APPLICATION OF AMPP-Pd CATALYSTS IN AN UNUSUAL ASYMMETRIC ALLYLIC COUPLING REACTION OF 1-TRIMETHYLSILYL VINYL MAGNESIUM BROMIDE.

Frédéric FOTIADU, Philippe CROS, Bruno FAURE and Gérard BUONO^{*}

Ecole Supérieure de Chimie de Marseille; U.R.A. 126; Faculté des Sciences et Techniques de S^t Jérôme; Université AIX-MARSEILLE III; Avenue Escadrille Normandie Niemen; 13397 MARSEILLE CEDEX 13.

Abstract : Unusual palladium catalyzed allylation of a silylated Grignard reagent by cyclohexenyl acetate gives in high yields a versatile synthon, 3-(1-trimethylsilyl vinyl) cyclohexene; use of chiral AMPP ligands results in e.e. up to 33 %.

Catalytic allylation reactions of Grignard compounds are of great importance in organic synthetic strategies¹. Indeed, nickel or palladium catalyze reactions of allylic substrates such as ethers, alcohols and phosphates²; furthermore, asymmetric induction can be achieved by using chiral ligands³. We report here an unusual reaction between 1-trimethylsilyl vinyl magnesium bromide 1 and 3-cyclohexenyl acetate 2 catalyzed by palladium complexes, giving 3-(1-trimethylsilyl vinyl) cyclohexene 3 in high yields (Equation 1).

To our knowledge, this is the first example of a palladium catalyzed coupling of an organomagnesium compound with an allylic acetate. Generally, Grignard reagents undergo nucleophilic attack at the carbonyl carbon of the ester group⁴. Indeed, the reaction under our conditions, with alkyl- and vinylmagnesium bromide proceeds smoothly to afford solely the reduction products. Moreover, the catalyzed reaction between 1 and geranyl or myrtenyl acetate gave, besides reduction products, unexpectedly 5-trimethylsilyl-5-hexene-2-one⁵. This compound may formally result from an attack of 1 on the acetyl group of the allylic substrates to afford the corresponding methyl 1-(trimethylsilyl)vinyl ketone. Subsequent Michaël addition of a second equivalent of 1 and Brook-type rearrangement followed by hydrolysis may lead to the byproduct isolated⁶. In the case of allyl acetate, the coupling product 2-trimethylsilyl-1,4-pentadiene could be isolated in 50% yield.

Palladium catalyzed cross-coupling of 3-cyclohexenyl magnesium bromide with 1-bromo-1-trimethylsilyl ethene and allylic coupling of 1 with 3-cyclohexenyl bromide failed to yield 3.

3 may prove a versatile synthon, for example as an intermediate in the preparation of methylene lactones⁷. This pathway represents an alternative to the codimerisation of vinyltrimethylsilane with 1,3-cyclohexadiene, previously studied⁸.

Since the reaction is mostly catalytic (Table II, entries 1 and 2), we could show in a deuterium labelling study with *d*-carveyl acetate 4 that it proceeds *via* a π -allyl complex (Equation 2). This was further confirmed by the resulting 1 : 1 mixture of products 5a and 5b, as determined by ²D NMR spectroscopy⁹.

The reactivity of 1 may be compared to that of a soft stabilized carbanion¹⁰ or to phenylzinc chloride¹¹. The stereochemistry of the attack (*syn* or *anti* to the palladium⁴) on the π -allyl complex remains to be determined with the above allylic compounds.

Enantioselectivity is obtained when chiral AMPP ligands¹² are used. $PdCl_2(AMPP)$ complexes (Table I), reduced in situ by 2 equivalents of 1, were employed as precursors of the Pd^0 catalytic species.

