethyl groups. Table II explains the effect of the 11-oxo and 20-carboxy groups on the anti-tumor-promoter activity.

Table I. Inhibitory effects of ring A-modified GA derivatives on the enhanced ³²Pi incorporation into phospholipids of HeLa cells induced by TPA.

Compound	Inhibition (%)		
	a: 18α	b : 18β	
1	46.6	30.7	
2	0.0	2.5	
3	35.0	38.0	
4	26.6	17.2	
5	39.4	38.9	
6	58.8	67.7	
7	49.6	47.1	
8	63.7	42.0	
9	51.9	48.5	
10	57.1	63.9	
11	56.9	53.6	

Elimination of the 11-oxo function led to substantial loss of the inhibition. Replacement of the inherent carboxy by a hydroxymethyl group at the 20-position significantly increased the inhibitory activity, although a minor discrepancy was observed with the modified derivatives of 5. Throughout this assay, no essential difference was found for the inhibitory effects between the 18α - and 18β -series.

Conclusions

Our structure—activity study showed the predominant factors for the high anti-tumor-promoter activity in GA series compounds to be the hydrophobic character of the A-ring moiety, the presence of an 11-oxo function, and the introduction of a 20-hydroxymethyl group. The most potent inhibition was found with 16.

Further studies will be conducted on the *in vivo* inhibition of the tumor–promoting action of selected compounds.

Experimental protocols

Unless otherwise stated, melting points were determined on a Yanagimoto Micro Melting Point Apparatus and are uncorrected. ¹H NMR spectra, taken on a Varian VXR-200 200 MHz spectrometer, were run in CDCl₃ solution using Me₄Si as an internal standard. IR spectra were recorded in CHCl₃ solution on a Jasco IR-700 spectrometer. Ms spectra were obtained with a Hitachi M-68 spectrometer. Silica gel precoated plates (Merck, F-254, 20 x 20 x 0.05 cm) were used for preparative TLC. Usual workup means washing extracts with water and then brine, drying over Na₂SO₄, filtration, and evaporation *in vacuo*. 18β- and 18α-GA (1b and 1a) were purchased from Wako Pure Chemical Ind Ltd and Sigma Chemical Co, respectively.

Table II. Inhibitory effects of oleanane-type triterpenoids (25 μg/ml) derived from GA on the enhanced ³²Pi incorporation into phospholipids of HeLa cells induced by TPA (50 nM).

R	R'		Inhibition (%)	
		R''	a : 18α	b : 18β
ОН	CO₂H	H ₂ (12)	11.3	7.2
OH	CH₂OH	O^2 (15)	51.2	61.3
OH	CH₂OH	$H_2 = (18)$	47.9	8.8
H	CO_2^2H	$H_2^2 = (13)$	22.5	14.3
H	CH ₂ OH	$O^2 (17)$	25.5	36.8
H	CH ₂ OH	$H_2 = (20)$	32.3	28.2
$H(\Delta^2)$	CO_2^2H	H_2^2 (14)	52.5	55.0
$H(\Delta^2)$	CH ₂ OH	$O^2 (16)$	70.1	81.3
$H(\Delta^2)$	CH ₂ OH	H ₂ (19)	63.8	79.3

11-Oxo-18 β -olean-12-ene-3 β ,30-diol (glycyrrhetol) **15b** LiAlH₄ (85.4 mg, 2.25 mmol) was added in portions to a stirred solution of **1b** (141.2 mg, 0.3 mmol) in dry THF (6 ml). The mixture was stirred at 60°C under nitrogen for 1 h, then cooled, and quenched with 2 N-HCl. After dilution with cold water, the mixture was extracted with CHCl₃. The extract was washed with 2 N-HCl and worked up as usual. The crude product was dissolved in CHCl₃ (15 ml) containing THF (1 ml) and activated MnO₂ (2 g) charged. The mixture was vigorously shaken for 25 h and then filtered. The filtrate was concentrated in vacuo. The residue was purified by preparative TLC (4:1 CHCl₃-acetone), giving 15b (99.7 mg, 72.8%), mp 244-252°C. Recrystallization from acetone-pentane afforded an analytical sample, mp 274–277°C: ν_{max} (cm⁻¹) 3614, 3448, 1647, 1614; δ (ppm) 0.81 (s, 3H, 28-H), 0.86 (s, 3H, 24-H), 0.93 (s, 3H, 29-H), 1.01 (s, 3H, 23-H), 1.13 (bs, 6H, 25- and 26-H), 1.38 (s, 3H, 27-H), 3.23 (t, 1H, J = 8 Hz, 3-H), 3.48, 3.56 (ABq, 2H, J = 11.5 Hz, 30-H₂), 5.59 (s, 1H, 12-H); m/e456 (M⁺), identical to the material obtained previously [5].

