Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/obc Registered Charity Number 207890

Efficient pseudo-five-component coupling-Fiesselmann synthesis $\mathfrak{A}_{\text{Article Online}}$ luminescent oligothiophenes and their modification[†][‡]

Marco Teiber,^a Sönke Giebeler,^a Timo Lessing,^a and Thomas J. J. Müller*^a

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 First published on the web Xth XXXXXXXX 200X DOI: 10.1020/b0000000

DOI: 10.1039/b000000x

(Hetero)aryl bisacidchlorides and terminal alkynes, or likewise acidchlorides and terminal dialkynes, and ethyl 2-mercapto acetate can be reacted to give highly luminescent symmetrical terthiophenes and quinquethiophenes in the sense of a consecutive pseudo-five-component reaction

¹⁰ in good to excellent yield. Further functionalization of the obtained oligomers can be readily achieved by halogenation followed by a metal-catalyzed coupling-reaction to give α, ω -diester substrates for subsequent transformations into highly functionalized materials.

Introduction

Published on 20 March 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40124C

Downloaded by Pennsylvania State University on 20 March 2013

Thiophenes and oligothiophenes represent important building 15 blocks in the synthesis of natural products¹ and years pharmaceuticals.² Additionally, in recent oligothiophenes have adopted a major role among functional π -electron systems,³ in particular, as hole transport materials in organic light emitting diodes,⁴ organic field-effect 20 transistors,⁵ and organic photovoltaics.⁶ Besides the molecular structure especially the conformation and morphology of these electroactive oligomers exert a decisive influence on the bulk materials' properties.

For a long time polythiophenes with a 2,5-linking pattern have ²⁵ efficiently been synthesized, e.g. by electropolymerisation.⁷ Functionalized monomers can also be applied to improve the typically poor solubility of oligo- and polythiophenes as a necessary prerequisite for solution-based processing. In contrary to 2,5-linked polymers with variable polydispersity,

- ³⁰ the efficient synthesis of monodisperse well-defined oligothiophenes still remains a challenge. The latter are particularly interesting for vacuum deposition processing finally furnishing defectfree high-quality films.⁸ Furthermore, functionalized oligo- and polythiophene scaffolds do not only
- ³⁵ influence the solubility or self-organization, but even more the photophysical and electronic molecular properties. In addition oligomer conformations largely depend on the substituent decoration and they are responsible for extended π -electron conjugation and for bulk charge transport properties.³
- ⁴⁰ Particularly interesting are functionalities on oligothiophene scaffolds that can be addressed under mild enzymatic conditions. Thereby conformational organization of electronic functional oligothiophenes under kinetic control leading to highly tunable electronic materials can be enabled. Finally,
- ⁴⁵ the ease of synthetic accessibility of functional organic materials such as conjugated oligomers by diversity oriented synthesis⁹ is a highly demanding methodological challenge, which can be efficiently reached by way of one-pot syntheses where all functionalities can be introduced in a very concise ⁵⁰ and convergent fashion.

In the past years we have developed rapid diversity-oriented accesses to functional chromophores⁹ and electrophores based upon the productive concepts of consecutive multicomponent synthesis of heterocycles and domino transformations initiated

55 by transition metal catalyzed alkyne coupling.¹⁰ Furthermore rapid one-pot sequences to (oligo)thiophenes could be scouted and methodologically developed.¹¹ Now, we set out to expand our recently reported three-component coupling-Fiesselmann synthesis of 2,4-disubstituted thiophene 5-carboxylates to an 60 access of functionalized oligothiophenes as electronically tunable extended π -system building blocks.¹² Here, we report on the synthesis and optical properties of selected oligothiophenes. In addition, we disclose various functionalizations of the multicomponent products for rapidly 65 accessing interesting building blocks for materials syntheses.

Results and discussion

Recently we communicated a concise, consecutive threecomponent transformation of (hetero)aroyl chlorides 1, alkynes 2, and ethyl 2-mercapto acetate (3) to give 2,4-70 disubstituted thiophene 5-carboxylates 4 in moderate to excellent yields in the sense of a coupling-Fiesselmann synthesis (Scheme 1).¹²

This efficient methodology can be readily expanded to the synthesis of more extended conjugated oligomers. By choosing thiophene-2,5-dicarbonyl dichloride (5) as a ⁸⁰ coupling partner symmetrically substituted ter- and quinquethiophenes 6 can be synthesized in good yields in a one-pot fashion and in the sense of a pseudo-five-component reaction (Scheme 2, Figure 1).

O₂Et EtO₂ 6 (7 examples, 61-84%)

Scheme 2 Consecutive pseudo-five-component Sonogashira alkynylation-Fiesselmann cyclocondensation synthesis of symmetrically substituted ter- and quinquethiophenes 6.

5 Likewise 2,5-diethynylthiophene (7) furnishes centrally α, α' disubstituted ter- and quinquethiophenes 8 in good yields (Scheme 3, Figure 1). It should be noted that the use of dialkyne 7 is not trivial, since it is known to be very unstable and to decompose already at -25 °C. Only under nitrogen and 10 upon exclusion of light it can be handled for a few hours.

Scheme 3 Consecutive pseudo-five-component Sonogashira alkynylation-Fiesselmann cyclocondensation synthesis of centrally α, α '-disubstituted ter- and quinquethiophenes 8

¹⁵ Terephthaloyl dichloride (9) reacts with alkynes 2 giving rise to the formation of the thienyl terminated dumbbells 10, whereas 1,4-diethynylbenzene (11) and the acid chlorides 1 furnish the *p*-phenylene bridged symmetrical molecules 12 in moderate to good yields (Scheme 4, Figure 1).

Scheme 4 Consecutive pseudo-five-component Sonogashira alkynylation-Fiesselmann cyclocondensation synthesis of the dithienyl dumbbells 10 and 12.

The structure of all compounds is unambiguously supported 25 by NMR spectroscopy and MALDI spectrometry. Due to the inherent molecular C2-symmetry all NMR spectra show only a

half set of signals. The thiophene based systems 6 and 8 display two characteristical singlets with identical View Article Online the aromatic region of the ¹H NMR spectra, whereas the 30 phenylene analogues 10 and 12 exhibit two singlets with an integral ratio of 1:2. In all cases the typical triplet and quartet of the ethyl ester is most characteristically found. The MALDI spectra of all compounds likewise reveal a characteristic fragmentation pattern arising from the loss of an ethoxy

35 radical from the molecular peak.

- As previously shown for the synthesis of 2,4-disubstituted thiophene 5-carboxylates 4 the Fiesselmann thiophene synthesis^{13,14} via the multicomponent approach to the oligothiophenes 6, 8, 10, and 12 advantageously applies a 40 small set of mono- and dialkynes or mono- and diacidchlorides. They are readily available or easily accessible substrates for rapidly creating a library of functional π systems in a one-pot fashion. In the series of the derivatives 6 the electronic nature of the alkynes 2 was scouted to give that 45 electron deficient, electroneutral, electron rich, heterocyclic and even cyclopropyl alkynes are equally well tolerated. Even the highly sensitive 2,5-diethynylthiophene (7) furnishes the corresponding symmetrical oligothiophenes 8 in an average isolated yield of 68 %, which equals a yield of 88 % per bond
- 50 forming step. The electronic properties of the oligothiophene derivatives $\mathbf{6}$, 8, 10, and 12 were thoroughly studied by UV/vis and fluorescence spectroscopy (Table 1, Figure 2 and 3). Most strikingly, large Stokes shifts $\Delta \tilde{v}$ are observed for all 55 representatives. In addition, the fluorescence quantum yields
- Φ_f were determined with coumarin 1 ($\Phi_f = 0.73$) as a standard. Expectedly, the absorption maxima $\lambda_{max,abs}$ of the oligothiophenes 6 are blueshifted by 2700-7600 cm⁻¹ in comparison to the bands of the analogous oligothiophenes 8. 60 Only the oligothiophenes 6 can be finetuned in their absorption behavior by the electronic nature of the remote terminal substituents, displaying $\lambda_{max,abs}$ in the range from 307 to 359 nm. In contrast the absorption maxima $\lambda_{max,abs}$ of the analogous oligothiophenes 8 are found around 395 nm. 65 Interestingly, all compounds 6 and 8 display emission maxima
- around 445 nm, independent of both the ligation and the substitution pattern. The common structural feature of all oligothiophene derivatives is the conjugated terthienyl moiety symmetrically substituted with ethyl carboxvlate
- 70 functionalities 6 and 8. It can be concluded that the vibrationally relaxed excited state structures of both series are geometrically very similar, presumably, other than in the electronic ground state, with extended coplanarity of all three thienvl units. Since significant deviations from coplanarity are
- 75 known for 2,5-linked oligothiophenes with sterically crowded substituents causing a twisting of the conjugated backbone,¹⁵ it is obvious that second redshifted emission shoulders are detected around 471 nm for the systems 8 (Figure 2). The occurrence of this additional redshifted emission might indeed 80 arise from a planarized excited state geometry with increased overall delocalization and thereby lowering the vibrationally

relaxed excited state.

20

Published on 20 March 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40124C

Downloaded by Pennsylvania State University on 20 March 2013

Downloaded by Pennsylvania State University on 20 March 2013

Figure 1 Symmetrically substituted oligothiophenes 6, 8, 10, and 12 synthesized by consecutive pseudo-five-component Sonogashira alkynylation-Fiesselmann cyclocondensation synthesis (all yields are isolated yields after chromatographic purification).

Table 1 Selected absorption and emission data of the compounds 6,5 8, 10, and 12.

