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Reactions of 2�fluoro�3�methylbuta�1,3�diene with diazomethane in ether at 15 °C and
with diazocyclopropane generated in situ by decomposition of N�cyclopropyl�N�nitrosourea in
the presence of K2CO3 in CH2Cl2 at –10 °C selectively involve the double bond at the methyl
group to give 3�(1�fluorovinyl)�3�methylpyrazolines. Thermal dediazotization of the latter at
250 °C yields 1�(1�fluorovinyl)�1�methylcyclopropane and �spiropentane 5, which are capable
of isomerizing, under more severe conditions (400—600 °C), into 1�fluoro�2�methylcyclopent�
1�ene and 5�fluoro�4�methylspiro[2.4]hept�4�ene (7), respectively. Spiropentane derivative 5
partially isomerizes into 1�fluoro�2�methyl�3�methylidenecyclohex�1�ene. In a similar way,
thermolysis of 6�(2,3,3�trifluorocyclobut�1�enyl)�4,5�diazaspiro[2.4]hept�4�ene at 400 °C gives
a mixture of 1�(spiropentyl)�2,3,3�trifluorocyclobut�1�ene and 2,3,3�trifluoro�1�(2�methyl�
idenecyclobutyl)cyclobut�1�ene. Thermolysis of 1�cyclopropyl�2,3,3�trifluorocyclobut�1�ene
at 550—620 °C affords a mixture of 1�(trifluorovinyl)cyclopentene and 2,3�difluorotoluene.

Key words: fluorovinylcyclopropanes, fluorovinylpyrazolines, trifluorocyclobutenes,
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Fluorinated vinylcyclopropanes,1—4 which can isomer�
ize into fluorine�containing cyclopentenes, are of certain
interest as fluorine�containing starting material. The pres�
ence of fluorine atoms in the cyclopropane fragment can
reduce the energy of activation of the vinylcycloprop�
ane→cyclopentene rearrangement (thus facilitating it)2—4

or even change the direction of the reaction compared
to analogous nonfluorinated structures.4 The effect of
F atoms in the vinyl group of vinylcyclopropanes on their
thermal transformations has not been discussed to date.

In the present work, we studied 1,3�dipolar cyclo�
addition of diazomethane and diazocyclopropane to
2�fluoro�3�methylbuta�1,3�diene, which affords the cor�
responding pyrazolines, and thermal dediazotization of
the pyrazolines obtained and previously synthesized 6�
(2,3,3�trifluorocyclobut�1�enyl)�4,5�diazaspiro[2.4]hept�
4�ene.5 Deeper thermolysis of (fluorovinyl)cyclopropanes,
spiropentanes, and 1�cyclopropyl�2,3,3�trifluorocyclobut�
1�ene5 were also investigated.

The reaction of 2�fluoro�3�methylbuta�1,3�diene (1)
with diazomethane in ether (15 °C, 3 days) selectively
involves the methylated double bond to give 3�(1�fluoro�
vinyl)�3�methylpyrazoline (2) in ~95% yield. In the ole�
fin range, its 1H NMR spectrum contains no signals other
than for protons of a fluorovinyl group with characteris�

tic spin�spin coupling constants (JH,F�cis = 17.7 and
JH,F�trans = 49.9 Hz). The N atom is attached to the me�
thylated carbon atom, which follows from the 1H NMR
signals for the CH2—CH2 fragment included in the five�
membered ring of the resulting pyrazoline (3J = 7.7 Hz).
According to the data on the highest reactivity of elec�
tron�deficient double bonds in 1,3�dipolar cycloaddition,6

the observed regioselective addition of diazoalkanes sug�
gests that the α�fluorovinyl group in diene 1 exhibit elec�
tron�withdrawing properties relative to the isopropenyl
fragment.

