ARTICLE

A phase-switch purification approach for the expedient removal of tagged reagents and scavengers following their application in organic synthesis

Jason Siu,^a Ian R. Baxendale,^a Russell A. Lewthwaite^b and Steven V. Ley^{*a}

^a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. E-mail: svl1000@cam.ac.uk; Fax: +44 1223 336442; Tel: +44 1223 336398

^b Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, UK

Received 15th March 2005, Accepted 24th May 2005 First published as an Advance Article on the web 27th July 2005 OBC www.rsc.org/obc

In this paper we wish to report on a variety of expedient chemical transformations and purifications achieved *via* a generic 'catch and release' methodology, based on a synthetically inert bipyridyl chelating tag that can be selectively captured with a resin-bound copper(II) species. Utilising this approach we are able to derive many of the same benefits associated with both solid phase synthesis and supported reagent methods.

Introduction

The most significant productivity-limiting issue continually encountered by modern synthetic chemistry is one of product purification and isolation. This is of particular importance in combinatorial chemistry with the ever-increasing availability of automated high-throughput synthesis techniques which enable the rapid preparation and diversification of key intermediates through powerful parallel processing capabilities. As a result many of the existing methods based on conventional chromatographic separation are simply unable to match the unprecedented synthetic output emanating from current medicinal discovery programmes, thus creating an unacceptable bottleneck. Consequently, the necessity for new purification strategies' is of paramount interest not only for the continued development of this area but also as a key commercial driver in future chemical processes.

A technology which has impacted significantly on the viability of preparing both large compound arrays and also more focused target synthesis is the application of supported reagents and scavengers.¹ Encompassed within this method the technique commonly known as the 'catch and release' principle has found extensive utility as a very powerful purification protocol.² The process involves the selective binding of a specific component from the reaction mixture onto a solid matrix followed by a washing sequence to elute the impurities. The desired material is then displaced from the resin in a purified state and isolated by simple evaporation of the solvents. We have previously demonstrated³ an extension to this concept using a phaseswitch⁴ approach for the purification of key intermediates in multi-step synthetic transformations. Our premise was that a phase-separation could well be achieved by a reversible and selective interaction between a metal ion immobilised on a solid support and an organic metal-chelating "tag" linked to the molecule of interest (Scheme 1).³

As well as a versatile handle for the manipulation and temporary immobilisation of a substrate for purification, we felt that the same principle could be developed further for the generation of a novel set of soluble reagents and scavengers that may also find application in flow processes. We believed that due to the selective and tunable nature of the metal-tag interaction we could produce a complementary reagent and scavenger tool box that could offer synthetic opportunities which are not possible with existing immobilised systems. Herein we wish to report in full on the synthesis and application of these systems for the rapid preparation and purification of small molecule arrays.

Scheme 1 'Catch and release' protocol in application to tagged reagent methodology.

DOI: 10.1039/b503778f

A previous investigation into suitable binding partners³ determined a preferred system comprising an IRC-718 resin possessing iminodiacetic acid appendages which showed an optimal loading for copper(II) ions. Additionally, a functionalisable tag based on a substituted 2,2'-bipyridine scaffold showed ideal properties due to it being moderately chemically inert coupled with a high affinity for coordination to the bound copper(II) ions.⁵ This was therefore the system that was adopted for use throughout the following chemistries.

Our initial target was the preparation of a Horner–Emmons equivalent, specifically chosen because of the extensive precedent of solid-phase syntheses that have been explored.⁶ However, unlike the existing solid-phase work, because of the solution-phase nature of our reagent we envisaged a more efficient optimisation process.⁷ As in our previous publication,³ 4,4′-*bis*(hydroxymethyl)-2,2′-bipyridine 1⁸ was used as a suitable starting material: the hydroxyl groups of this molecule constitute a linker component, which can be easily decorated with various reagent or scavenger functionalities (Scheme 2).

Acylation of the bipyridine diol **1** with diethyl phosphonoacetic acid using 1,3-diisopropylcarbodiimide (DIPC) at 100 °C under microwave irradiation gave the corresponding *bis*-phosphonate reagent **2** (Horner–Emmons Reagent) in 85% isolated yield. The structure was later confirmed by X-ray crystallography (Scheme 2).⁹

Conventional heating: overnight reflux, 75% yield

Scheme 2 Preparation of the bipyridine-supported reagent 2.

The Horner–Emmons reaction was screened with a range of 31 different aldehydes using either sodium hydride or potassium *tert*-butoxide as the base to generate the phosphonium anion: in all cases, the resulting "tagged" α , β -unsaturated esters were obtained in quantitative conversion and were exclusively of the *trans* geometry (Table 1 and Table 2). Certain substrates

Table 1 Purification of Horner–Emmons products by precipitation

" Gram of resin required per mmol of substrate.

gave the corresponding products as precipitates **3a–m** which required only simple filtration to facilitate purification and isolation (Table 1). However, many of the systems produced soluble products which required purification by our sequestration methodology (Scheme 1). For these materials the *bis*-Horner–Emmons adducts **4a–u** (Table 2) were captured by the addition of the copper(II)-impregnated IRC-718 resin, which was washed extensively with DCM to remove any phosphate by-products and unreacted aldehydes. The purified diester was then released from the polymeric beads by the addition of N, N, N', N'-tetramethylethylenediamine (TMEDA) (bp 120– 122 °C) – a competitive ligand with a superior binding affinity – and the suspension shaken overnight. Filtration of the resin and concentration of the filtrate afforded the Horner–Emmons products (Table 2) in high yield and >95% purity, as established by ¹H NMR spectroscopy. In addition to the reaction with aldehydes, a small test was conducted on three ketones (Entries 19–21; Table 2) however these substrates, although again showing quantitative conversion of the tagged phosphonate, gave very low levels of selectivity in the formation of the double bond geometry, so no further effort was made to extend the investigation. It should be noted that in all these examples, both the uptake and release of the bipyridine-tethered Horner–Emmons adducts could be easily monitored by thinlayer chromatography and LC-MS.

