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Gold-catalyzed N,O-functionalizations of 1,4-diyn-3-ols with N-

hydroxyanilines to form highly functionalized pyrrole derivatives  

Yu-Chen Hsu, Shu-An Hsieh, Po-Hsuan Li and Rai-Shung Liu* 

This work describes new N,O-functionalizations of 1,4-diyn-3-ols 

with N-hydroxyanilines to yield highly functionalized pyrrole 

derivatives. In a postulated mechanism, N-hydroxyaniline attacks 

at the more electron-rich alkynes via a N-attack regioselectivity to 

form unstable ketone-derived nitrones that react their tethered 

alkynes via an intramolecular oxygen-transfer to form αααα-oxo gold 

carbenes. This new method is applicable to a short synthesis of an 

bioactive molecule, PDE4 inhibitor. 

   Nitrones are versatile building blocks to access N,O-

containing molecules through their stereoselective [3+2]-

cycloadditions with alkene and allenes.
1
 Nitrone species are 

commonly generated in situ from a mixture of N-

hydroxyanilines with aldehydes; in contrast, ketone-derived 

nitrones are generally kinetically unstable
2a

 unless an electron-

withdrawing group is present.
2b-2e

 Zhang and coworkers 

reported gold-catalyzed intermolecular reactions of N-

hydroxyanilines with terminal alkynes to afford indole 

products; the key step involves an O-attack of N-

hydroxyanilines at gold π-alkynes [Eq. (1)].
3,4

 As opposed to the 

O-attack mode, we reported an alkene-controlled N-attack of 

N-hydroxyanilines at the π-alkynes of 1,6-enynes to generate 

unstable ketone-derived nitrones that reacted instantaneously 

with their tethered alkenes to enable novel [2+2+1]-annulation 

products [Eq. (2)].
5,6

 Such gold-catalyzed N,O-

functionalizations with N-hydroxyanilines is further applicable 

to 6-allenyl-1-ynes to form the same nitrones that were 

trapped with their tethered allenes to afford benzoazepin-4-

ones stereoselectively [Eq. (3)].
7
 This work reports new gold-

catalyzed N,O-functionalizations of 1,4-diyn-3-ols with N-

hydroxyanilines, delivering pyrrole derivatives efficiently [Eq. 

(4)]. Notably, the key ketone-derived nitrones reacted with the  

tethered alkynes in a non-cycloaddition route, notably through 

a distinct oxygen-transfer reaction.
8,9 

In our previous work, 

gold catalysed reactions of nitrones with ynamides proceeded 

through different 1,2-oxoamination reactions, in which 

nitrones were hydrolysed to liberate free 

aldehydes.
9b

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The utility of this synthesis provides a short entry to highly 

functionalized pyrrole frameworks, which are found as the 

core structures in several bioactive and natural products; the 

examples are shown in Figure 1.
10 

Herein, a short synthesis of 

PDE4 inhibitor is demonstrated in this work. 

 

 

Fig.1 Representative bioactive and natural products 
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Table 1 optimizes the reactions of 3-methyl-1,5- 

diphenylpenta-1,4-diyn-3-ol (1a) with N-hydroxyaniline (2a) 