Entry	Compound	Absorption ^[a] $\lambda_{max,abs}$ [nm] (ϵ , M ⁻¹ cm ⁻¹)	Emission ^[b] $\lambda_{\max,em} [nm]$ $(\Phi_{f})^{[c]}$	Stokes shift $\Delta \tilde{v}^{[d]} [cm^{-1}]$
1	6a	340 (54800)	443 (0.08)	6800
2	6b	328 (51500)	442 (0.09)	7900
3	6c	344 (63800)	445 (0.11)	6600
4	6d	305 (42300)	444 (0.07)	10300
5	6e	307 (43300)	445 (0.10)	10100
6	6f	321 (55500)	449 (0.10)	8900
7	6g	359 (21500)	440 (0.08)	5100
8	8a	398 (30900)	449, 472 (<0.01)	2900
9	8b	396 (42200)	449, 472 (<0.01)	3000
10	8c	397 (35300)	450, 472 (<0.01)	3000
11	8d	395 (30800)	449, 470 (<0.01)	3000
12	8e	395 (42000)	451, 473 (<0.01)	3100
13	8f	395 (41300)	446, 470 (<0.01)	2900
14	10a	318 (42000)	396 (<0.01)	6200
15	10b	328 (43200)	408 (<0.01)	6000
16	12a	361 (43000)	404, 425 (<0.01)	2900
17	12b	347 (37300)	408, 428 (<0.01)	4300
[a]			2 [6]	

^[a] Recorded in CH₂Cl₂, T = 293 K, $c_0 = 10^{-3}$ M. ^[b] Recorded in CH₂Cl₂, T = 293 K, $c_0 = 10^{-6}$ M. ^[c] Fluorescence quantum yields were determined relative to Coumarin 1 ($\Phi_f = 0.73$) as a standard in ethanol. ^[d] $\Delta \tilde{v} = 1/\lambda_{max,abs} - 1/\lambda_{max,em}$ [cm⁻¹].

Figure 2 Normalized absorption (solid line) and emission spectra (dotted line) of compound **8c** (recorded in CH₂Cl₂, T = 293 K, $\lambda_{max,exc}$ 397 nm).

¹⁵ Likewise, the phenylene bridged dumbbells 12, obtained from 1,4-diethynyl benzene (11), display two emissions (around 405 and 425 nm) as the thienyl bridged systems 8, whereas the emission of the dumbbells 10 behaves similarly to the oligothiophenes 6 and only possess a single maximum around ²⁰ 400 nm (Table 1).

Among the synthesized series of oligothiophenes only the

derivatives **6** reveal substantial quantum yields Φ_f ranging from 7 to 11 %, whereas all other systems **8**, **10**, and **11** are only weakly fluorescent with quantum yields below 1 %.

- In comparison to their solution luminescence all ⁵ oligothiophenes display a pronounced red-shifted emission as a film and in the solid state. This effect is most remarkable for the series **6**, as illustrated for the emission of quinquethiophene **6c** in solution, in film and in solid state (Figure 3). Since packing largely influences the preferred ¹⁰ ground state conformation in favor of planarization an extended π -conjugation rationalizes the red shift of the
- emission. In addition, it is known from 2,5-linked oligothiophenes that stacking in the solid state occurs directly or via herringbone packing.¹⁶

Figure 3 Normalized absorption (solid line), and emission spectra of compound **6c** in solution (dotted line), as a film (dashed line), and as a solid (dotted-dashed line) (recorded at T = 293 K, $\lambda_{max,exc} = 344$ nm).

²⁰ With this efficient, diversity-oriented synthetic access to oligothiophenes in hands the stage was set for various post-MCR modifications. Here, we particularly focused on the α,ω -functionalization of quinquethiophenes. Provided with functional groups, e.g. for further ligation, these bifunctional ²⁵ π -systems can represent valuable building blocks for the synthesis of organic materials.

The terminal dibromation of the oligothiophenes **4a** and **6c** can be achieved in excellent yields with NBS as an

electrophilic brominating agent in a mixture of glacial acetic ³⁰ acid and chloroform furnishing the dibromo der Vatives^e **P3**^{line} and **14** (Scheme 5).¹⁷

By Sonogashira coupling of the dibromides 13 and 14 with the ethyl hept-6-ynoate as a coupling partner almost quantitative yields of ω, ω '-bisethoxycarboxylates 15 and 16 containing ³⁵ conjugated alkynyl moieties were obtained (Scheme 6). These functionalized oligothiophenes display intense longest

- wavelength absorption bands at 340 and 363 nm (15) and 366 nm (16), respectively. The emission maxima are comparable to the α, ω -unsubstituted precursors 4a and 6c ($\lambda_{max,em}$ around 40 445 nm) and they are found as unstructured bands around 445
- nm with fluorescence efficiencies Φ_f of 0.05 and 0.08, i.e. also comparable to **4a** and **6c**. By introducing long chain aliphatic substituents, the solubility of the targets in most organic solvents significantly increases and allows an easy processing ⁴⁵ from solution, e.g. in transesterification reactions.
 - Conclusions

In conclusion, we have disclosed an efficient consecutive pseudo-five-component synthesis of oligothiophenes, in symmetrically disubstituted terparticular and 50 quinquethiophenes and phenylene analogues in good to excellent yields. All representatives are luminescent, yet, with variable fluorescence efficiency. Furthermore, these systems can be readily modified in post-MCR transformations to valuable halogenated substrates for metal-catalyzed reactions. 55 For illustration Sonogashira coupling of dibrominated ter- and quinquethiophenes with an ω -carboethoxy functionalized alkyne furnishes ω, ω '-diesters, suitable substrates for polymerizations and enzymatic transformations. Further synthetic and photophysical studies with these building blocks 60 are currently underway.

Acknowledgments

The support of this work by CLIB graduate cluster (scholarship for M. T.) and the Fonds der Chemischen Industrie is gratefully acknowledged.

Scheme 5 Halogenation of oligothiophenes 4a and 6c via NBS bromination.

Published on 20 March 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40124C

15

Downloaded by Pennsylvania State University on 20 March 2013

Downloaded by Pennsylvania State University on 20 March 2013

Scheme 6 Diterminal functionalization of the dibromides 13 and 14 by Sonogashira coupling.

45

Experimental

General considerations

5 All reactions involving palladium-copper catalysis were performed in degassed oxygen-free solvents under an argon atmosphere in sealed reaction vessels. All starting materials were purchased from Aldrich, Fluka, Merck, Acros or ABCR and used without further purification. Solvents were dried by the solvent purification system: MBraun MB 10 SPS-800. Column chromatography: silica gel 60 (Merck, Darmstadt), mesh 230-400, Biotage SP-4. TLC: silica gel plates (60 F254 Merck, Darmstadt). ¹H, ¹³C and DEPT NMR spectra were recorded with a 500 MHz NMR spectrometer by using CDCl₃ and DMSO-d₆ as solvent. The assignments of quaternary C, CH, CH₂ and CH₃ have 15 been made by using DEPT spectra. IR: Perkin-Elmer Lambda 3. UV/vis and fluorescence: Perkin-Elmer Model Lambda 16 and LS-55. Mass spectra were recorded with quadruple spectrometer. Elemental analyses were carried out in the microanalytical laboratory of the Pharmazeutisches Institut of the Heinrich-Heine-Universität 20 Düsseldorf.

General Procedure (GP) for the pseudo-five-component Sonogashira alkynylation - Fiesselmann cyclocondensation of thiophene-2,5-dicarbonyl dichloride (5) with alkyne 2 to give 25 oligothiophenes 6

Pd(PPh₃)₄ (92 mg, 0.08 mmol), CuI (30 mg, 0.16 mmol), and dry THF (15 mL) were successively placed in the reaction vessel under nitrogen at room temp and stirred for 5 min. After the addition of thiophene-2,5-dicarbonyldichloride (5) (209 mg, 1.00 mmol), the ³⁰ alkyne **2** (3.00 mmol), and triethylamine (223 mg, 2.20 mmol) the reaction mixture was stirred at room temp for 4 h (for experimental details see Table 2). Then, ethanol (2 mL), ethyl 2-mercapto

- acetate (3) (300 mg, 2.50 mmol), and DBU (533 mg, 3.50 mmol) were successively added at 0 °C and the solution was stirred for 20 h ³⁵ and allowed to come to room temp. For workup, the volatiles were removed under reduced pressure. The crude product was extracted
- three times with a mixture of CH_2Cl_2 and aqueous 1M HCl. The combined organic layers were dried with anhydrous MgSO₄, absorbed on celite[®], and purified by automated column chromatography on fine
- ⁴⁰ silica gel (*n*-hexane/THF, gradient: 20 % to 35 %, 15 column volumes, 100 g) to give the compounds **6** as yellow to orange solids. Further purification can easily be achieved by recrystallization from ethanol.

 Table 2 Experimental details for the synthesis of the oligothiophenes

 6.

entry	alkyne 2 [mg] (mmol)	oligothiophene 6 [mg] (yield)
1	396 (3.00) of 2a	327 (74 %) of 6a
2	348 (3.00) of 2b	452 (81 %) of 6b
3	324 (3.00) of 2c	312 (76 %) of 6c
4	360 (3.00) of 2d	385 (68 %) of 6d
5	410 (3.00) of 2e	399 (84 %) of 6e
6	481 (3.00) of 2f	393 (61 %) of 6f
7	198 (3.00) of 2g	337 (74 %) of 6g

Diethyl 5,5''-bis(4-methoxyphenyl)-[3,2':5',3''-terthiophene]-50 2,2''-dicarboxylate (6a)

According to the GP 327 mg (74 %) of **6a** were obtained as orange solid; mp 145 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.37 (t, *J* = 7.1 Hz, 6 H), 3.85 (s, 6 H), 4.35 (q, *J* = 7.1 Hz, 4 H), 6.95 (d, *J* = 8.9 Hz, 4 H), 7.39 (s, 2 H), 7.60 (d, *J* = 8.8 Hz, 4 H), 7.62 (s, 2 H). ¹³C NMR

- 55 (125 MHz, CDCl₃): δ = 14.3 (2 CH₃), 55.3 (2 CH₃), 61.1 (2 CH₂), 114.5 (CH), 124.0 (CH), 125.7 (C_{quat}), 126.0 (CH), 127.5 (C_{quat}), 129.2 (C_{quat}), 137.5 (C_{quat}), 140.5 (C_{quat}), 148.2 (C_{quat}), 160.4 (C_{quat}), 162.0 (C_{quat}). MALDI MS *m/z* (%): 604 ([M], 85), 559 ([M] − C₂H₅O, 100). IR (KBr): \tilde{v} [cm⁻¹] 2959 (w), 2930 (w), 2862 (w), 1699 (s),
- ⁶⁰ 1605 (m), 1541 (w), 1504 (m), 1464 (m), 1427 (m), 1416 (m), 1292 (w), 1236 (s), 1177 (s), 1101 (s), 1074 (s), 1032 (s), 866 (w), 808 (s), 758 (m), 704 (w), 658 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) 340 nm (54800). Emission (CH₂Cl₂): λ_{max} (Stokes shift) 443 nm (6800 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f = 0.08$. Anal. calcd. for C₃₂H₂₈O₆S₃ ⁶⁵ (604.8): C 63.55, H 4.67; Found: C 63.36, H 4.82.