11-Oxo-18α-olean-12-ene-3β,30-diol 15a In a similar manner, 1a (188.3 mg, 0.4 mmol) was subjected to LiAlH₄ reduction followed by MnO₂ oxidation to give 15a (111.8 mg, 61.2%), mp 271–276°C (acetone–ether): v_{max} (cm⁻¹) 3614, 3444, 1651, 1618; δ (ppm) 0.68 (s, 3H, 28-H), 0.81 (s, 3H, 24-H), 0.93 (s, 3H, 29-H), 1.00 (s, 3H, 23-H), 1.14 (s, 3H, 25-H), 1.20 (s, 3H, 26-H), 1.35 (s, 3H, 27-H), 3.22 (q, 1H, J = 11.6 Hz, 3-H), 3.33 (s, 2H, 30-H₂), 5.55 (bs, 1H, 12-H); m/e 456 (M*). Anal $C_{30}H_{48}O_{3}$ Calcd: C, 78.89; H, 10.59. Found: C, 78.61; H, 10.47.

11-Oxo-18β-oleana-2,12-dien-30-ol 16b

A stirred suspension of **6b** (60.2 mg, 0.133 mmol) and LiAlH₄ (25.2 mg, 0.665 mmol) in dry THF (2 ml) was heated at 60°C under nitrogen for 1.5 h. The mixture was poured into cold 2 N-H₂SO₄ and extracted with CHCl₃. After usual workup, the residue was dissolved in CHCl₃ (6 ml) and activated MnO₂

(1.2 g) was charged. The suspension was vigorously stirred. After 22 h, additional fresh MnO $_2$ (0.7 g) and CHCl $_3$ (6 ml) were introduced. Stirring was continued for a further 65 h. The mixture was filtered and the filtrate was concentrated *in vacuo*. The residue was purified by preparative TLC (4:1 CHCl $_3$ –acetone) to afford **16b** (30.2 mg, 51.8%), mp 175–182°C (ether–pentane): v_{max} (cm $^{-1}$) 3618, 3434, 1646, 1613; δ (ppm) 0.87 (s, 3H, 28-H), 0.92 (bs, 6H, 24- and 29-H), 0.97 (bs, 6H, 23- and 25-H), 1.16 (bs, 6H, 26- and 27-H), 3.47, 3.56 (ABq, 2H, J = 10.5 Hz, 30-H $_2$), 5.40 (m, 2H, 2- and 3-H), 5.61 (s, 1H, 12-H); m/e 438 (M+). Anal $C_{30}H_{46}O_{2}$ Calcd: C, 82.13; H, 10.57. Found: C, 81.84; H, 10.38.

11-Oxo-18α-oleana-2,12-dien-30-ol 16a

As described above, **6a** (54.3 mg, 0.12 mmol) was converted to **16a** (27.5 mg, 52.3%), mp 138–143°C (pentane): v_{max} (cm⁻¹) 3620, 3428, 1650, 1619; δ (ppm) 0.69 (s, 3H, 28-H), 0.92 (s, 3H, 24-H), 0.93 (s, 3H, 29-H), 0.97 (s, 3H, 25-H), 1.16 (s, 3H, 23-H), 1.23 (s, 3H, 26-H), 1.34 (s, 3H, 27-H), 3.34 (s, 2H, 30-H₂), 5.40 (m, 2H, 2- and 3-H), 5.58 (bs, 1H, 12-H); *m/e* 438 (M⁺). Anal $C_{30}H_{46}O_2$ Calcd: C, 82.13; H, 10.57. Found: C, 81.75; H, 10.46.