using various gold catalysts. We tested the reaction with 

tBuMePhosAuCl/AgNTf2 (10 mol %) in DCE at room 

temperature, affording pyrrole 3a in only 11% with a 69% 

recovery of initial 1a. To improve the product yields, Zn(OTf)2 

(30 mol%) was added to this reaction to increase the yield of 

3a to 43% (entry 2). A high loading, 20 mol % of 

tBuMePhosAuCl/AgNTf2 together with Zn(OTf)2 led to a high 

consumption of 1a to deliver 3a in 58% (entry 3). With 

tBuMePhosAuCl (20 mol%), we employed AgNTf2 with 50 mol 

% to obtain 3a in 71% yield. With 50 mol % AgNTf2, we altered 

gold catalysts LAuCl (20 mol %, L = IPr, P(t-Bu)2(o-biphenyl), 

PPh3), finding that P(t-Bu)2(o-biphenyl)AuCl was the best 

catalyst to produce 3a in 78% yield (entries 5-7). We tested the 

reactions with 10 mol % P(t-Bu)2(o-biphenyl)AuCl/AgNTf2, but 

giving 3a in 20-21% yields at 25 
0
C and 60 

0
C (entries 8-9). The 

use of P(t-Bu)2(o-biphenyl)AuCl/AgSbF6 maintained the same 

high efficiency (entry 10). We employed a low loading (15 mol 

%) of P(t-Bu)2(o-biphenyl)AuCl and AgNTf2 (50 mol %) to 

decrease the yield of 3a in 48% yield (entry 11). The use of this 

catalyst composition in other solvents gave 3a in the following 

results: 41% in DCM, 8% in THF and 47% in CH3NO2. We also 

performed catalytic reactions with p-TSA, Zn(OTf)2, Cu(OTf)2 

and Sc(OTf)3, with Zn(OTf)2 being the most productive to afford 

3a in 39% yield (see Table S1). The molecular structure of 

compound 3a was determined by X-ray diffraction.
11

 

Table 1. Optimization of the reaction condition
 

Under the optimized condition, we examined the effects of 

the alkoxy groups of diynols 1aa-1ac (R = Me, Bu and PhCH2), 

yielding compound 3a in relatively low yields (52-59%) [Eq. 

(5)]. The high efficiency of a hydroxyl group as in species 1a is 

probably attributed to its good leaving property. 

We assessed the scope of this pyrrole synthesis with various 

3-alkyl-1,4-diyn-3-ol 1 and N-hydroxyaniline 2a using P(t-

Bu)2(o-biphenyl)AuCl (10-20 mol %)/AgNTf2 (50 mol %); the 

results are summarized in Table 2. As the tertiary carbon were 

substituted with R
2
 = n-propyl, i-propyl and styryl, the resulting 

products 3b-3d were obtained in 48-73% yield (entry 2-4). In 

entries 5-8, different symmetric aryl-substituted diynols 1e-1h 

were tested; electron-donating substituents R
1 

= R
3
 = 4-XC6H4 

(X = Me, OMe) were operable with 10 mol % LAuCl to afford 

compounds 3g and 3h in 58% and 66% yields respectively 

whereas electron-withdrawing analogues 3e and 3f (X = Cl, 

CF3) 

Table 2. Reactions with various 3-alkyl-1,4-diyn-3-ols
 

required 20 mol % gold catalysts to deliver the desired 

products 3e and 3f in 41% and 22% yields respectively. For 

diynol 1h, gold catalyst at a 20 mol % loading enabled a 

complete reaction within 5 minutes, yielding 3h in 91% yield. 

We tested the reaction of species 1i (R
1
, R

3
 = 2-thienyl) and 1j 

(R
1
, R

3
 = 3-thienyl), delivering the desired products 3i and 3j in 

49% and 69% yields respectively (entries 9 and 10). For alkyl-

substituted diyne and alkenyl diyne derivatives 1k and 1l, their 

corresponding reactions were performed with 20 mol % 

catalyst to afford pyrrole derivatives 3k and 3l in poor yields 

(31-33% entries 11 and 12). In the non-symmetric aryl-

substituted diynes, we tested substrates 1m-1p with 10-20 

mol % catalysts to afford the following products in satisfactory 

Ph

OH

Me
Ph

+
N

O

Ph
Me

Ph Ph

Entry
Catalyst
(mol%)

Lewis acid
(mol%)

isolated yield
(%)

1a
2a

3aa

Solvent
Time
(h)

3a

0.05M

2 Zn(OTf)2 (30) DCE 5 43

3

7

6

L1AuCl(20)/AgNTf2(50)

IPrAuCl(20)/AgNTf2(50) DCE

8

4
Zn(OTf)2 (30)L1AuCl(20)/AgNTf2(20) DCE

5

5 58

9

7 28

1 L1AuCl(10)/AgNTf2(10)b DCE

1a (0.05M, 1.0 equiv). 2a (3.0 equiv). a Product yields are given after purification

from a silica column. b L1 = 2-Di-tert-butylphosphino-2'-methylbiphenyl. c L2 = P(t-

Bu)2(o-biphenyl). d IPr = 1,3-bis (diisopropylphenyl) imidazol-2-ylidene.