Diethyl 3,2'-5',3''-terthiophene-5,5''-bis(*p*-tolyl)-2,2''dicarboxylate (6b)

According to the GP 452 mg (81 %) of **6b** were obtained as yellow solid; mp 134 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.40 (t, *J* = 7.1 70 Hz, 6H), 2.41 (s, 6H), 4.37 (q, *J* = 7.1 Hz, 4H), 7.25 (d, *J* = 7.9 Hz,

- 4H), 7.48 (s, 2H), 7.58 (d, J = 8.1 Hz, 4H), 7.65 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.5$ (2 CH₃), 21.4 (2 CH₃), 61.3 (2 CH₂), 124.7 (2 C_{quat}), 126.2 (4 CH), 126.7 (2 CH), 129.3 (2 CH), 129.9 (4 CH), 130.3 (2 C_{quat}), 137.6 (2 C_{quat}), 139.3 (2 C_{quat}), 140.5 (2 C_{quat}),
- $_{75} 148.5 (2 C_{quat}), 162.1 (2 C_{quat}). MALDI MS: m/z (%) = 572 ([M], 75), \\ 527 ([M] C_2H_5O, 100). IR (KBr): <math>\tilde{v} \ [cm^{-1}] = 3021 (w), 2984 (w), \\ 2905 (w), 2866 (w), 1699 (m), 1609 (w), 1545 (w), 1504 (m), 1466 \end{cases}$

View Article Online

(w), 1427 (m), 1387 (w), 1348 (w), 1273 (w), 1231 (s), 1184 (m), 1157 (w), 1105 (s), 1078 (m), 1043 (w), 1016 (m), 962 (w), 941 (w), 876 (w), 806 (s), 785 (m), 692 (w). UV/Vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 328$ nm (51500). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 442 nm (7900 5 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f = 0.09$. Anal. calcd. for C₃₂H₂₈O₄S₃ (572.8): C 67.10, H 4.93; Found: C 66.99, H 5.01.

Diethyl [2,2':4',2'':5'',3''':5''',2''''-quinquethiophene]-2''',5'dicarboxylate (6c)

According to the GP 312 mg (76 %) of **6c** were obtained as yellow ¹⁰ solid; mp 141 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.37 (t, *J* = 7.1 Hz, 6 H), 4.35 (q, *J* = 7.1 Hz, 4 H), 7.07 (dd, *J* = 5.0 Hz, *J* = 3.7 Hz, 2 H), 7.33 (m, 4 H), 7.35 (s, 2 H), 7.61 (s, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.3 (2 CH₃), 61.2 (2 CH₂), 124.2 (2 C_{quat}), 125.5 (2 CH), 126.4 (2 CH), 127.1 (2 CH), 128.2 (2 CH), 129.3 (2 CH), 135.8 (2 ¹⁵ C_{quat}), 137.2 (2 C_{quat}), 140.2 (2 C_{quat}), 141.3 (2 C_{quat}), 161.7(2 C_{quat}).

MALDI MS m/z (%): 556 ([M], 88), 511 ([M] – C₂H₅O, 100). IR (KBr): \tilde{v} [cm⁻¹] 2977 (w), 1710 (s), 1701 (s), 1655 (w), 1638 (w), 1551 (w), 1509 (w), 1474 (w), 1434 (m), 1387 (w), 1232 (s), 1104 (m), 1076 (m), 1019 (w), 805 (m), 758 (m), 733 (m), 690 (m). UV/vis 20 (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 344$ nm (63800). Emission (CH₂Cl₂): λ_{max} (Stokes shift) 445 nm (6600 cm⁻¹). Emission (film): λ_{max} (Stokes shift) 481 nm (8300 cm⁻¹). Emission (solid): λ_{max} (Stokes shift) 512 nm (9500 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f = 0.11$. Anal. calcd. for

 $C_{26}H_{20}O_4S_5 \ (556.8): C \ 56.09, H \ 3.62; Found: C \ 56.17, H \ 3.76.$

25 Diethyl 3,2'-5',3''-terthiophene-5,5''-bis(*m*-fluorophenyl)-2,2''-dicarboxylate (6d)

According to the GP 385 mg (68 %) of 6d were obtained as yellow solid; mp 144 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.39 (t, J = 7.1 Hz, 6H), 4.37 (q, J = 7.1 Hz, 4H), 7.04 - 7.11 (m, 2H), 7.33 - 7.47 ³⁰ (m, 6H), 7.50 (s, 2H), 7.63 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (2 CH₃), 61.5 (2 CH₂), 113.3 (d, ${}^{2}J = 23.0$ Hz, 2 CH₂), 116.0 (d, $^{2}J = 21.2$ Hz, 2 CH), 122.0 (d, $^{4}J = 2.8$ Hz, 2 CH), 125.9 (2 CH), 127.7 (2 CH), 129.5 (2 CH), 130.9 (d, ${}^{3}J$ = 8.2 Hz, 2 CH), 135.1 (d, ${}^{3}J$ = 8.2 Hz, 2 C_{quat}), 137.5 (2 C_{quat}), 140.4 (2 C_{quat}), 146.7 (2 C_{quat}), 35 161.9 (2 C_{quat}), 162.3 (d, ${}^{1}J = 247.1$ Hz, 2 C_{quat}). MALDI MS: m/z (%) = 580 ([M], 85), 535 ([M] - C₂H₅O, 100). IR (KBr): \tilde{v} [cm⁻¹] = 2988 (w), 2940 (w), 2901 (w), 2874 (w), 1717 (m), 1611 (w), 1586 (m), 1557 (w), 1533 (w), 1483 (w), 1468 (w), 1445 (m), 1431 (m), 1389 (w), 1354 (w), 1244 (s), 1188 (w), 1175 (m), 1160 (m), 1109 (m), 40 1076 (m), 1049 (w), 1016 (m), 997 (w), 964 (w), 845 (m), 831 (m), 804 (m), 772 (m), 756 (m), 706 (w), 677 (m). UV/vis (CH₂Cl₂): λ_{max} (ε) = 305 nm (42300). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 444 nm (10300 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f = 0.07$. Anal. calcd. for C₃₀H₂₂F₂O₄S₃ (580.7): C 62.05, H 3.82; Found: C 61.89, H 3.91.

45 Diethyl 5,5''-bis(4-chlorophenyl)-[3,2':5',3''-terthiophene]-2,2''-dicarboxylate (6e)

According to the GP 399 mg (84 %) of **6e** were obtained as orange solid; decomposition at 130 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.38 (t, *J* = 7.1 Hz, 6 H), 4.35 (q, *J* = 7.1 Hz, 4 H), 7.40 (d, *J* = 8.6

- ⁵⁰ Hz, 4 H), 7.46 (s, 2 H), 7.59 (d, J = 8.6 Hz, 4 H), 7.63 (s, 2 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.3$ (CH₃), 61.3 (CH₂), 125.4 (c_{quat}), 127.2 (CH), 127.3 (CH), 129.3 (CH), 129.3 (CH), 131.4 (C_{quat}), 135.0 (C_{quat}), 137.3 (C_{quat}), 140.3 (C_{quat}), 146.7 (C_{quat}), 161.7 (C_{quat}). MALDI MS *m*/*z* (%): 614 ([³⁷Cl-³⁵Cl-M], 100), 569 ([³⁷Cl-³⁵Cl-M] - C₂H₅O, 00) III (*V*(*P*)): 6[55 (*r*)] 120.22 (*r*)) 1715 (*r*) 1682 (*r*)) 1555 (*r*)) 1490
- ⁵⁵ 90). IR (KBr): ṽ [cm⁻¹] 2982 (w), 1715 (s), 1682 (m), 1555 (w), 1489 (m), 1468 (w), 1429 (m), 1269 (m), 1240 (s), 1182 (m), 1094 (s),

1076 (s), 1013 (m), 893 (w), 816 (s), 797 (m), 756 (m) 692 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) 307 nm (43300). Emission (CH₂Cl₂): λ_{max} (Stokes shift) 445 nm (10100 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f =$ 60 0.10. Anal. calcd. for C₃₀H₂₂Cl₂O₄S₃ (613.6): C 58.72, H 3.61; Found: C 58.53, H 3.55.

Diethyl 3,2'-5',3''-terthiophene-5,5''-bis(*p*-(methoxycarbonyl)phenyl)-2,2''-dicarboxylate (6f)

According to the GP 393 mg (61 %) of **6f** were obtained as orange solid; decomposition at 173 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.38 (t, ³*J* = 7.1 Hz, 6H), 3.94 (s, 6H), 4.36 (q, *J* = 7.1 Hz, 4H), 7.58 (s, 2H), 7.64 (s, 2H), 7.73 (d, *J* = 8.2 Hz, 4H), 8.09 (d, *J* = 8.2 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (2 CH₃), 52.4 (2 CH₃), 61.6 (2 CH₂), 126.1 (4 CH), 126.4 (2 C_{gual}), 128.20 (2 CH), 129.5 (2

- To CH), 130.4 (2 C_{quat}), 130.6 (4 CH), 137.1 (2 C_{quat}), 137.4 (2 C_{quat}), 140.5 (2 C_{quat}), 146.6 (2 C_{quat}), 161.8 (2 C_{quat}), 166.6 (2 C_{quat}). MALDI MS: m/z (%) = 660 ([M], 75), 615 ([M] C₂H₅O, 100). IR (KBr): \tilde{v} [cm⁻¹] = 2982 (w), 2955 (w), 2359 (w), 2330 (w), 1717 (m), 1701 (m), 1605 (w), 1503 (w), 1447 (w), 1425 (w), 1410 (w), 1366 (w),
- ⁷⁵ 1315 (w), 1279 (m), 1233 (m), 1184 (m), 1101 (s), 1082 (m), 1067 (m), 1045 (m), 1016 (m), 961 (w), 934 (w), 883 (w), 847 (m), 824 (m), 768 (s), 735 (w), 692 (m), 656 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) = 321 nm (55500). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 449 nm (8900 cm⁻¹). Quantum yield (CH₂Cl₂): Φ_f = 0.10. Anal. calcd. for ⁸⁰ C₃₄H₂₈O₈S₃ (660.8): C 61.80, H 4.27; Found: C 61.60, H 4.22.

