Synthesis of Phenylenedithiodiquinones

Shmuel Bittner,* Eli Harlev

The Organic Metals Group, Department of Chemistry, Ben-Gurion University of the Negev, Becr-Sheva 84150, Israel

The reaction of o-, m-, and p-benzenedithiol with 1,4-benzoquinone and with 1,4-naphthoquinone affords diquinones linked by a phenylene-dithio moiety.

Considerable interest in polyquinoids and derivatives thereof stems from the assumption that with appropriately designed systems composed of quinone-, semiquinone-, and hydroquinone-type moieties, one could control optical, magnetic, and electrical properties.^{1,2}

As part of an effort towards organic conducting materials we have designed and prepared compounds which contain linked donor(D) and acceptor(A) moieties as schematically represented by I and II.^{3,4}

We now report the synthesis of the isomeric templates 1, 2 and 3 in which two acceptors (quinones) are linked by one donor (phenylenedithio), i.e., systems of the type II. Such A₂D molecular units are potentially endowed with a number of properties which are considered to be necessary for electrical conduction in organic charge-transfer complexes. ⁵ Compounds 1a, 2a, 3a and 1b, 2b, 3b were prepared in good yields by reaction of 1,4-benzoquinone (4a) or 1,4-naphthoquinone (4b), respectively, with o-, m-, or p-benzendithiol in ethanol at 0°C to room temperature. The quinones are used in excess in order to oxidize the phenylenedithiobis(hydroquinones) which are initially formed by addition of the dithiols to the quinones. ⁶

In the ¹H-NMR spectrum, the introduction of the phenylenedithio moiety causes a large upfield chemical shift for the adjacent quinonic proton ($\delta = 5.9-6.1$) as compared to $\delta = 6.7$ in 1,4-benzoquinone and $\delta = 6.9$ in 1,4-naphthoquinone). This effect might be due to resonance participation by the sulfur

substituent. The other protons are not influenced. As common with monosubstituted 1,4-benzoquinones, compounds 1a, 2a, and 3a show a typical ABC pattern with coupling constants J = 2.3 and 10 Hz.

The steric relationship between the two quinone moieties within the molecule has an effect on the physical and spectral properties of the isomers 1, 2, and 3 (Table).

Crystal structure and electrochemical properties of compounds 1, 2, 3 are currently under investigation.

1,2- and 1,3-Benzenedithiol are commercially available (Aldrich). 1,4-Benzenedithiol was prepared by reaction of 1,4-dibromobenzene with sodium 2-propanethiolate in EtOH and cleavage of the resultant 1,4-bis(isopropylthio)benzene with sodium according to Lit. We failed to obtain this compound by a reported multistep synthesis from sulfanilic acid. 7,8

Table. Products 1, 2, and 3 Prepared

Prod- uct	Yield ^a (%)	mp (°C)	Molecular Formula ^b	MS° m(z (%)	IR (KBr) ^d v(cm ⁻¹)	$UV(CH_2Cl_2)^e$ λ_{max} (nm), (log ε)	1 H-NMR (CDCl ₃ /TMS) ^r δ , J (Hz)
1a	89	108-109	C ₁₈ H ₁₀ O ₄ S ₂ (354.4)	354 (M ⁺ , 100) 248 (54)	1665, 1638, 1566, 1545	248 (4.21), 430 (3.44)	5.91 (d, 2H, $J = 2.8$); 6.69 (dd, 2H, $J_1 = 2.8$, $J_2 = 10.2$); 6.86 (d, 2H, $J = 10.2$); 7.53 (s, 4H)
1 b	69	> 270	$C_{26}H_{14}O_4S_2$ (454.5)	454 (M ⁺ , 100)	1662, 1588	259 (4.52), 297 (4.04), 400 (3.33)	6.01 (s, 2H); 7.66-8.12 (m, 12H)
2a	80	172–173	$C_{18}H_{10}O_4S_2$ (354.4)	354 (M ⁺ , 100) 215 (84)	1662, 1641, 1567, 1545	250 (4.37), 421 (3.49)	5.92 (d, 2H, $J = 2.8$); 6.72 (dd, 2H, $J_1 = 2.8$, $J_2 = 10.2$); 6.86 (d, 2H, $J = 10.2$); 7.62–7.72 (m, 4H)
2b	79	262-263	$C_{26}H_{14}O_4S_2$ (454.5)	454 (M ⁺ , 100)	1662, 1652, 1588, 1560	257 (4.66), 295 (4.19), 404 (3.69)	6.15 (s, 2H); 7.71-8.16 (m, 12H)
3a	82	210 (dec)	$C_{18}H_{10}O_4S_2$ (354.4)	354 (M ⁺ , 100) 187 (42)	1667, 1641, 1564	259 (4.31), 424 (3.32)	5.96 (d, 2H, $J = 2.4$); 6.69 (dd, 2H, $J_1 = 2.4$, $J_2 = 9.8$); 6.74 (d, 2H, $J = 9.8$); 7.63 (s, 4H)
3b	64	> 270	$C_{26}H_{14}O_4S_2$ (454.5)	454 (M ⁺ , 100) 268 (26)	1661, 1648, 1588, 1565	257 (4.65), 291 (4.25), 405 (3.71)	6.21 (s, 2H); 7.71–8.20 (m, 12H)