Table 1: ³¹P NMR Chemical Shifts of PdCl₂(AMPP) Complexes^a

Ligand	Free ligand		Complex PdCl ₂ (AMPP) ^b		
	Р-О	P-N	P-O	P-N	² J _{P-Pd-P}
ValNOP	114.3	61.9	104.0	87.7	34.3
PhenylalaNOP	113.5	60.1	104.4	87.5	35.3
ProliNOP	112.8	45.1	107.9	72.0	27.2
ThreoNOOP ^e	114.0 111.6	64.7	106.0 111.7	89.8	34.7 -

a) Spectra were recorded on a Bruker AC100 spectrometer, solvent CDCl₃. Chemical shifts are reported in ppm (ref. H₃PO₄ 85%), coupling constants in Hz.

b) Pd^{II} complexes were prepared by exchange reaction between (CH₃CN)₃PdCl₃and AMPP ligands, molar ratio 1:1, in THF.

c) This potentially tridentate ligand behaves as a bidentate aminophosphine phosphinite ligand.

Typical allylation procedure : a suspension of $PdCl_2(AMPP)$ (1.5 mmol; THF 15 ml) was treated first with 2 equivalents (3 ml) of a previously prepared solution of 1 (60 mmol; THF 60 ml). Then 2 (30 mmol) and the remaining solution of 1 were introduced successively. After stirring for 45 minutes at room temperature, the mixture was hydrolyzed with 10 ml of 10% HCl. 3 was isolated by extraction and chromatography (pentane), then distillation (b.p. 35°C / 0.5 mmHg)¹³. Measurement of e.e. by ¹H NMR spectroscopy allowed to evaluate the specific rotation of (-)-3 to $[\alpha]_{D}^{20} = -80^{\circ}$ (c=1, toluene), using Ag(fod)-Eu(hfbc)₈ for the resolution¹⁴.

Entry	Catalyst	Temp.(°C)	Yield(%) [*]	e.e.(%)
1 ^b	-	r.t.	15	-
2	Pd(PPh _s) ₄	r.t.	93	-
3	PdCl ₂ (PPh ₃) ₂	r.t.	79	-
4	Ni(COD) ₂ /2PPh ₃	r.t.	20	-
5	PdCl ₂ (ValNOP)	r.t.	81	20
6°		10	82	23
7°		-10 ^d	69	26
8	PdCl ₂ (PhAlaNOP)	r.t.	80	15
9°		10	83	18
10	PdCl ₂ (ProliNOP)	r.t.	80	26
11°		10	85	30
12 ^c		-10 ^d	53	33
13	PdCl ₂ (ThreoNOOP)	r.t.	70	7•

<u>Table II:</u> Allylic Coupling Reaction of 1-Trimethylsilyl Vinyl Magnesium Bromide with 3-Cyclohexenyl Acetate

a) Total conversion of 2 except for entries 1:85%, and 7:80%.

- b) Non catalytic reaction.
- c) Reaction time 2h at 10°C, 4h at -10°C.
- d) Below -10°C, the catalyst precipitated.
- e) All AMPP ligands gave levorotatory products, except for Threophos.

This is the first example of a Pd⁰ catalyzed reaction with asymmetric induction between a Grignard reagent and an allylic acetate. Although the catalytic pathway via a π -allyl complex was unambiguously proved, work is in progress to explain the atypic behaviour of this nucleophile on allylic substrates.

References and Notes :