Diethyl 3,2'-5',3''-terthiophene-5,5''-bis(cyclopropyl)-2,2''dicarboxylate (6g)

According to the GP 337 mg (74 %) of **6g** were obtained as yellow solid, mp 47 °C. ¹H NMR (500 MHz, CDCl₃): δ = 0.79 – 0.84 (m, ss 4H), 1.07 – 1.11 (m, 4H), 1.33 (t, *J* = 7.1 Hz, 6H), 2.08 (ddd, *J* = 13.3, 8.4, 5.0 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 4H), 6.96 (s, 2H), 7.53 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ = 10.9 (2 CH₂), 11.8 (2 CH₃), 14.4 (2 CH), 61.0 (4 CH₂), 122.4 (2 C_{qual}), 127.1 (2 CH), 129.1 (2

CH), 137.6 (2 C_{quat}), 139.9 (2 C_{quat}), 154.1 (2 C_{quat}), 162.0 (2 C_{quat}). 90 MALDI MS: m/z (%) = 472 ([M], 75), 427 ([M] - C₂H₅O, 100). IR

- $\begin{array}{l} (\text{KBr}): \ \tilde{v} \ [\text{cm}^{-1}] = 3082 \ (\text{w}), \ 2980 \ (\text{w}), \ 2936 \ (\text{w}), \ 2903 \ (\text{w}), \ 2870 \ (\text{w}), \ 1703 \ (\text{m}), \ 1549 \ (\text{w}), \ 1524 \ (\text{w}), \ 1477 \ (\text{w}), \ 1452 \ (\text{m}), \ 1435 \ (\text{w}), \ 1371 \ (\text{m}), \ 1229 \ (\text{s}), \ 1198 \ (\text{m}), \ 1186 \ (\text{m}), \ 1171 \ (\text{m}), \ 1094 \ (\text{s}), \ 1069 \ (\text{m}), \ 1022 \ (\text{m}), \ 962 \ (\text{w}), \ 937 \ (\text{w}), \ 941 \ (\text{w}), \ 874 \ (\text{m}), \ 829 \ (\text{m}), \ 808 \ (\text{m}), \ 760 \ \end{array}$
- ⁹⁵ (m), 719 (w), 694 (w), 665 (w), 640 (w). UV/vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) =$ 359 nm (21500). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 440 nm (5100 cm⁻¹). Quantum yield (CH₂Cl₂): $\Phi_f = 0.08$. Anal. calcd. for C₂₄H₂₄O₄S₃ (472.6): C 60.99, H 5.12; Found: C 60.18, H 5.26.

General Procedure (GP) for the pseudo-five-component ¹⁰⁰ Sonogashira alkynylation - Fiesselmann cyclocondensation of 2,5-diethynylthiophene (7) with acid chloride 1 to give oligothiophenes 8

The TMS protected thiophene-2,5-dialkyne¹⁸ (277 mg, 1.00 mmol), KOH (27 µL of a 0.5 m aqueous KOH solution) and dry MeOH ¹⁰⁵ (5.4 mL) were successively placed in a reaction vessel under nitrogen and exclusion of light at room temperature and stirred for 30 min. After the addition of 5.4 mL of water the solution was extracted three times with 50 mL *n*-hexane. The combined organic layers were dried with anhydrous MgSO₄ and the volatile components were removed ¹¹⁰ under reduced pressure. In the meantime Pd(PPh₃)₄ (92 mg, 0.08 mmol), CuI (30 mg, 0.16 mmol), and dry THF (2 mL) were successively placed in another reaction vessel under nitrogen at room

6 | Journal Name, [year], [vol], 00-00

Downloaded by Pennsylvania State University on 20 March 2013

temp and stirred for 5 min. After the addition of the acid chloride **1** (3.00 mmol) and triethylamine (223 mg, 2.20 mmol) the previously deprotected 2,5-diethynylthiophene (7) was dissolved in 8 mL of THF and added dropwise over 15 min (for experimental details see 5 Table 3). The reaction mixture was stirred for another 4 h at room

- temp. Then, ethanol (2 mL), ethyl 2-mercapto acetate (3) (300 mg, 2.50 mmol), and DBU (533 mg, 3.50 mmol) were successively added and the solution was stirred for 20 h at 70 $^{\circ}$ C. For workup, the volatile components were removed under reduced pressure. The crude
- ¹⁰ product was extracted three times with a mixture of CH₂Cl₂ and aqueous 1M HCl. The combined organic layers were dried with anhydrous MgSO₄, absorbed on celite[®], and purified by automated column chromatography on fine silica gel (n-hexane/THF, gradient: 20 % to 35 %, 15 column volumes, 100 g) to give the compounds **8** as ¹⁵ yellow to orange solids. Further purification can easily be achieved

by recrystallization from ethanol. **Table 3** Experimental details for the synthesis of the oligothiophenes

8 .			
entry	acid chloride 1	oligothionhene 8	

entry	acid chloride 1 [mg] (mmol)	oligothiophene 8 [mg] (yield)
1	440 (3.00) of 1a	411 (74 %) of 8a
2	464 (3.00) of 1b	269 (47 %) of 8b
3	314 (3.00) of 1c	398 (84 %) of 8c
4	476 (3.00) of 1d	322 (57 %) of 8d
5	590 (3.00) of 1e	526 (83 %) of 8e
6	362 (3.00) of 1f	307 (61 %) of 8f

Diethyl 2,2'-5',2''-terthiophene-4,4''-bis(*p*-^tbutylphenyl)-5,5''-²⁰ dicarboxylate (8a)

According to the GP 411 mg (74 %) of **8a** were obtained as orange solid; mp 185 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.27 (t, *J* = 7.1 Hz, 6H), 1.37 (s, 18H), 4.26 (q, *J* = 7.1 Hz, 4H), 7.17 (s, 2H), 7.24 (s, 2H), 7.44 (s, 8H). ¹³C NMR (125 MHz, CDCl³): δ = 14.3 (2 CH₃), 25 31.5 (6 CH₃), 34.8 (2 C_{quat}), 61.2 (2 CH₂), 125.0 (4 CH), 125.5 (2 C_{quat}), 126.2 (2 CH), 128.2 (2 CH), 129.0 (4 CH), 132.5 (2 C_{quat}), 136.8 (2 C_{quat}), 140.5 (2 C_{quat}), 149.5 (2 C_{quat}), 151.3 (2 C_{quat}), 61.9 (2 C_{quat}). MALDI MS: *m/z* (%) = 657 ([M], 100). IR (KBr): $\tilde{\nu}$ [cm⁻¹] = 3063 (w), 2955 (m), 2922 (m), 2853 (m), 2687 (w), 1709 (m), 1614 ³⁰ (w), 1510 (w), 1466 (m), 1433 (m), 1362 (m), 1256 (s), 1221 (m), 1202 (m), 1190 (m), 1126 (m), 1101 (m), 1074 (m), 1049 (m), 1022 (m), 970 (w), 905 (m), 870 (w), 822 (m), 783 (s), 760 (m), 746 (m), 729 (w), 706 (w), 689 (w), 671 (w), 631 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) = 398 nm (30900). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 449 ³⁵ nm (2900 cm⁻¹), 472 nm. Anal. calcd. for C₃₈H₄₀O₄S₃ (656.9): C

 $_{35}$ nm (2900 cm), 472 nm. Anal. calcd. for $C_{38}H_{40}O_4S_3$ (656.9): 69.48, H 6.14; Found: C 69.87, H 6.60.

Diethyl 2,2'-5',2''-terthiophene-4,4''-bis(p-tolyl)-5,5''dicarboxylate (8b)

- According to the GP 269 mg (47 %) of **8b** were obtained as orange ⁴⁰ solid; mp 149 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.28 (t, *J* = 7.1 Hz, 6H), 2.41 (s, 6H), 4.25 (q, *J* = 7.1 Hz, 4H), 7.15 (s, 2H), 7.24 (s, 2H), 7.23 (d, *J* = 9.4 Hz, 4H), 7.39 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.3 (2 CH₃), 21.5 (2 CH₃), 61.2 (2 CH₂), 125.5 (2 C_{quat}), 126.2 (2 CH), 128.1 (2 CH), 128.7 (4 CH), 129.2 (4
- ⁴⁵ CH), 132.5 (2 C_{quat}), 136.8 (2 C_{quat}), 138.2 (2 C_{quat}), 140.5 (2 C_{quat}), 149.6 (2 C_{quat}), 161.9 (2 C_{quat}). MALDI MS: m/z (%) = 572 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 3078 (w), 3024 (w), 2980 (w), 2918 (w), 2857 (w), 2718 (w), 1715 (m), 1682 (m), 1616 (w), 1545 (w), 1512

(w), 1468 (w), 1433 (m), 1366 (m), 1260 (s), 1225 (m), 1188 (m), 50 1155 (w), 1107 (m), 1072 (m), 1022 (m), 935 (w), 905 (w), 806 (w), 833 (m), 799 (m), 781 (m), 758 (m), 718 (w), 667 (m), 631 (w). UV/vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 396$ nm (42200). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 449 nm (3000 cm⁻¹), 472 nm. Anal. calcd. for C₃₂H₂₈O₄S₃ (572.8): C 67.10, H 4.93; Found: C 67.06, H 5.04.

55 Diethyl 2,3'-5',2''-5'',2'''-4''',2''''-quinquethiophene-2',5'''dicarboxylate (8c)

According to the GP 398 mg (84 %) of **8c** were obtained as orange solid; mp 174 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.36 (t, *J* = 7.1 Hz, 6H), 4.33 (q, *J* = 7.1 Hz, 4H), 7.10 (dd, *J* = 5.1 Hz, *J* = 3.7 Hz, 60 2 H), 7.24 (s, 2 H), 7.30 (s, 2 H), 7.40 (dd, *J* = 5.1 Hz, *J* = 1.0 Hz, 2 H), 7.61 (dd, *J* = 3.7 Hz, *J* = 1.0 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (2 CH₃), 61.5 (2 CH₂), 124.9 (2 C_{quat}), 126.4 (2 CH), 126.9 (2 CH), 127.3 (2 CH), 127.8 (2 CH), 129.3 (2 CH), 135.9 (2 C_{quat}), 136.5 (2 C_{quat}), 140.4 (2 C_{quat}), 140.8 (2

- 65 C_{quat}), 161.7 (2 C_{quat}). MALDI MS: m/z (%) = 556 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 3092 (w), 2984 (w), 2928 (w), 2907 (w), 1709 (s), 1676 (s), 1547 (w), 1479 (w), 1462 (w), 1443 (s), 1422 (s), 1373 (m), 1310 (w), 1340 (w), 1273 (s), 1248 (s), 1233 (s), 1175 (w), 1125 (w), 1107 (s), 1078 (S), 1067 (m), 1043 (m), 1022 (w), 1011 (w), 856
- ⁷⁰ (w), 818 (m), 799 (s), 756 (m), 683 (s), 658 (w). UV/vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 397 \text{ nm} (35300)$. Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 450 nm (3000 cm⁻¹), 472 nm. Anal. calcd. for C₂₆H₂₀O₄S₅ (556.8): C 56.09 H 3.62; Found: C 55.89 H 3.91.