11-Oxo-18ξ-olean-12-en-30-ol 17

Red-Al [(MeOCH₂CH₂O)₂AlH₂, 3.4 M] solution in toluene (0.28 ml, 1 mmol) was added dropwise to a stirred solution of the Me ester of 5 (93.7 mg, 0.2 mmol) in dry THF (2 ml). The mixture was heated at 60°C for 1 h, then cooled, poured into cold 2 N–HCl, and extracted with CHCl₃. The extract was washed with cold 2 N–HCl and satd NaHCO₃ followed by usual workup. The crude product was dissolved in CHCl₃ (10 ml) and activated MnO₂ (2 g) was charged. The resulting suspension was vigorously stirred at room temperature. After 24 h, the mixture was filtered. Fresh MnO₂ (2 g) was introduced to the filtrate. The suspension was shaken again for 24 h. The inorganic precipitate was filtered off. Concentration in vacuo left a syrupy residue which was purified by prepara-

tive TLC (9:1 CHCl₃–acetone), giving the pure material of 17. 17a: 34.1 mg (38.7%), mp 275–277°C (MeOH); v_{max} (cm⁻¹) 3676, 3616, 3446, 1653, 1622; δ (ppm) 0.67 (s, 3H, 28-H), 0.84 (s, 3H, 24-H), 0.87 (s, 3H, 25-H), 0.92 (s, 3H, 29-H), 1.14 (s, 3H, 23-H), 1.20 (s, 3H, 26-H), 1.35 (s, 3H, 27-H), 3.33 (s, 2H, 30-H₂), 5.53 (bs, 1H, 12-H); m/e 440 (M⁺). Anal $C_{30}H_{48}O_2$ Calcd: C, 81.76; H, 10.98. Found: C, 81.47; H, 10.79. 17b: 25.3 mg (28.7%), mp 200–203°C (ether–pentane); v_{max} (cm⁻¹) 3676, 3620, 3440, 1647, 1618 (sh); δ (ppm) 0.84 (s, 3H, 28-H), 0.86 (s, 3H, 24-H), 0.88 (s, 3H, 25-H), 0.93 (s, 3H, 29-H), 1.13 (s, 3H, 23-H), 1.15 (s, 3H, 26-H), 1.39 (s, 3H, 27-H), 3.47, 3.56 (ABq, 2H, J = 11 Hz, 30-H₂), 5.58 (s, 1H, 12-H); m/e 440(M⁺). Anal $C_{30}H_{48}O_2$ Calcd: C, 81.76; H, 10.98. Found: C, 81.53; H, 10.82.

18α -Olean-12-ene-3 β ,30-diol **18a**

The Me ester of **12a** (47.1 mg, 0.1 mmol) was similarly reduced with LiAlH₄ (9.5 mg, 0.25 mmol) in dry THF (2 ml) on heating at 60°C for 45 min. The crude product was purified by preparative TLC (9:1 CHCl₃–acetone), affording **18a** (27.1 mg, 61.2%), mp 282–284°C (CH₂Cl₂–acetone–pentane): δ (ppm) 0.63 (s, 3H, 28-H), 0.79 (s, 3H, 24-H), 0.93 (s, 3H, 29-H), 0.96 (s, 3H, 26-H), 0.99 (s, 3H, 23-H), 1.00 (s, 3H, 25-H), 1.15 (s, 3H, 27-H), 3.22 (m, 1H, 3-H), 3.32 (s, 1H, 30-H₂), 5.16 (bs, 1H, 12-H); *m/e* 442 (M⁺). Anal C₃₀H₅₀O₂ Calcd: C, 81.39; H, 11.38. Found: C, 81.17; H, 11.22.

18β-Olean-12-ene-3β,30-diol(11-deoxoglycyrrhetol) 18b In the same manner, the Me ester of 12b (188.3 mg, 0.4 mmol) was converted to 18b (156.0 mg, 88.1%), mp 246–250°C (CHCl₃-acetone–hexane): δ (ppm) 0.79 (s, 3H, 28-H), 0.83 (s, 3H, 24-H), 0.90 (s, 3H, 29-H), 0.94 (s, 3H, 26-H), 0.96 (s, 3H, 23-H), 1.00 (s, 3H, 25-H), 1.15 (s, 3H, 27-H), 3.23 (q, 1H, J = 10.5, 5.5 Hz, 3-H), 3.49, 3.56 (ABq, 2H, J = 11 Hz, 30-H₂), 5.18 (t, 1H, J = 4 Hz, 12-H); m/e 442 (M+), identical to the material obtained previously [5].