The reaction of fluorobutadiene 1 with diazocyclo�
propane (generated in situ by decomposition of N�cyclo�
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propyl�N�nitrosourea in the presence of an equimolar
mixture of KOH and K2CO3 in CH2Cl2 at –5 °C) also
involves the methylated double bond to highly regio�
selectively give 6�(1�fluorovinyl)�6�methyl�4,5�diaza�
spiro[2.4]hept�4�ene (3) in ~40% yield. The presence of
the quaternary C atoms at the endocyclic azo group makes
this compound very stable and capable of being distilled
in vacuo (0.1 Torr). It should be noted that the reactions
of 2�methylbutadiene with both diazomethane7 and
diazocyclopropane8 involve the nonsubstituted double
bond; in the latter case, the resulting 1�pyrazoline is very
labile.

Because 1�pyrazolines are known to easily undergo
thermal decomposition to give cyclopropanes and/or cor�
responding isomeric olefins,9 we studied the thermolysis
of pyrazolines 2 and 3 with the aim of obtaining fluoro�
vinylcyclopropanes. Pyrolysis was carried out by passing
the vapor of pyrazoline with argon through a quartz tube
packed with quartz (atmospheric pressure, T > 250 °C).

It turned out that the thermolysis of pyrazoline 2 pro�
ceeds smoothly at 250—260 °C to give 1�(1�fluorovinyl)�
1�methylcyclopropane (4) in up to 85% yield, its isomeric
compounds being virtually absent. The spectroscopic char�
acteristics of compound 4 fully agree with the sample
prepared by catalytic cyclopropanation of fluorobutadiene
1 with diazomethane in the presence of Pd(acac)2.10

Under analogous thermolysis conditions, the conver�
sion of spirocyclopropane�containing pyrazoline 3 is also
fairly high; however, considerable resinification arises, in
contrast to pyrazoline 2. Nevertheless, the major volatile
product is 1�(1�fluorovinyl)�1�methylspiropentane (5)
(yield up to 51%), which was structurally identified by 1H
and 13C NMR spectroscopy (see Experimental).

Subsequent transformations of vinylcyclopropanes 4
and 5 require very drastic conditions, especially for
compound 4 (its high conversion was reached only at
580—600 °C). Under these conditions, the isomerization
of compound 4 mainly gives the expected volatile 1�fluoro�
2�methylcyclopentene (6); however, its yield is only 22%.

The isomerization of vinylspiropentane 5 proceeds vir�
tually completely at 390—400 °C; the major volatile prod�
ucts are 5�fluoro�4�methylspiro[2.4]hept�4�ene (7) and
1�fluoro�2�methyl�3�methylidenecyclohex�1�ene (8) (to�
tal yield was 65—68%; 7 : 8 ≈ 5 : 1). Compound 7 was
isolated by preparative GLC (98% purity); compound 8
was enriched to ~85%. The structures of the fluoro�
cycloalkenes obtained were determined from 1H, 13C,
and 19F NMR spectra. Both compounds contain the
FC=CMe fragment; the spectra of compound 7 show

characteristic high�field signals for the spirocyclopropane
fragment, while the spectra of compound 8 show sig�
nals for the methylidene fragment and three alicyclic
CH2�group. The thermolysis of vinylspiropentane 5 at
430—440 °C gives a more complex mixture containing
o�xylene (~10%) and a number of unidentified com�
pounds. The total yield of compounds 7 and 8 decreases
to ~50% and the ratio of 7 : 8 is ~2.6 : 1).

The formation of spiroheptene 7 is due to a vinylcyclo�
propane→cyclopentene rearrangement, which is analo�
gous to the isomerization of isopropenylspiropentane into
5�methylspiro[2.4]hept�4�ene at 235—275 °C.11 The mi�
nor product 8 (~11%) seems to form as a result of the
rearrangement of the spiropentane fragment in compound
5 to the corresponding methylidenecyclobutane 9, which
is probably unstable at 380—400 °C and isomerizes into
the more stable cyclohexene 8. The thermolysis of the
latter at a higher temperature affords o�xylene via dehydro�
fluorination. Indeed, thermal isomerization of spiro�
pentanes usually leads to the corresponding methylidene�
cyclobutanes, most probably through the initial cleavage
of the C(1)—C(2) bond rather than the C(1)—C(3)
bond.11 Thus, the presence of fluorine in the vinyl frag�
ment of vinylspiropentanes radically does not affect the
direction of their isomerization.