Diethyl 2,2'-5',2''-terthiophene-4,4''-bis(*p*-fluorophenyl)-5,5''-75 dicarboxylate (8d)

According to the GP 322 mg (57 %) of **8d** were obtained as yellow solid; mp 193 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.27 (t, *J* = 7.1 Hz, 6H), 4.25 (q, *J* = 7.1 Hz, 4H), 7.13 (s, 2H), 7.08 – 7.12 (m, 4H), 7.25 (s, 2H), 7.43 – 7.50 (m, 4H) ¹³C NMR (125 MHz, CDCl₃): δ = 80 14.3 (2 CH₃), 61.3 (2 CH₂), 114.9 (d, 4 CH), 126.0 (2 C_{quat}), 126.3 (2 CH), 127.9 (2 CH), 131.1 (d, 4 CH), 131.4 (d, 2 C_{quat}), 136.7 (2 C_{quat}), 140.7 (2 C_{quat}), 148.3 (2 C_{quat}), 161.8 (2 C_{quat}), 163.8 (2 C_{quat}). MALDI MS: *m/z* (%) = 580 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 3071 (w), 3001 (w), 2980 (w), 2934 (w), 2874 (w), 2361 (w), 2330 (w), 1713 (m),

(m), 2500 (m), 2501 (m), 2601 (m), 2601 (m), 2601 (m), 2600 (m), 1715 (m), 85 1678 (m), 1601 (w), 1528 (w), 1499 (m), 1476 (w), 1435 (m), 1425 (m), 1377 (m), 1327 (w), 1287 (m), 1263 (s), 1234 (m), 1223 (m), 1188 (w), 1159 (m), 1123 (m), 1096 (m), 1076 (m), 1020 (m), 957 (w), 934 (w), 822 (m), 799 (m), 787 (m), 758 (m). UV/vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 395$ nm (30800). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 90 449 nm (3000 cm⁻¹), 470 nm. Anal. calcd. for C₃₀H₂₂F₂O₄S₃ (580.7): C 62.05, H 3.82; Found: C 61.91, H 4.08.

Diethyl 2,2'-5',2''-terthiophene-4,4''-bis(^tbutyl)-5,5''dicarboxylate (8e)

According to the GP 526 mg (83 %) of **8e** were obtained as yellow ⁹⁵ solid; decomposition at 126 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.38 (t, *J* = 7.1, 6 H), 1.49 (s, 18 H), 4.32 (q, *J* = 7.1, 4 H), 7.17 (d, *J* = 1.8, 4 H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (2 CH₃), 30.3 (6 CH₃), 35.2 (2 C_{quat}), 61.3 (2 CH₂), 125.7 (2 C_{quat}), 125.8 (2 CH), 126.1 (2 CH), 136.8 (2 C_{quat}), 139.4 (2 C_{quat}), 159.5 (2 C_{quat}), 162.0 (2 ¹⁰⁰ C_{quat}). MALDI MS: *m/z* (%) = 504 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 2959 (w), 2947 (w), 2907 (w), 2870 (w), 1699 (m), 1526 (w), 1460 (w), 1447 (w), 1412 (m), 1391 (m), 1362 (m), 1248 (m), 1391 (m), 1362 (m), 1248 (m), 1231 (s), 1206 (m), 1159 (m), 1115 (w), 1067 (s), 1013 (m), 941 (m), 858 (w), 835 (m), 785 (m), 762 (m), 675 (m). UV/vis (CH₂Cl₂): $\lambda_{max} (\varepsilon) = 395$ nm (42000). Emission (CH₂Cl₂): λ_{max} $(\text{Stokes shift}) = 451 \text{ nm} (3100 \text{ cm}^{-1}), 473 \text{ nm}.$ Anal. calcd. for C₂₆H₂₀O₄S₅ (556.8): C 61.87, H 6.39; Found: C 61.91, H 6.39.

Diethyl 2,2'-5',2"-terthiophene-4,4"-bis(cyclopropyl)-5,5"-5 dicarboxylate (8f)

According to the GP 307 mg (61 %) of 8f were obtained as yellow solid; mp 142 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.60-0.90$ (m, 4 H), 1.00-1.10 (m, 4 H), 1.38 (t, ${}^{3}J$ = 7.1 Hz, 6 H), 2.90-3.10 (m, 2 H), 4.35 (q, ${}^{3}J = 7.1$ Hz, 4 H), 6.59 (s, 2 H), 7.13 (s,

- ¹⁰ 2 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 10.5$ (4 CH₂), 10.9 (2 CH), 14.5 (2 CH₃), 61.0 (2 CH₂), 121.4 (2 CH), 125.0 (2 C_{quat}), 125.9 (2 CH), 136.7 (2 Cquat), 140.9 (2 Cquat), 154.2 (2 Cquat), 162.9 (2 Cquat). MALDI MS: m/z (%) = 472 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 3063 (w), 2990 (w), 2938 (w), 2903 (w), 1697 (m), 1670 (m), 1547 (m),
- 15 1524 (w), 1476 (w), 1443 (m), 1383 (m), 1364 (w), 1342 (m), 1281 (m), 1227 (s), 1186 (m), 1113 (w), 1084 (s), 1051 (m), 1016 (m), 974 (m), 862 (m), 802 (s), 760 (m), 689 (w), 654 (m). UV/vis (CH₂Cl₂): λ_{max} (ε) = 395 nm (41300). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 446 nm (2900 cm⁻¹), 470 nm. Anal. calcd. for C₂₄H₂₄O₄S₃ (472.6): C 20 60.99, H 5.12; Found: C 60.75, H 5.03.

General Procedure (GP) for the pseudo-five-component Sonogashira alkynylation - Fiesselmann cyclocondensation of terephthaloyl dichloride (9) with alkyne 2 give to oligothiophenes 10

25 Pd(PPh₃)₄ (92 mg, 0.08 mmol) and CuI (30 mg, 0.16 mmol) were successively placed in the reaction vessel under nitrogen at room temp. After the addition of terephthaloyl dichloride (9) (203 mg, 1.00 mmol), the alkyne 2 (3.00 mmol) and triethylamine (5 mL) the reaction mixture was stirred at 90 °C for 1 h (for experimental details 30 see Table 4). Then, ethanol (2 mL), THF (2 mL), ethyl 2-mercapto acetate (3) (300 mg, 2.50 mmol), and DBU (533 mg, 3.50 mmol) were successively added at 0 °C and the solution was stirred for 20 h and allowed to come to room temp. For workup, the volatile components were removed under reduced pressure. The crude product 35 was extracted three times with a mixture of CH₂Cl₂ and aqueous 1M HCl. The combined organic layers were dried with anhydrous MgSO4, absorbed on celite®, and purified by automated column chromatography on fine silica gel (n-hexane/THF, gradient: 20 % to

Published on 20 March 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40124C

Downloaded by Pennsylvania State University on 20 March 2013

35 %, 15 column volumes, 100 g) to give the compounds 10 as 40 yellow to orange solids. Further purification can easily be achieved by recrystallization from ethanol.

Table 4 Experimental details for the synthesis of the oligothiophenes 10

entry	alkyne 2 [mg] (mmol)	oligothiophene 10 [mg] (yield)
1	232 (3.00) of 2b	269 (49 %) of 10a
2	324 (3.00) of 2c	208 (38%) of 10b

Diethyl 3,3'-(1,4-phenylene)bis(5,5'-p-tolylthiophene-2,2'-45 carboxylate) (10a)

According to the GP 269 mg (49 %) of 10a were obtained as white solid; decomposition at 228 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.30 (t, J = 7.1 Hz, 6H), 2.40 (s, 6H), 4.28 (q, J = 7.1 Hz, 4H), 7.21 -7.26 (m, 4H), 7.32 (s, 2H), 7.52 - 7.61 (m, 8H). ¹³C NMR (125 MHz, ⁵⁰ CDCl₃): δ = 14.3 (2 CH₃), 21.4 (2 CH₃), 61.1 (2 CH₂), 125.6 (2 C_{quat}),

126.1 (4 CH), 127.1 (2 CH), 128.8 (4 CH), 129.9 (4 CH), 130.6 (2

Cquat), 135.6 (2 Cquat), 139.1 (2 Cquat), 148.7 (2 Cquat), 149.1 (2 Cqu 162.2 (2 C_{quat}). MALDI MS: m/z (%) = 566 ([M], 100). IR (KBr): v $[cm^{-1}] = 2963$ (w), 2901 (w), 2857 (w), 2361 (w), 1800 (w), 1715

55 (m), 1607 (w), 1551 (w), 1495 (w), 1443 (m), 1350 (w), 1246 (m), 1231 (m), 1207 (m), 1184 (m), 1128 (m), 1103 (m), 1080 (m), 1043 (m), 1018 (m), 962 (w), 895 (w), 827 (w), 812 (s), 795 (m), 760 (m), 692 (w). UV/vis (CH₂Cl₂): λ_{max} (ϵ) = 318 nm (42000). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 396 nm (6200 cm⁻¹). Anal. calcd. for 60 C₃₄H₃₀O₄S₂ (566.7); C 72.06, H 5.34; Found: C 70.25, H 5.14.