[&]quot; Yields of isolated products, not optimized.

^b Satisfactory microanalyses: C \pm 0.22, H \pm 0.05, S \pm 0.24.

Recorded on a Finnigan 4020 quadropole spectrometer.

d Recorded on a Nicolet 52DX FT-IR spectrometer.

^e Recorded on a Bauch and Lomb spectronic 2000 UV/VIS spectro-

f Recorded on a Bruker WP200SY spectrometer.

Melting points were taken with a Thomas-Hoover capillary apparatus and are uncorrected.

2,2'-(1,2-, 1,3-, or 1,4-Phenylenedithio)bis(1,4-henzoquinones) 1a, 2a, 3a and 2,2'-(1,2-, 1,3-, or 1,4-Phenylenedithio)bis(1,4-naphthoquinones) 1b, 2b, 3b; General Procedure:

To a cooled (0°C) solution of the quinone 4a or 4b (20 mmol) in EtOH (75 mL), a solution of 1,2-, 1,3-, or 1,4-benzenedithiol (0.569 g, 4 mmol) in EtOH (10 mL) is added dropwise, with stirring. The orange solution is stirred at r.t. for an additional 12 h, then cooled to 0°C. The precipitated yellow to orange crude product is isolated by suction and recrystallized from EtOH (1a, 2a, 3a) or from CH₂Cl₂/petroleum ether 40-60°C (1b, 2b, 3b) to give the pure yellow to orange crystalline product

We gratefully acknowledge financial support from the Germany-Israel Cooperative Research Program, administered by the Israel National Council of Research and Development.

Received: 19 May 1989

- (1) Thomas, A.D., Miller, L.L. J. Org. Chem. 1986, 51, 4160.
- (2) Josefiak, T.H., Miller, L.L. J. Am. Chem. Soc. 1987, 109, 6560.
- (3) Becker, J.Y., Bernstein, J., Bittner, S., Levi, N., Shaik, S.S. J. Am. Chem. Soc. 1983, 105, 4469.
- (4) Becker, J. Y., Bernstein, J., Bittner, S., Levi, N., Shaik, S.S., Zer-Zion, N. J. Org. Chem. 1988, 53, 1689.
- (5) Becker, J.Y., Bernstein, J., Bittner, S., Shaik, S.S. Synthetic Metals 1988, 27, B197.
- (6) Klemm, K., Geiger, B. Liebigs Ann. Chem. 1969, 103, 726.
- (7) Zincke, T., Frohneberg, W. Ber. Dtsch. Chem. Ges. 1909, 42, 2721.
- (8) Parekh, V.C., Guha, P.C. J. Indian. Chem. Soc. 1934, 11, 95.
- (9) Maiolo, F., Testaferri, L., Tiecco, M., Tingoli, M. J. Org. Chem. 1981, 46, 3070.
 - Cogolli, D., Maiolo, F., Testaferri, L., Tiecco, M. J. Org. Chem. 1979, 44, 2642.
 - Testaferri, L., Tingoli, M., Tiecco, M. J. Org. Chem. 1980, 45, 4376.