In addition, we studied the thermolysis of 4,5�diaza�
spiro[2.4]hept�4�ene 10 obtained earlier from 2,3,3�tri�
fluoro�1�vinylcyclobut�1�ene and the in situ generated
diazocyclopropane.5 Compound 10 (~92% purity) is very
labile;5,12 however, its noticeable dediazotization occurs
only at T > 320 °C and is accompanied by intense
resinification. At 370 °C, the conversion of pyrazoline 10
is no higher than 60% and the volatile fraction of pyrolyz�
ates mainly contains the expected 2,3,3�trifluoro�1�
(spiropent�1�yl)cyclobutene (11); the yield of compound
11 from the starting pyrazoline is ~22%. At 400 °C, com�
pound 10 converts virtually completely to give spiro�
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pentane 11 and its isomer, namely, 2,3,3�trifluoro�1�
(2�methylidenecyclobutyl)cyclobut�1�ene (12) in a total
yield of ~27% (11 : 12 ≈ 2.5 : 1). The structures of prod�
ucts 11 and 12 containing the 2,3,3�trifluorocyclobutenyl
fragment were proved by 1H, 13C, and 19F NMR spectra.
The pyrolysis of pyrazoline 10 at 400 °C gives a number of
minor products; however, isomer 13 was not detected.

Unlike spiropentane 11, 1�cyclopropyl�2,3,3�tri�
fluorocyclobut�1�ene (14) is resistant to pyrolysis up
to 530 °C. Its conversion at 550 °C was ~20%, mainly
giving 1�(trifluorovinyl)cyclopent�1�ene (15) (Table 1).
Apparently, the cyclobutene ring of compound 14 under�
goes opening to give diene 16, which then isomerizes into
vinylcyclopentene 15. It should be noted that the non�
fluorinated hydrocarbon analog of compound 14, namely,
1�cyclopropylcyclobut�1�ene, is capable of selectively
isomerizing into 2�cyclopropylbuta�1,3�diene13a during
low�temperature pyrolysis (143—193 °C, static conditions)
and photolysis.13b The observed enhanced thermal stabil�
ity and high isomerization temperature of cyclopropyl�
cyclobutene 14 compared to its nonfluorinated analog
correlates with the known fact13c that introduction of fluo�
rine atoms into a cyclobutene ring significantly increases
the energy of activation of thermal cyclobutene→buta�
diene isomerization.

The thermolytic conversion of cyclobutene 14 sub�
stantially increases at 600—620 °C; however, the process
is complicated by intense resinification and the formation

of 2,3�difluorotoluene (17) (see Table 1), probably, as the
result of the opening of the cyclopropane ring in diene 16
followed by closing of a six�membered ring and its partial
dehydrofluorination.

The structure of (trifluorovinyl)cyclopentene 15 was
confirmed by 1H, 13C, and 19F NMR spectra. In particu�
lar, the trifluorovinyl fragment is manifested in the
19F NMR spectrum by signals with characteristic spin�
spin coupling constants (2JF,F = 71.0 Hz, 3JF,F�trans =
102.5 Hz, and 3JF,F�cis = 27.5 Hz). The 13C NMR data for
2,3�difluorotoluene 17 agree with those for an authentic
sample prepared according to a known procedure.14

Hence, the α�fluorovinyl fragment in vinylcyclo�
propanes and vinylspiropentanes does not impede the
vinylcyclopropane→cyclopentene rearrangement; how�
ever, this process requires sufficiently drastic conditions
(490—600 °C). Spiropentane derivatives undergo parallel
isomerization into methylidenecyclobutanes, while for
trifluorocyclobutenylcyclopropanes, which contain the
"vinylic" fragment in the four�membered carbocycle, the
primary reaction is cyclobutene→butadiene isomerization.