Diethyl 3,3'-(1,4-phenylene)bis(5,5'-(2-thienyl)-2,2'carboxylate) (10b)

According to the GP 208 mg (38 %) of 10b were obtained as white solid; decomposition at 199 °C. ¹H NMR (500 MHz, CDCl₃): δ =

- $_{65}$ 1.30 (t, J = 7.1 Hz, 6 H), 4.27 (q, J = 7.1 Hz, 4 H), 7.10 7.05 (m, 2 H), 7.21 (s, 2 H), 7.32 (d, J = 4.4 Hz, 4 H), 7.55 (s, 4 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.3$ (2 CH₃), 61.2 (2 CH₂), 125.3 (2 C_{quat}), 125.4 (2 CH), 126.3 (2 CH), 127.8 (2 CH), 128.3 (2 CH), 128.9 (4 CH), 135.4 (2 Cquat), 136.3 (2 Cquat), 141.6 (2 Cquat), 149.0 (2 Cquat),
- 70 162.0 (2 C_{quat}). MALDI MS: m/z (%) = 550 ([M], 100). IR (KBr): \tilde{v} $[cm^{-1}] = 3387$ (w), 3111 (w), 3073 (w), 2974 (w), 2928 (w), 2853 (w), 1715 (m), 1557 (w), 1497 (w), 1449 (m), 1423 (m), 1368 (m), 1260 (s), 1227 (m), 1198 (m), 1155 (w), 1126 (m), 1105 (m), 1074 (s), 1049 (m), 1020 (m), 910 (w), 847 (m), 808 (m), 758 (m), 685 (s), 658 75 (m). UV/vis (CH₂Cl₂): λ_{max} (ε) = 328 nm (43200). Emission

 (CH_2Cl_2) : λ_{max} (Stokes shift) = 408 nm (6000 cm⁻¹). Anal. calcd. for C34H30O4S2 (566.7): C 61.06, H 4.03; Found: C 61.26, H 4.28.

General Procedure (GP) for the pseudo-five-component Sonogashira alkynylation - Fiesselmann cyclocondensation of 80 1,4-diethynyl benzene (11) with acid chloride 1 to give oligothiophenes 12

Pd(PPh₃)₄ (92 mg, 0.08 mmol), CuI (30 mg, 0.16 mmol), and dry THF (10 mL) were successively placed in the reaction vessel under nitrogen at room temp and stirred for 5 min. After the addition of 1,4-85 diethynyl benzene (9) (126 mg, 1.00 mmol), the respective acid

chloride 1 (3.00 mmol) and triethylamine (223 mg, 2.20 mmol) the reaction mixture was stirred at 80 °C for 4 h (for experimental details see Table 5). Then, ethanol (2 mL), ethyl 2-mercapto acetate (3) (300 mg, 2.50 mmol), and DBU (533 mg, 3.50 mmol) were 90 successively added and the solution was stirred for another 20 h at 80 °C. For workup, the volatile components were removed under

reduced pressure. The crude product was extracted three times with a mixture of CH₂Cl₂ and aqueous 1M HCl. The combined organic layers were dried with anhydrous MgSO4, absorbed on celite[®], and 95 purified by automated column chromatography on fine silica gel (nhexane/THF, gradient: 20 % to 45 %, 15 column volumes, 100 g) to give the compounds 12 as yellow to orange solids. Further purification can easily be achieved by recrystallization from ethanol.

Table 5 Experimental details for the synthesis of the oligothiophenes 100 12.

entry	acid chloride 1 [mg] (mmol)	oligothiophene 12 [mg] (yield)
1	464 (3.00) of 1b	227 (40 %) of 12a
2	440 (3.00) of 1c	421 (79%) of 12b

8 | Journal Name, [year], [vol], 00-00

Downloaded by Pennsylvania State University on 20 March 2013

Diethyl 2,2'-(1,4-phenylene)bis(4,4'-*p*-tolylthiophene-5,5'carboxylate) (12a)

According to the GP 227 mg (40 %) of **12a** were obtained as orange solid; decomposition at 198 °C. ¹H NMR (500 MHz, CDCl₃): δ = 5 1.29 (t, J = 7.1 Hz, 6H), 2.41 (s, 6H), 4.27 (q, J = 7.1 Hz, 4H), 7.24 (d, J = 7.8 Hz, 4H), 7.33 (s, 2H), 7.41 (d, J = 8.0 Hz, 4H), 7.70 (s, 4H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.3 (2 CH₃), 21.5 (2 CH₃), 61.1 (2 CH₂), 126.2 (2 C_{quat}), 126.8 (4 CH), 127.9 (2 CH), 128.7 (4 CH), 129.2 (4 CH), 132.9 (2 C_{quat}), 133.7 (2 C_{quat}), 138.1 (2 C_{quat}), 147.2 (2 C_{quat}), 149.7 (2 C_{quat}), 162.1 (2 C_{quat}). MALDI MS: *m/z* (%) = 567 ([M], 100). IR (KBr): ṽ [cm⁻¹] = 3341 (w), 2980 (w), 2907 (w), 2864 (w), 2722 (w), 2357 (w), 2320 (w), 1678 (s), 1614 (w), 1497 (m), 1435 (m), 1412 (m), 1371 (m), 1352 (m), 1269 (s), 1242 (m), 1211 (m), 1184 (w), 1155 (w), 1132 (w), 1111 (w), 1072 (s), 1011 (m), 964 (m), 949 (w), 876 (m), 837 (s), 829 (m), 810 (s), 785 (m), 760 (m), 723 (w), 703 (m), 677 (w), 602 (w). UV/vis (CH₂Cl₂): λ_{max}

(ε) = 361 nm (43000). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 404 nm (2900 cm⁻¹), 425 nm. Anal. calcd. for C₃₄H₃₀O₄S₂ (566.7): C 72.06, H 5.34; Found: C 71.88, H 5.26.

²⁰ Diethyl 2,2'-(1,4-phenylene)bis(4,4'-(2-thienyl)-5,5'carboxylate) (12b)

According to the GP 421 mg (79 %) of 12b were obtained as orange solid; decomposition at 181 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.37 (t, J = 7.1 Hz, 6 H), 4.34 (q, J = 7.1 Hz, 4 H), 7.40 (dd, J = 5.1, 25 1.1 Hz, 2 H), 7.11 (dd, J = 5.1, 3.7 Hz, 2 H), 7.47 (s, 2 H), 7.62 (dd, J = 3.6, 1.1 Hz, 2 H), 7.70 (s, 4 H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (2 CH₃), 61.4 (2 CH₂), 125.7 (2 C_{quat}), 126.7 (2 CH), 126.8 (4 CH), 127.3 (2 CH), 127.7 (2 CH), 129.2 (2 CH), 133.5 (2 Cquat), 136.3 (2 Cquat), 140.9 (2 Cquat), 147.0 (2 Cquat), 161.9 (2 Cquat). MALDI 30 MS: m/z (%) = 550 ([M], 100). IR (KBr): \tilde{v} [cm⁻¹] = 3109 (w), 2976 (w), 2934 (w), 2851 (w), 2667 (w), 1715 (m), 1555 (w), 1504 (w), 1449 (m), 1425 (m), 1410 (m), 1279 (w), 1242 (s), 1188 (m), 1157 (w), 1130 (w), 1103 (m), 1078 (m), 1045 (m), 1020 (m), 962 (w), 854 (m), 824 (s), 795 (m), 758 (m), 694 (s), 660 (m), 625 (w). UV/vis 35 (CH₂Cl₂): λ_{max} (ϵ) = 347 nm (37300). Emission (CH₂Cl₂): λ_{max} $(\text{Stokes shift}) = 408 \text{ nm} (4300 \text{ cm}^{-1}), 428 \text{ nm}.$ Anal. calcd. for C₂₈H₂₂O₄S₄ (550.7): C 61.06, H 4.03; Found: C 61.06, H 4.26.

General Procedure (GP) for the bromination to give oligothiophenes 13 and 14

- ⁴⁰ A Schlenk vessel was charged with oligothiophene **4a**¹² or **6c** (1.00 equiv) and N-bromosuccinimide (3.00 equiv). Then acetic acid (3.35 mL per 1.00 mmol oligothiophene **4a** or **6c**) and chloroform (3.35 mL per 1.00 mmol oligothiophene **4a** or **6c**) were added and the resulting solution was stirred for 12 h at room temp under exclusion
- ⁴⁵ of light (for experimental details see Table 6). When the reaction mixture became too viscous, additional solvent was added in the same ratio. For workup, the reaction mixture was extracted three times with a mixture of CH₂Cl₂ and saturated aqueous NaHCO₃. The combined organic layers were dried with anhydrous MgSO₄ and the
- so solvent was removed at reduced pressure. Oligothiophene **13** was further purified by recrystallization from ethanol. Oligothiophene **14** was absorbed on celite[®], and purified by automated column chromatography on fine silica gel (*n*-hexane/THF, gradient: 20 % to 30 % in 10 column volumes, 100 g). Further purification can easily
- 55 be achieved by recrystallization from hexane/THF 1/1.

Table 6 Experimental details for the synthesis of the oligothiophenes13 and 14.View Article Online

entry	oligothiophene [mg] (mmol)	NBS [mg] (mmol)	dibromo oligothiophene [mg] (yield)
1	4430 (13.80) of 4a	7370 (41.40)	6060 (92 %) of 13
2	278 (0.50) of 6c	267 (1.50)	279 (78 %) of 14

Diethyl 5,5"-dibromo-2,2'-4',2"-terthiophene-5'-60 carboxylate (13)