- B. M. Trost, P. E. Strege, L. Weber, T. J. Fullerton T. J. Dietsche <u>J. Am. Chem. Soc.</u>, <u>100</u>, 3407, 3416, 3426 (1978); B. M. Trost, T. R. Verhoeven <u>J. Am. Chem. Soc.</u>, <u>100</u>, 3435 (1978); J. Tsuji <u>Tetrahedron</u>, <u>42</u>, 4361 (1986).
- (2) G. Consiglio, F. Morandini, O. Piccolo <u>J. Chem. Soc., Chem. Commun.</u>, 112 (1983); T. Hayashi, M. Konishi, K.I. Yokota, M. Kumada <u>J. Organomet. Chem.</u>, 285, 359 (1985); K. Takai, K. Oshima, H. Nozaki <u>Tetrahedron Lett.</u>, 26, 3259 (1980).
- B. Bosnich <u>Asymmetric Synthesis</u>, NATO ASI Series, Series E : Applied Sciences No 103, Boston (1986).
- (4) J.C. Fiaud, J.Y. Legros J. Org. Chem., 52, 1907 (1987); T. Hiyama, N. Wakasa <u>Tetrahedron Lett.</u>, 26, 3259 (1985): the coupling was performed using a Ni-complex, between aryl-MgBr and allylic esters in medium chemical yields. In our case, the Ni⁰ complex did not show any sensible catalytic activity (entry 4).
- (5) I.R. (cm⁻¹) 3020 (=CH₂), 1720 (C=O), 1250 (SiMe), 840 (Si-C); ¹H NMR (ppm) 0.25 (s, 9H), 2.31 (s,3H), 2.72 (m, 4H), 5.58 (d, 2H); ¹³C NMR (ppm) -0.8, 31.5, 32.3, 45.1, 126.2, 153.1, 210.7
- (6) A. G. Brook Acc. Chem. Res., 7, 77 (1974).
- L.C. Yu, P. Helquist J. Org. Chem., 46, 4536 (1981). Vinylsilanes have found widespread use for the regio- and stereochemical control of many electrophilic reactions, see : P.D. Magnus, T. Sarkar, S. Djuric Organosilicon Compounds in Organic Synthesis, in «Comprehensive Organometallic Chemistry», G. Wilkinson, F.G.A. Stone, E.W. Abel Eds., Vol 7, pp 515-659, Pergamon Press, Oxford (1982); T.A. Blumenkoff, L.E. Overman Chem. Rev., 86, 857 (1986); I. Fleming Comprehensive Organic Chemistry, D. Barton, W.D. Ollis Eds., Chap. 13, p 613, Pergamon Press, Oxford (1979); T.H. Chan, I. Fleming Synthesis, 671 (1979).
- (8) P. Cros, C. Triantaphylides, G. Buono J. Org. Chem., 53, 185 (1988).
- (9) ²D NMR (ppm) 3.28 (s, 1D), 6.00 (s, 1D).
- P.R. Auburn, P.B. Mackenzie, B. Bosnich J. Am. Chem. Soc., 107, 2033 (1985); P.B. Mackenzie, J. Whelan, B. Bosnich J. Am. Chem. Soc., 107, 2046 (1985). J. C. Fiaud, J. L. Malleron <u>Tetrahedron Lett</u>, 22, 1402 (1981).
- (11) J. C. Fiaud, L. Aribi-Zouioueche J. Organomet. Chem., 285, 383 (1985).
- (12) G. Buono, C. Siv, G. Peiffer, C. Triantaphylides, P. Denis, A. Mortreux, F. Petit J. Org. Chem., 50, 1781 (1985); A. Mortreux, F. Petit, G. Buono, G. Peiffer <u>Bull. Soc. Chim. Fra.</u>, 4, 631 (1987).
- (13) I.R. (cm⁻¹) 3020 (=CH₂), 1250 (SiMe), 840 (Si-C); ¹H NMR (ppm) 0.35 (s, 9H), 1.62 (m, 6H), 2.92 (m, 1H), 5.78 (m, 4H); ¹³C NMR (ppm) -0.9, 20.8, 25.1, 29.9, 41.0, 124.8, 127.4, 130.8, 156.0; ²⁹Si NMR (ppm) -4.06.
- (14) W. Offermann, A. Mannschreck <u>Tetrahedron Lett.</u>, 22, 3227 (1981); T.J. Wenzel, R.E. Sievers J. Am. <u>Chem. Soc.</u>, 104, 382 (1982); R.D. Fraser <u>Asymmetric Synthesis</u>, J.D. Morrison Ed., Vol. 1, p 173, Academic Press (1983).