Experimental

1H and 13C NMR spectra were recorded on Bruker AC�200
(200 and 50.3 MHz), Bruker AM�300 (300 and 75.5 MHz), and
Bruker DRX�500 spectrometers (500 MHz) in CDCl3 with
0.05% Me4Si as the internal standard. 19F NMR spectra were
recorded on a Bruker AC�200 spectrometer (188.3 MHz); chemi�
cal shifts were referenced to CCl3F as the external standard.
Mass spectra were recorded on a Finnigan MAT INCOS�50
instrument (EI, 70 eV, RSL�200 capillary column (30 m) or
direct inlet probe). Preparative separation was carried out
in a column (180×0.6 cm) with 5% SE�30 on Chromaton
N�AW�HMDS (argon as a carrier gas, 80 mL min–1, column
temperature 45—90 °C). The starting 2�fluoro�3�methylbuta�
1,3�diene (1),10 6�(2,3,3�trifluorocyclobut�1�enyl)�4,5�diaza�
spiro[2.4]hept�4�ene (10),5 and 1�cyclopropyl�2,3,3�trifluoro�
cyclobut�1�ene (14)5 were prepared according to known proce�
dures.

3�(1�Fluorovinyl)�3�methyl�4,5�dihydro�3H�pyrazole (2).
A solution of 2�fluoro�3�methylbuta�1,3�diene (1) (0.52 g,

Table 1. Conversion of 1�cyclopropyl�2,3,3�trifluorocyclobut�
1�ene (14) and the yields of the products of its thermolysis at
different temperatures*

T/°C Conversion Yield (%) Ratio of
(%)

15 17 15 : 17

550 19 18 — —
600 95 32 17 1.9 : 1
620 100 6 38 1 : 6.4

* For the thermolysis conditions, see Experimental.
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6 mmol) and diazomethane (~23 mmol) in 10 mL of ether was
kept at 15 °C for 3 days and then passed through a layer of Al2O3
(0.5 cm). The solvent and the unconsumed reagents were re�
moved at 20 Torr to give pyrazoline 2 (0.71 g, ~93%) as a
yellowish liquid. Found (%): C, 56.17; H, 7.04; N, 21.86.
C6H9FN2. Calculated (%): C, 56.35; H, 7.13; N, 21.67. 1H NMR
(CDCl3), δ: 1.47, 1.91 (both br.dt, 1 Н each, CН2, 2J = 12.6 Hz,
3J = 7.7 Hz); 1.52 (s, Me); 4.62 (t, 2 Н, NCН2, J ≈ 7.7 Hz); 4.67
(dd, 1 H, =CH(trans), JH,F�trans = 49.8 Hz, 2J = 3.5 Hz); 4.76
(dd, 1 H, =CH(cis), JH,F�cis = 17.9 Hz, 2J = 3.5 Hz). 13C NMR
(CDCl3), δ: 21.2 (d, Me, 3JC,F ≈ 3.0 Hz); 27.3 (s, C(4)); 77.0 (s,
C(5)); 90.4 (d, =CH2, 2JC,F = 19.4 Hz); 91.4 (d, C(3); 2JC,F =
25.6 Hz); 164.9 (d, CF, 1JC,F ≈ 258 Hz). 19F NMR (CDCl3), δ:
–106.5 (dd, JH,F�trans = 49.8 Hz, JH,F�cis = 17.9 Hz). MS,
m/z (Irel (%)): 127 [M – H]+ (5), 113 [M – Me]+ (7), 99 (30),
85 (63), 79 (39), 65 (30), 58 (57), 39 (100).