According to the GP 6060 mg (92 %) of 13 were obtained as white solid; mp 105 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.36 (t, J = 7.1 Hz, 3 H), 4.33 (q, J = 7.1 Hz, 2 H), 6.99-7.06 (m, 3 H), 7.15 (s, 1 H), 7.32 (d, J = 3.9 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.4$ 65 (CH3), 61.6 (CH2), 113.6 (Cquat), 114.4 (Cquat), 124.7 (Cquat), 125.8 (CH), 126.8 (CH), 129.5 (CH), 130.0 (CH), 131.2 (CH), 137.2 (Cquat), 137.4 (Cquat), 139.7 (Cquat), 140.5 (Cquat), 161.7 (Cquat). EI MS (70 eV): m/z (%) = 482 (9), 481 (11), 480 ([⁸¹Br-⁸¹Br-M]⁺, 60), 479 (19), 478 $([^{81}Br^{-79}Br^{-1}M]^+, 100), 477 (11), 476 ([^{79}Br^{-79}Br^{-1}M]^+, 49), 452 (11),$ 70 450 (19), 448 (9), 435 ([⁸¹Br-⁸¹Br-M]⁺ - C₂H₅O, 10), 433 ([⁸¹Br-⁷⁹Br- $M]^{+}$ - $C_{2}H_{5}O$, 17), 431 ($[^{79}Br^{-79}Br^{-}M]^{+}$ - $C_{2}H_{5}O$, 8), 408 (24), 407 (7), 406 (42), 404 (22), 400 (10), 399 (10), 398 (9), 397 (9), 371 (12), 369 (11), 354 (13), 353 (6), 352 (11), 343 (6), 341 (7), 327 (8), 326 (13), 325 (10), 324 (11), 281 (9), 279 (6), 246 (8), 245 (13), 244 (6), 233 75 (6), 201 (19), 188 (6), 186 (9), 138 (19), 123 (7), 122 (6), 101 (6), 100 (7), 93 (7), 69 (7). IR (KBr): $\tilde{v} [\text{cm}^{-1}] = 3132$ (w), 3094 (w), 2994 (w), 2913 (w), 2872 (w). 1707 (s), 1553 (m), 1510 (m), 1479 (m), 1454 (m), 1425 (m), 1366 (m), 1252 (s), 1233 (s), 1204 (m), 1179 (w), 1155 (w), 1103 (s), 1074 (m), 1053 (w), 1018 (m), 970 (m), 878 80 (m), 826 (m), 804 (s), 773 (s), 758 (m), 733 (w), 716 (w), 658 (m), 635 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) = 319 nm (62600), 346 nm (71200). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 423 nm (5300 cm⁻

¹). Anal. calcd. for C₁₅H₁₀Br₂O₂S₃ (478.2): C 37.67, H 2.11; Found: C

85 Diethyl 5,5''''-dibromo-2,2'-4',2''-5'',3'''-5''',2'''quinquethiophene-5',2'''-dicarboxylate (14)

37.70, H 2.27.

According to the GP 279 mg (78 %) of 14 were obtained as yellow solid; decomposition at 187 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.37 (t, J = 7.1 Hz, 6 H), 4.34 (q, J = 7.1 Hz, 4 H), 7.03 (d, J = 3.9⁹⁰ Hz, 2 H), 7.06 (d, J = 3.9 Hz, 2 H), 7.27 (s, 2 H), 7.59 (s, 2 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.4$ (2 CH₃), 61.5 (2 CH₂), 113.5 (2 Cquat), 124.8 (2 Cquat) 125.7 (2 CH), 127.3 (2 CH), 129.6 (2 CH), 131.2 (2 CH), 137.2 (2 Cquat), 137.3 (2 Cquat), 140.3 (2x 2 Cquat), 161.7 (2 C_{quat}). MALDI MS: m/z (%) = 719 ([M], 5), 718 ([⁸¹Br-⁸¹Br-M], 95 20), 717 ([M], 40), 716 ([⁸¹Br-⁷⁹Br-M], 85), 715 ([M], 60), 714 ([⁷⁹Br-⁷⁹Br-M], 100), 713 ([M], 30), 712 ([M], 40), 673 ([⁸¹Br-⁸¹Br-M] - C₂H₅O, 6), 672 ([M] - C₂H₅O, 8), 671 ([⁸¹Br-⁷⁹Br-M] - C₂H₅O, 45), 670 ([M] - C₂H₅O, 20), 669 ([⁷⁹Br-⁷⁹Br-M] - C₂H₅O, 70), 668 ([M] - C₂H₅O, 5), 667 ([M] - C₂H₅O, 30), 663 ([M] - C₂H₅O, 15). IR 100 (KBr): \tilde{v} [cm⁻¹] = 2980 (w), 2934 (w), 2909 (w), 2872 (w), 2357 (w), 1709 (m), 1674 (m), 1557 (m), 1508 (m), 1474 (m), 1447 (m), 1435 (m), 1423 (m), 1379 (m), 1366 (m), 1250 (s), 1231 (s), 1177 (m), 1103 (m), 1076 (m), 1042 (m), 1018 (m), 970 (m), 878 (m), 864 (m), 829 (m), 804 (m), 779 (s), 756 (m), 714 (w), 687 (w), 662 (m), 635 105 (m). UV/vis (CH₂Cl₂): λ_{max} (ϵ) = 349 nm (49300). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 446 nm (6200 cm⁻¹). Anal. calcd. for C₂₆H₁₈Br₂O₄S₅ (714.6): C 43.70, H 2.54; Found: C 43.47, H 2,72.

Drganic & Biomolecular Chemistry Accepted Manuscrip

General Procedure (GP) for the Sonogashira coupling of the brominated oligothiophene 13 and 14 with ethyl heptynoic acid to give oligothiophene substrates 15 and 16

- A 25 mL Schlenk vessel was charged with Pd(PPh₃)₄ (58 mg, 5 0.08 mmol), CuI (19 mg, 0.10 mmol), PPh3 (26 mg, 0.10 mmol) and 1.00 mmol of the brominated oligothiophene 13 or 14 (for experimental details see Table 8). Then THF (5 mL), NEt₃ (304 mg, 3.00 mmol) and ethyl heptynoate (463 mg, 3.00 mmol) was added and the resulting solution was stirred for 12 h at 60 °C. For the
- 10 synthesis of compound 16 a five times higher amount of THF was used and the reaction was stirred for 24 h. For workup, the reaction mixture was absorbed on celite[®], and purified by automated column chromatography on fine silica gel (n-hexane/THF, gradient: 25 % to 35% in 10 column volumes, 100 g).
- 15 Table 8 Experimental details for the synthesis of the oligothiophenes 15 and 16.

entry	dibromo oligothiophene [mg] (mmol)	oligothiophene [mg] (yield)
1	478 (1.00) of 13	460 (96 %) of 15
2	715 (1.00) of 14	850 (99 %) of 16

Diethyl 5,5"-bis(7-ethoxy-7-oxohept-1-ynyl)-2,2'-4',2"terthiophene-5'-carboxylate (15)

According to the GP 460 mg (96 %) of 15 were obtained as yellow ²⁰ solid; mp 75 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (t, J = 7.1 Hz, 6 H), 1.34 (t, J = 7.1 Hz, 3 H), 1.56 – 1.72 (m, 4 H), 1.72 – 1.79 (m, 4 H), 2.35 (t, J = 7.3 Hz, 4 H), 2.47 (m, 4 H), 4.14 (q, 3J = 7.1 Hz, 4 H), 4.31 (q, J = 7.1 Hz, 2 H), 7.03 (d, J = 3.8 Hz, 1 H), 7.07 (d, J =3.9 Hz, 1 H), 7.11 (d, J = 3.8 Hz, 1 H), 7.20 (s, 1 H), 7.42 (d, J = 3.925 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 14.4 (3 CH₃), 19.7 (2 CH₂), 24.4 (2 CH₂), 28.0 (2 CH₂), 34.0 (2 CH₂), 60.5 (CH₂), 61.5 (2 CH2), 95.3 (2 Cquat), 96.3 (2 Cquat), 125.2 (CH), 127.1 (CH), 129.1 (CH), 131.2 (CH), 132.2 (CH), 135.7 (2 Cquat), 136.1 (Cquat), 140.0 (2 C_{quat}), 140.9 (2 C_{quat}), 161.7 (C_{quat}), 173.5 (2 C_{quat}). EI MS (70 eV): m/z (%) = 626 (21), 625 ([M]⁺, 39), 624 (100), 581 (9), 580 (18), 579 (49), 578 (15), 551 (11), 536 (8), 509 (10), 491 (9), 478 (10), 477 (21), 231 (13), 218 (9), 217 (9), 203 (10), 197 (8), 196 (10), 195 (8), 191 (8), 183 (9), 171 (12), 145 (9). IR (KBr): $\tilde{v} \text{ [cm}^{-1}\text{]} = 2976 \text{ (w)},$ 2934 (w), 2903 (w), 2870 (w), 2220 (w), 1728 (w), 1705 (m), 1555 35 (w), 1506 (w), 1470 (w), 1447 (w), 1418 (w), 1368 (w), 1312 (w), 1252 (s), 1229 (s), 1177 (m), 1103 (s), 1071 (m), 1047 (w), 1020 (m), 945 (w), 876 (w), 829 (w), 810 (w), 787 (s), 756 (m), 735 (w), 662 (w). UV/vis (CH₂Cl₂): λ_{max} (ε) = 340 nm (33200), 363 nm (34000). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 442 nm (4900 cm⁻¹). Anal.

40 calcd. for C33H36O6S3 (624.8): C 63.43, H 5.81; Found: C 63.34, H 6.08.

Diethyl 5,5""-bis(7-ethoxy-7-oxohept-1-ynyl)-2,2'-4',2"-5",3"'-2"',2"''-quinquethiophene-5',2"'-dicarboxylate (16)

According to the GP 850 mg (99 %) of 16 were obtained as orange 45 solid; mp 68 °C. ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (t, J = 7.1 Hz, 6 H), 1.36 (t, J = 7.1 Hz, 6 H), 1.72 – 1.61 (m, 4 H), 1.87 – 1.73 (m, 4 H), 2.36 (t, J = 7.3 Hz, 4 H), 2.48 (t, J = 6.9 Hz, 4 H), 4.14 (q, J = 7.1 Hz, 4 H), 4.34 (q, J = 7.1 Hz, 4 H), 7.04 (d, J = 3.8 Hz, 2 H), 7.14 (d, J = 3.8 Hz, 2 H), 7.30 (s, 2 H), 7.58 (s, 2 H). ¹³C NMR (125 MHz, 50 CDCl₃): δ = 14.4 (2 CH₃), 14.4 (2 CH₃), 19.7 (2 CH₂), 24.4 (2 CH₂),

28.0 (2 CH₂), 34.0 (2 CH₂), 60.5 (2 CH₂), 61.5 (2 CH₂), 74.0 (2 C_{quat}),

96.2 (2 C_{quat}), 124.6 (2 C_{quat}), 125.2 (2 CH), 125.2 (2 CH), 127.3 (2 CH), 129.5 (2 CH), 132.2 (2 C_{quat}), 135.8 (2 C_{quat}), 137.3 (2 C_{quat}), 137.3 (2 C_{quat}), 140.3 (2 Cquat), 140.8 (2 Cquat), 161.8 (2 Cquat), 173.5 (2 Cquat). EI MS

- 55 (70 eV): m/z (%) = 862 (27), 861 ([M]⁺, 36), 860 (77), 815 (15), 710 (30), 709 (40), 708 (100), 663 (14), 295 (17), 294 (23), 287 (14), 281 (14), 275 (15), 269 (17), 260 (17), 88 (15), 85 (15), 69 (14), 57 (17), 55 (27), 45 (13), 44 (31), 43 (23), 41 (23). IR (KBr): \tilde{v} [cm⁻¹] = 2976 (w), 2934 (w), 2905 (w), 2868 (w), 2837 (w), 1730 (s), 1707 (s),
- 60 1682 (m), 1557 (m), 1510 (m), 1478 (m), 1460 (m), 1427 (m), 1373 (m), 1352 (m), 1271 (m), 1252 (s), 1231 (s), 1175 (s), 1148 (m), 1105 (s), 1074 (m), 1022 (m), 937 (w), 864 (w), 801 (s), 756 (m), 650 (m). UV/vis (CH₂Cl₂): λ_{max} (ε) = 366 nm (65400). Emission (CH₂Cl₂): λ_{max} (Stokes shift) = 447 nm (5100 cm⁻¹). Anal. calcd. for $C_{44}H_{44}O_8S_5$ 65 (861.1): C 61.37, H 5.15; Found: C 61.22, H 5.15.