18ξ-Oleana-2,12-dien-30-ol 19

As described above, the Me ester of **14** (45.3 mg, 0.1 mmol) was reduced with LiAlH₄ (9.5 mg, 0.25 mmol) in dry THF (1.5 ml) at 60°C for 1 h. Usual workup left a syrupy residue which was purified by preparative TLC (9:1 benzene–EtOAc) to give the pure material of **19**. **19a**: 34.8 mg (81.9%), mp 193–198°C (ether–pentane): δ (ppm) 0.64 (s, 3H, 28-H), 0.90 (s, 3H, 29-H), 0.93 (s, 3H, 24-H), 0.97 (s, 3H, 26-H), 0.99 (s, 3H, 23-H), 1.01 (s, 3H, 25-H), 1.16 (s, 3H, 27-H), 3.33 (s, 2H, 30-H₂), 5.20 (m, 1H, 12-H), 5.41 (m, 2H, 2- and 3H); m/e 424 (M+). Anal $C_{30}H_{48}O$ Calcd: C, 84.84; H, 11.39. Found: C,

84.71; H, 11.33. **19b**: 38.0 mg (89.5%) mp 164–167°C (etherpentane): δ (ppm) 0.84 (s, 3H, 28-H), 0.90 (bs, 6H, 24- and 29-H), 0.97 (bs, 6H, 23- and 26-H), 1.00 (s, 3H, 25-H), 1.16 (s, 3H, 27-H), 3.49, 3.56 (ABq, 2H, J=10.5 Hz, 30-H₂), 5.23 (t, 1H, J=3.5 Hz, 12-H), 5.41 (m, 2H, 2- and 3-H); m/e 424 (M+). Anal $C_{30}H_{48}O$ Calcd: C, 84.84; H, 11.39. Found: C, 84.55; H, 11.23.

18ξ-Olean-12-en-30-ol **20**

Similarly, **13** (44.0 mg, 0.1 mmol) in dry THF (2 ml) was reduced with LiAlH₄ (19 mg, 0.5 mmol). The crystalline residue obtained by usual workup was recrystallized from CH₂Cl₂–MeOH to give an analytical sample. **20a**: 35.4 mg (83.0%), mp 200–203°C; δ (ppm) 0.63 (s, δ H, 28-H), 0.82 (s, 3H, 24-H), 0.87 (s, 3H, 25-H), 0.93 (s, 3H, 29-H), 0.96 (s, δ H, 26-H), 0.99 (s, δ H, 23-H), 1.16 (s, δ H, 27-H), 3.33 (s, 2H, 30-H₂), 5.17 (bs, 1H, 12-H); m/e 426 (M⁺). Anal C₃₀H₅₀O Calcd: C, 84.44; H, 11.81. Found: C, 84.15; H, 11.64. **20b**: 34.4 mg (80.6%), mp 177–179°C; δ (ppm) 0.82 (s, δ H, 28-H), 0.83 (s, 3H, 24-H), 0.87 (s, δ H, 25-H), 0.90 (s, δ H, 29-H), 0.93 (s, δ H, 26-H), 0.96 (s, δ H, 23-H), 1.16 (s, δ H, 27-H), 3.48, 3.56 (ABq, 2H, δ H) = 11 Hz, 30-H₂), 5.20 (t, 1H, δ H, 11.81. Found: C, 84.21; H, 11.70.

Acknowledgment

We wish to thank Dr S Hiai of the Research Institute for Wakan-yaku, Toyama Medical and Pharmaceutical University for his kind advice and encouragement.

References

- 1 Baran JS, Langford DD, Liang CD, Pitzle BS (1974) J Med Chem 17, 184–191
- 2 Nishino H, Yoshioka K, Iwashima A, Takizawa H, Konishi S, Okamoto H, Okabe H, Shibata S, Fujiki H, Sugimura T (1986) Jpn J Cancer Res (Gann) 77, 33–38
- Nishino H, Nishino A, Takayasu J, Hasegawa T, Iwashima A, Hirabayashi K, Iwata S, Shibata S (1988) Cancer Res 48, 5210-5215
- 4 Nishino H, Fujiki H, Terada M, Sato S (1983) Carcinogenesis 4, 107–110
- 5 Shibata S, Takahashi K, Yano S, Harada M, Saito H, Tamura Y, Kumagai A, Hirabayashi K, Yamamoto M, Nagata N (1987) Chem Pharm Bull 35, 1910–1918