6�(1�Fluorovinyl)�6�methyl�4,5�diazaspiro[2.4]hept�4�ene
(3). N�Cyclopropyl�N�nitrosourea (2.71 g, 21 mmol) was added
at –10 °C for 30 min to a vigorously stirred solution of 2�fluoro�
3�methylbuta�1,3�diene (1) (3.60 g, 42 mmol), K2CO3 (3.48 g,
25 mmol), and KOH (1.41 g, 25 mmol) in 15 mL of CН2Cl2.
Then, the reaction mixture was stirred at 0 °C for 1 h and
filtered. The filtrate was concentrated and distilled in vacuo
(Tbath 70—75 °C, 0.1 Torr) to give pyrazoline 3 (1.30 g, 40%) as
a slightly yellow oily liquid. Found (%): C, 62.23; H, 7.13;
N, 18.20. C8H11FN2. Calculated (%): C, 62.38; H, 7.24;
N, 18.08. 1H NMR (CDCl3), δ: 1.11 (m, 2 Н, Н(1) and Н(2)
oriented from the N atom of the heterocycle); 1.55 (s, 3 Н, Me);
1.62 (dd, 1 Н, Ha(7), 2J = 12.5 Hz, JH,F ≈ 1.0 Hz); 1.75 (m, 2 Н,
Н(1) and Н(2) oriented toward the N atom of the heterocycle);
2.10 (d, 1 Н, Hb(7), 2J = 12.5 Hz); 4.66 (dd, 1 Н, =CH(trans),
JH,F�trans = 49.1 Hz, 2J = 3.4 Hz); 4.76 (dd, 1 Н, =CH(cis),
JH,F�cis = 17.8 Hz, 2J = 3.4 Hz). 13C NMR (CDCl3), δ: 13.6,
14.2 (both s, CH2CH2); 22.2 (d, Me, 3JC,F ≈ 3.0 Hz); 35.3
(s, C(7)); 69.3 (s, C(3)); 90.1 (d, C(6), 2JC,F = 25.8 Hz); 90.5 (d,
=CH2, 2JC,F = 19.0 Hz); 165.1 (d, CF, 1JC,F ≈ 259 Hz). 19F NMR
(CDCl3), δ: –105.8 (dd, JH,F�trans = 49.1 Hz, JH,F�cis = 17.8 Hz).
MS, m/z (Irel (%)): 125 [M – H – N2]+ (4), 111 (33), 97 (15), 85
(22), 77 (15), 66 (12), 59 (11), 51 (27), 39 (100).

Thermal transformations of pyrazolines and vinylcyclo�
propanes (general procedure). A quartz tube (inner diameter
0.6 cm, length 18 cm, two�thirds full of small quartz) purged
with argon (~4 mL min–1) was heated in a tube microfurnace
(heating zone range ~12 cm). The heating temperature was set
and measured with an electronic thermometer, its sensor being
fixed in the central zone of the microfurnace. Test compounds
were injected with a syringe into the initial heating zone in
microportions (~1 g h–1) and thermolysis products were col�
lected in a trap cooled to –40 °C. The compositions of the
reaction mixtures were determined from GC�MS and 1H NMR
data. Then the reaction mixtures were distilled or separated by
preparative GLC and identified by conventional methods.

1�(1�Fluorovinyl)�1�methylcyclopropane (4) was obtained
from pyrazoline 2 (0.51 g, 4 mmol) at 250 °C. The yield of
compound 4 was 0.34 g (85%). The product is identical in GLC
and 1H NMR data with a sample prepared earlier by catalytic
cyclopropanation of 2�fluoro�3�methylbuta�1,3�diene (1).10

1�(1�Fluorovinyl)�1�methylspiro[2.2]pentane (5). A pyrolyz�
ate (0.66 g) obtained from pyrazoline 3 (1.31 g, 8.5 mmol)
at 260 °C was distilled at an atmospheric pressure to give
vinylspiropentane 5 (0.54 g, 51%) as a colorless liquid, b.p.