Notes and references

Lehrstuhl für Organische Chemie, Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany. Fax: ++49 (0)211 70 8114324; Tel: ++49 (0)211 8112298; E-mail: <u>ThomasJJ.Mueller@uni-</u>

duesseldorf.de

[†] Electronic Supplementary Information (ESI) available: Spectra (¹H NMR, ¹³C NMR, UV/vis, fluorescence) of compounds 6, 8, 10 and 12-16.

- S. Gronowitz, In "Thiophene and Its Derivatives", Part 1, S. 75 1 Gronowitz, ed, Wiley & Sons, New York, 1985, 88.
- Canagliflozin: E. C. Chao, Drugs of the Future, 2011, 36, 351; DS-1: K. A. Wafford, M. B. Van Niel, Q. P. Ma, E. Horridge, M. B. Herd, D. R. Peden, D. Belelli and J. J. Lambert, Neuropharmacology, 2009,
- 56,182; Eprosartan: L. Ruilope, B. Jäger and B. Prichard, Blood Press, 2001, 10, 223; Gacyclidine: H. Hirbec, M. Gaviria and J. Vignon, CNS Drug Reviews, 2001, 7, 172; Indiplon: R. E. Petroski, J. E. Pomeroy, R. Das, H. Bowman, W. Yang, A. P. Chen and A. C. Foster, J. Pharmacol. Exp. Ther., 2006, 317, 369; Rivaroxaban: S. Roehrig, A. Straub, J. Pohlmann, T. Lampe, J. Pernerstorfer, K.-H. Schlemmer, P. Reinemer and E. Perzborn, J. Med. Chem., 2005, 48, 5900; Rotigotine: V. Bertaina-Anglade, C. D. La Rochelle and D. K. Scheller, Eur. J. Pharmacol., 2006, 548, 106.
- R. Otero, J. M. Gallego, A. L. Vázquez de Parga, N. Martín and R. Miranda, Adv. Mater., 2011, 23, 5148-5176; X. Zhao and X. Zhan, Chem. Soc. Rev., 2011, 40, 3728-3743; Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953-1010; G. Barbarella, M. Melucci and G. Sotgiu, Adv. Mater., 2005, 17, 1581-1593; A. Mishra, C.-Q. Ma and P. Bäuerle, Chem. Rev., 2009, 109, 1141-1276; D. Fichou, In " Handbook of Oligo- and Polythiophenes", D. Fichou, ed, Wiley-VCH GmbH & Co. KGaA, Weinheim, 1999; K. Müllen, In "Electronic Materials: The Oligomer Approach", K. Müllen and G. Wegner, eds, Wiley-VCH GmbH & Co. KGaA, Weinheim, 1998; S. Hotta, In "Handbook of Organic conducting Molecules and Polymers", Vol. 2, H.S. Nalwa, ed, Wiley, Chichester, U.K., 1997, 100 309.
- K. S. Yook and J. Y. Lee, Adv. Mater., 2012, 24, 3169-3190; C. 4 Zhong, C. Duan, F. Huang, H. Wu and Y. Cao, Chem. Mater., 2011, 23, 326-340; F. Geiger, M. Stoldt, H. Schweizer, P. Bäuerle and E. Umbach, Adv. Mater., 1993, 5, 922; D. Fichou, J. Mater. Chem., 105 2000, 10, 571; U. Mitschke and P. Bäuerle, J. Mater. Chem., 2000, 10, 1471; I. F. Perepichka, D.F. Perepichka, H. Meng and F. Wudl, Adv. Mater., 2005, 17, 2281.
- C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Chem. Rev., 2012, 112(4), 2208-67; G. Horowitz, D. Fichou, X. Peng, Z. Xu and F. Garnier, Solid State Commun., 1989, 72, 381; F. Garnier, G. Horowitz, X. Peng and D. Fichou, Adv. Mater., 1990, 2, 592; F. Garnier, R. Hajlaoui, A. Yassar and P. Srivastava, Science, 1994, 265, 1684; H. Sirringhaus, T. Kawase, R. Fried, T. Shimoda, M. 115 Inbasekaran, W. Wu and E. Woo, Science, 2000, 290, 2123; B. S. Ong, Y. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc., 2004, 126,

Downloaded by Pennsylvania State University on 20 March 2013

60

3378; C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch and C. J. Brabec, *Adv. Mater.*, 2003, **15**, 2084.

- 6 H. J. Son, F. He, B. Carsten and L. Yu, J. Mater. Chem., 2011, 21, 18934-18945; A. Facchetti, Chem. Mater., 2011, 23, 733–758; K.
- Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold and P. Bäuerle, *Adv. Mater.*, 2006, 18, 2872–2875; N. Noma, T. Tsuzuki and Y. Shirota, *Adv. Mater.*, 1995, 7, 647-648.
- 7 E. Nasybulin, I. de Albuquerque and K. Levon, *Electrochimica Acta* 2012, **63**, 341-345.
- N. Noma, T. Tsuzuki and Y. Shirota, *Adv. Mater.*, 1995, 7, 647–648.
 T. J. J. Müller and D. M. D'Souza, *Pure Appl. Chem.*, 2008, 80, 609-620; T. J. J. Müller, In "Functional Organic Materials. Syntheses, Strategies, and Applications", T. J. J. Müller and U. H. F. Bunz, eds, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007, 179.
- D. M. D'Souza and T. J. J. Müller, *Chem. Soc. Rev.*, 2007, **36**, 1095-1108;
 B. Willy and T. J. J. Müller, *Arkivoc*, 2008, 195-208;
 D. M. D'Souza and T. J. J. Müller, *Nature Protoc.*, 2008, **3**, 1660-1665;
 B. Willy and T. J. J. Müller, *Curr. Org. Chem.*, 2009, **13**, 1777-1790;
 T. J. J. Müller, *Top. Heterocycl. Chem.*, 2010, **25**, 25;
 T. J. J. Müller, *Synthesis*, 2012, **44**, 159-174.
- 11 C. Muschelknautz, C. Dostert and T. J. J. Müller, Synlett, 2010, 415-418; D. Urselmann, D. Antovic and T. J. J. Müller, Beilstein J. Org. Chem., 2011, 7, 1499–1503.
- 12 M. Teiber and T. J. J. Müller, *Chem. Commun.*, 2012, **48**, 2080–2082.
- For Fiesselmann thiophene synthesis, see: R. J. Mullins and D. R. Williams, In "Name Reactions in Heterocyclic Chemistry", J. J. Li, E. J. Corey, eds, Wiley & Sons, Hoboken, NJ, 2005, 184; H. Fiesselmann and P. Schipprak, *Chem. Ber.*, 1954, **87**, 835; H. Fiesselmann, P. Schipprak and L. Zeitler, *Chem. Ber.*, 1954, **87**, 841;
 - Fiesselmann, P. Schipprak and L. Zeitler, *Chem. Ber.*, 1954, **87**, 841;
 H. Fiesselmann and G. Pfeiffer, *Chem. Ber.*, 1954, **87**, 848;
 H.

Fiesselmann and F. Thoma, *Chem. Ber.*, 1956, **89**, 1907; H. Fiesselmann and P. Schipprak, *Chem. Ber.*, 1956, **89**, Vi897Article Online

- For Fiesselmann thiophene syntheses from alkynones, see: D.
 Obrecht, F. Gerber, D. Sprenger and T. Masquelin, *Helv. Chim. Acta*, 1997, 80, 531; M. T. Herrero, I. Tellitu, E. Dominguez, S. Hernandez, I. Moreno and R. SanMartin, *Tetrahedron*, 2002, 58, 8581.
- I. F. Perepichka, In "Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics", I. F. Perepichka and D. F. Perepichka, eds, John Wiley & Sons, Ltd, Chichester, UK, 2009; D. Fichou, In "Handbook of Oligo- and Polythiophenes", D. Fichou, ed, Wiley-VCH GmbH & Co. KGaA, Weinheim, 1999, 128-129; H. Bässler, Electronic Excitation, In "Electronic Materials: The Oligomer Approach", K. Müllen and G. Wegner, eds, Wiley-VCH GmbH & Co. KGaA, Weinheim, 1998.
 - 16 S. Nagamatsu, K. Kaneto, R. Azumi, M. Matsumoto, Y. Yoshida and K. Yase, J. Phys. Chem., 2005, 109, 9374-9378; R. Azumi; M. Goto; K. Honda and M. Matsumoto, Bull. Chem. Soc. Jpn., 2003, 76, 1561-
- 1567; J. Chisaka, M. Lu, S. Nagamatsu, M. Chikamatsu, Y. Yoshida, M. Goto, R. Azumi, M. Yamashita and K. Yase, *Chem. Mater.*, 2007, 19, 2694-2701; I. F. Perepichka, In "Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics", I. F. Perepichka and D. F. Perepichka, eds, John Wiley & Sons, Ltd, Chichester, UK, 2009, 602-620.
 - 17 An analogous iodination with NIS was not sufficiently selective.
- 18 P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim, W. Yuan, C. Y. K. Chan, N. Xie, Q. Hu, K. K. L. Cheuk and B. Zhong Tang, *Macromolecules*, 2011, 44, 5977-5986.