L2AuCl(20)c/AgNTf2(50) DCE 2

9 11

78

L2AuCl(20)/AgSbF6(50)

L2AuCl(15)/AgNTf2(50) 4 45

10

PhNHOH

DCE 3 71

PPh3AuCl(20)/AgNTf2(50) DCE 5 39

DCE 2 77

C6H6

1a

L1AuCl(10)/AgNTf2(10)

L2AuCl(15)/AgNTf2(50) 4.5 41

11

DCM

L2AuCl(15)/AgNTf2(50) 7 8

12

THF

L2AuCl(15)/AgNTf2(50) 4 47

13

CH3NO2

8

56

48

0

35

43

76

36

15

34

69

0

DCE 4 48L2AuCl(15)/AgNTf2(50) 30

14

Temp
(°C)

rt

rt

rt

rt
rt

rt

rt

rt

rt

15

rt

rt

rt

rt

L2AuCl(10)/AgNTf2(10) DCE 8rt

L2AuCl(10)/AgNTf2(10) DCE 660

62 21

53 20

R1

OH

R2

R3

NR1
O

R3

R2

Phn mol% LAuClb

50 mol% AgNTf2

DCE, rt

N O

Me

Ph

MeO

14) 3n (X = H, 1.5h, 71%, 10)
15) 3o (X = Cl, 1.5h, 62%, 10)
16) 3p (X = Me, 2h, 66%, 10)

N O

nBu

Me

Ph

X

18) 3r (X = H, 3.5h, 51%, 10)
19) 3s (X = OMe, 3h, 47%, 10)

20) 3t (X = Me, 4h, 63%, 10)
21) 3u (X = Cl, 6h, 32%, 10)
22) 3v (X = CF3, 7h, 12%, 10)

X

N

Ph

O

Me

S

9) 3i (2h, 21%, 10;
1.5h, 49%, 20)

S

NPh O

Ph

X

Ph

N O

Me

Ph

X

X
1) 3a (X = Me, 2h, 78%, 20) X-ray
2) 3b (X = n-Pr, 4h, 55%, 20)
3) 3c (X = i-Pr, 7h, 48%, 20)
4) 3d (X = styryl, 1.5h, 73%, 20)

5) 3e (X = Cl, 5.5h, 41%, 20)

6) 3f (X = CF3, 5h, 22%, 20)

7) 3g (X = Me, 1h, 58%, 10)

8) 3h (X = OMe, 2h, 66%, 10;

5min, 91%, 20)c

N O

Me

Ph

11) 3k (3.5h, 31%, 20)

N O

Me

Ph

12) 3l (1.5h, 25%, 10;
2h, 33%, 20)

1 (0.05M, 1.0 equiv). 2a (3.0 equiv). a Product yields are given after purification from a silica column. b L =

P(t-Bu)2(o-biphenyl). c 1.5equiv PhNHOH

N

Ph

O

Me

Me

Cl
13) 3m (2h, 41%, 10;

1.5h, 67%, 20)

N

Ph

O

Me

S

10) 3j (3h, 46%, 10;

2h, 69%, 20)

S

N O

Me

PhS

17) 3q (1.5h, 49%, 10;
1.5h, 63%, 20)

N O

Ph

Me

Ph

S

24) 3x (2h, a/a' = 10/7, 51%, 20)

NPh O

Me

Ph

S

a a'

N O

Me

Ph

23) 3w (10min, 93%, 10)c

N

Me

Ph
Ph O

25) 3y (1.5h, a/a' = 10/1, 73%, 10)

N

Me

Ph

Ph

O

a a'

OMe

PhNHOH

1 2a 3a
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of amine, as facilitated by its tethered alkyne.
5,7

 Resulting 

ketone-derived nitrones II again coordinates with gold to 

effect a dehydration; this step is facilitated with AgNTf2 or 

Zn(OTf)2 to ionize a hydroxyl leaving group. A subsequent 

intramolecular oxygen transfer of species IV yields α-oxo gold 

carbenes V that undergoes an aza-Nazorav cyclization
12

 to 

yield observed products 3o via intermediate VI.   

In summary, we have developed novel gold-catalyzed N,O-

functionalizations of 1,4-diyn-3-ols
13,14

 with N-hydroxyanilines 

to form highly functionalized pyrrole derivatives. The loading 

of gold catalysts relies on the types of N-hydroxyanilines; 

electron-deficient types can be catalysed satisfactorily with a 

10 mol % loading. The mechanism of these reactions proceeds 

via an initial formation of nitrones, but their reactions with the 

tethered alkynes occur via an oxygen-transfer process. 
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