110—112 °C. Found (%): C, 76.01; H, 8.74. C8H11F. Calcu�
lated (%): C, 75.85; H, 8.52. 1H NMR (CDCl3), δ: 0.71 (ddd,
1 H, H(4), 2J = 4.1 Hz, Jtrans = 5.3 Hz, Jcis = 8.8 Hz); 0.78 (m,
1 H, H(5)); 0.89 (m, 3 H, H(4), H(5) and Ha(2)); 1.23 (s, 3 Н,
Me); 1.40 (d, 1 Н, Нb(2), 2J = 4.2 Hz); 4.23 (dd, 1 Н,
FC=CH(trans), 3JH,F�trans = 50.0 Hz, 2J = 3.0 Hz); 4.52 (dd,
1 Н, FC=CH(cis), 3JH,F�cis = 17.3 Hz, 2J = 3.0 Hz). 13C NMR
(CDCl3), δ: 4.1, 5.8 (both s, C(4), C(5)); 19.2 (d, C(2), 3JC,F =
3.7 Hz); 19.3 (d, Me, 3JC,F = 4.2 Hz); 21.3 (d, C(1), 2JC,F =
27.2 Hz); 29.1 (s, C(3)); 87.2 (d, =CH2, 2JC,F = 22.8 Hz); 168.8
(d, =CF, 1JC,F = 255 Hz). 19F NMR (CDCl3), δ: –103.9 (dd,
JH,F�trans = 50.0 Hz, JH,F�cis = 17.3 Hz). Partial MS,
m/z (Irel (%)): 125 [M – H]+ (8), 111 [M – Me]+ (43), 91 (29),
77 (19), 68 (28), 55 (27), 41 (100).

1�Fluoro�2�methylcyclopentene (6). A pyrolyzate (0.76 g)
obtained from 1�(1�fluorovinyl)�1�methylcyclopropane (4)
(3.00 g, 30 mmol) at 600 °C was distilled at an atmospheric
pressure to give fluorocyclopentene 6 (0.66 g, 22%) as a color�
less liquid, b.p. 72—74 °C (≥98% purity). 1H NMR (CDCl3), δ:
1.59 (br.s, 3 Н, Me); 1.86 (m, 2 Н, H(4)); 2.20 (m, 2 Н, H(3));
2.40 (m, 2 Н, H(5)). 13C NMR (CDCl3), δ: 10.6 (s, Me); 18.7
(d, C(4), 3JC,F = 9.3 Hz); 29.2 (d, C(5), 2JC,F = 21.7 Hz); 32.1
(d, C(3), 3JC,F = 8.1 Hz); 128.7 (d, C(2), 2JC,F = 40.7 Hz);
155.3 (d, C(1), 1JC,F ≈ 269 Hz). 19F NMR (CDCl3), δ: –131.4
(br.s.). Partial MS, m/z (Irel (%)): 99 [M – H]+ (38), 84 (48),
67 (20), 55 (32), 43 (100).

Thermolysis of 1�(1�fluorovinyl)�1�methylspiropentane (5)
(0.12 g, 0.9 mmol) at 390 °C gave a mixture (0.081 g) of 5�fluoro�
4�methylspiro[2.4]hept�4�ene (7) (~80%) and 1�fluoro�2�
methyl�3�methylidenecyclohex�1�ene (8) (16%). The total yield
of these products was ~65%. Compound 7 was isolated by pre�
parative GLC (~98% purity), while compound 8 was enriched
to ~85%. Analogously, the thermolysis of spiropentane 5 (0.12 g,
0.9 mmol) at 440 °C gave a mixture (0.074 g, ~62%) containing
spiroheptene 7 (56—58%), fluorocyclohexene 8 (~22%), o�xy�
lene (~13%), and some amounts of minor products.

Compound 7. Found (%): C, 75.61; H, 8.59. C8H11F. Calcu�
lated (%): C, 75.85; H, 8.52. 1H NMR (CDCl3), δ: 0.39, 0.62
(both m, 2 H each, H(1), H(2)); 1.26 (q, 3 Н, Me, J = 2.3 Hz);
1.90 (br.dd, 2 Н, H(7), 3J ≈ 7.4 and 7.8 Hz); 2.52 (m, 2 Н,
H(6)). 13C NMR (CDCl3), δ: 6.0 (s, Me); 9.7 (s, C(1), C(2));
26.4 (d, C(3), JC,F = 9.5 Hz); 28.0 (d, C(6), JC,F = 21.0 Hz);
30.3 (d, C(7), JC,F = 7.5 Hz); 113.0 (d, C(4), JC,F = 10.8 Hz);
153.9 (d, C(5), JC,F = 270 Hz). 19F NMR (CDCl3), δ: –126.3
(br.s). Partial MS, m/z (Irel (%)): 126 [M]+ (100), 111 [M – Me]+

(70), 109 (48), 79 (20).
Compound 8. 1H NMR (CDCl3), δ: 1.76 (q, 3 Н, Me, J =

2.2 Hz); 1.79 (m, 2 Н, H(5)); 2.32 (m, 4 Н, H(4), H(6)); 4.77,
4.82 (both m, 1 Н each, =CH2). 13C NMR (CDCl3), δ: 9.2 (d,
Me, JC,F = 8.8 Hz); 22.4 (d, C(5), JC,F = 9.2 Hz); 26.6 (d, C(6),
JC,F = 27.2 Hz); 31.6 (s, C(4)); 107.1 (d, =CH2, JC,F =10.9 Hz);
116.2 (d, C(2), JC,F =17.5 Hz); 143.8 (d, C(3), JC,F = 8.2 Hz);
159.1 (d, C(1), JC,F ≈ 262 Hz). 19F NMR (CDCl3), δ: –100.6
(br.s). Partial MS, m/z (Irel (%)): 126 [M]+ (100), 111 [M – Me]+

(85), 109 (50), 79 (43), 51 (20), 39 (50).
Thermolysis of 6�(2,3,3�trifluorocyclobut�1�enyl)�4,5�diaza�

spiro[2.4]hept�4�ene (10). A. A pyrolyzate (0.24 g) obtained
from pyrazoline 10 (0.41 g, 2 mmol) at 370 °C was distilled in
vacuo (Tbath 60—65 °C, 6 Torr) to give 2,3,3�trifluoro�1�
(spiropent�1�yl)cyclobutene (11) (72 mg, 22%; ~96% purity).
A pyrolyzate (0.11 g) obtained from compound 10 at 400 °C
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(virtually complete conversion) contained spiropentane 11
(~73%) and 2,3,3�trifluoro�1�(2�methylidenecyclobutyl)cyclo�
but�1�ene (12) (18%). The total yield of these compounds was
~27%. Compounds 11 and 12 were isolated by preparative GLC
at 90 °C.

Compound 11. Found (%): C, 61.79; H, 5.04. C9H9F3. Cal�
culated (%): C, 62.07; H, 5.21. 1H NMR (CDCl3), δ: 0.88 (m,
4 Н, CH2CH2); 1.17 (t, 1 Н, Ha(2´), 2J ≈ 3Jtrans = 4.2 Hz); 1.38
(dd, 1 Н, Hb(2´), 2J = 4.2 Hz, 3Jcis = 7.7 Hz); 2.01 (dd, 1 Н,
H(1´), Jtrans = 4.2 Hz, Jcis = 7.7 Hz); 2.46 (m, 2 Н, Н(4)).
13C NMR (CDCl3), δ: 4.9, 5.5 (both s, C(4´), C(5´)); 13.3 (q,
C(2´), JC,F = 1.8 Hz); 14.0 (q, C(1´), JC,F = 4.0 Hz); 15.8 (q,
C(3´), JC,F = 2.0 Hz); 37.0 (dt, C(4), JC,F = 19.1 and 22.5 Hz);
118.1 (td, CF2, 1JC,F = 275 Hz, 2JC,F = 26.0 Hz); 128.9 (td,
C(1), JC,F ≈ 17.0 and 6.0 Hz); 138.3 (dt, =CF, 1JC,F = 337 Hz,
2JC,F = 25.0 Hz). 19F NMR (CDCl3), δ: –111.0, –111.7
(both br.d, CF2, 2JF,F ≈ 203 Hz), –119.8 (br.s, =CF). MS,
m/z (Irel (%)): 173 [M – H]+ (1), 153 (4), 145 (25), 133 (26),
123 (23), 109 (80), 91 (35), 84 (48), 77 (20), 63 (18), 51 (35), 44
(38), 39 [C3H3]+ (100).

Compound 12. 1H NMR (CDCl3), δ: 2.06, 2.25 (both m,
1 Н each, H(4´)); 2.64 (m, 5 Н, H(4), H(1´), H(3´)); 4.82, 4.88
(both br.q, 1 Н each, =CH2). 13C NMR (CDCl3), δ: 21.5 (q,
C(4´), JC,F = 1.7 Hz); 29.8 (s, C(3´)); 36.7 (dt, C(4), JC,F ≈ 19.0
and 22.0 Hz); 39.6 (q, C(1´), JC,F = 3.8 Hz); 107.2 (s, =CH2);
118.0 (td, CF2, 1JC,F = 275 Hz, 2JC,F ≈ 25.0 Hz); 128.7 (td,
C(1), JC,F ≈ 17.0 and 6.0 Hz); 136.0 (q, C(2´), JC,F = 4.0 Hz);
139.1 (dt, =CF, 1JC,F = 338 Hz, 2JC,F = 25.0 Hz). 19F NMR
(CDCl3), δ: –112.0 (CF2); –115.7 (=CF).

Thermolysis of 1�cyclopropyl�2,3,3�trifluorocyclobut�1�ene
(14) (1.67 g, 11 mmol) at 600 °C gave a mixture (0.90 g) of
1�(trifluorovinyl)cyclopent�1�ene (15) (~60%) and 2,3�di�
fluorotoluene (17) (32%) (GLC and 1H NMR data). The data
on the thermolysis of cyclobutene 14 at 550, 600, and 620 °C are
summarized in Table 1. The spectroscopic data for 1�(tri�
fluorovinyl)cyclopentene (15) were obtained by subtracting the
signals for 2,3�difluorotoluene synthesized according to a known
procedure.14

Compound 15. 1H NMR (CDCl3), δ: 1.99 (m, 2 H, H(4));
2.51 (m, 4 Н, H(3), Н(5)); 6.02 (m, 1 H, =CH). 13C NMR
(CDCl3), δ: 23.3 (s, C(4)); 31.6 (dd, C(5), JC,F = 5.6 and 3.2 Hz);
32.6 (s, C(3)); 128.0 (ddd, =CF, 1JC,F = 233 Hz, 2JC,F = 49.5
and 18.0 Hz); 129.5 (dd, C(2), JC,F = 11.8 and 4.4 Hz); 136.5
(q, C(1), JC,F ≈ 20.0 Hz); 153.3 (ddd, =CF2, 1JC,F = 242 and
235 Hz, 2JC,F = 49.0 Hz). 19F NMR (CDCl3), δ: –102.5 (dd,
2J = 71.0 Hz, 3Jcis = 27.5 Hz) and –116.4 (dd, =CF2, 2J =
71.0 Hz, 3Jtrans = 102.5 Hz); –173.8 (dd, =CF, 3Jtrans = 102.5 Hz,
3Jcis = 27.5 Hz). MS, m/z (Irel (%)): 148 [M]+ (100), 127 (30),
97 (31), 79 (46), 67 (17), 39 (35).

Compound 17. 1H NMR (CDCl3), δ: 2.31 (m, 3 H, Me);
6.91 (m, 3 Н, Ar). 13C NMR (CDCl3), δ: 14.3 (t, Me, JC,F =
2.9 Hz); 114.5 (d, C(4), JC,F = 17.3 Hz); 123.6 (dd, C(6), JC,F =
6.6 and 5.1 Hz); 126.1 (t, C(5), JC,F = 3.5 Hz); 127.3 (d, C(1),

JC,F = 12.5 Hz); 149.4, 150.9 (both dd, C(2), C(3), 1JC,F =
246.5 Hz, 2JC,F = 12.8 Hz). 19F NMR (CDCl3), δ: –139.2,
–142.7 (both br.d, 3J = 24.5 Hz).
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