In addition to the generation of α,β -unsaturated esters, we wished to explore the potential for the rapid diversification of these intermediates using the 'catch and release' methodology to generate a small compound set (Scheme 3). Compound 4a was chosen as the starting point because of its simple structure and easy availability. We were thus able to rapidly conduct a number of transformations including transesterification 5, 1,4addition of thiophenol 6 and nitromethane 7. a tandem Michael addition and Claisen condensation 8: heterocyclic formation with concomitant release 9; [3 + 2] cycloaddition 10 followed by aromatisation 11 and γ -lactam formation 12. Although this type of chemical processing was effective and required only minimal optimisation (compared to the analogous solidphase approach), therefore justifying a short investigation to demonstrate the proof of concept, we felt the true benefits of this tagged phase-switch approach would reside in its use as a sequesterable reagent and scavenging tool.

One of the most commonly encountered chemical transformations involving the application of scavengers is in the clean up of condensation reactions when preparing amide or sulfonamide bonds. Two alternative routes are available: 1) the direct addition of an amine to an acid halide, or 2) through the in situ activation of an acid using an activator such as EDC or DCC. We decided to investigate both of these methods by applying the method independently to each process. In the case of the first approach, an acid-functionalised resin such as Amberlyst 15 or a related sulfonic acid is normally used to remove excess amine components.¹⁰ Alternatively, a nucleophilic scavenger such as the polymer-supported trisamine or aminomethylpolystyrene is employed to facilitate removal of acidic impurities or excess acid halide.11 However, in order to attain pure material it is often necessary to combine both of these routines or subject the reaction mixture to further modification with an additive which alters one of the undesired components by inverting its electronic nature before carrying out a single generic scavenging sequence.¹² Another tactic already alluded to is the "catch-and-release" purification, however, here again problems can be encountered if the molecule of interest does not have functionalities that are distinguishable from the other unwanted components. Many of these difficulties can be overcome with the suitable selection of scavenging agent and careful control of the reaction conditions, but one significant factor remains, which is the heterogeneous nature of

Scheme 3 Compound generation based on bipyridine-supported α,β-unsaturated ester scaffold.

the sequestering reagent. This can often result in extremely slow uptake of the impurities (or intermediate in the case of the "catch-and-release" process) or the incomplete removal of the desired material without resorting to the use of very large excesses of the solid support. Our approach uses a relatively small molecular weight compound (equal to >9 mmol g⁻ functionality) which is highly soluble, easily monitored and gives excellent reaction kinetics. In this way only a modest excess (1.1 equiv.) of the tagged scavenger is required, and in addition the scavenged components are captured and purified in the process, therefore allowing easy retrieval and recycling, an important consideration when using expensive commercial or late-stage proprietary molecules. Furthermore, a simple LC-MS or TLC quickly identifies the relative proportion of functionality that has been used (or remains available), and so makes subsequent calculations based on the required amount of a scavenger involving reaction mixtures with initial unknown quantities of impurities a trivial process.

Following a simple protocol, we could carry out a standard solution-phase reaction then quench the mixture by the addition of the tagged scavenger, which rapidly reacts with the excess reagent. Subjecting the mixture to gentle shaking in the presence of the copper(II)-loaded resin then facilitates removal of the captured reagent and any residual scavenger, allowing for a direct filtration of the suspension and evaporation of the solvent to yield the purified material (Fig. 1).

To validate this protocol we used the readily available bipyridine diol 1^8 as a suitable scavenger for a selection of acid

Fig. 1 Phase-transfer scavenger sequence.

chlorides (Table 3). In order to evaluate the selective nature of the copper(II) sequestering process we specifically chose the coupling partners in the array to resemble common medicinal chemistry fragments possessing multiple basic sites that could in principle

Table 3 Results of 'catch and release' scavenging experiments using bipyridyl diol as a scavenger

Purities > 95% by LCMS and ¹H NMR

act as competitive binders to the immobilised copper(II) species. As can be seen from the isolated yields and purity, the selectivity of the process was extremely good, and no copper contamination of the reaction solutions was observed at either stage of the process (capture or release), even in the presence of an excess of the products, or TMEDA over prolonged reaction times <16 h.¹³ In a further extension of this work we also prepared the corresponding dibromo derivative **19**, which also proved a very effective scavenger for the removal of the secondary amine; tetrahydroisoquinoline in various benzylation reactions following the same principles (Table 4).

Returning to our original coupling concept, we decided to pursue the second amide-forming route by designing a bipyridine-based carbodiimide equivalent. The use of reagents such as DCC and DIC in traditional peptide synthesis is now standard practice and well documented in the literature. However, one major drawback is always the removal of the urea by-product generated during the reaction. This has been partially overcome by the development of reagents such as EDCI that have basic sites which can be scavenged by ion exchange resins or acidic aqueous work-up. Although this method works well for simple compounds, it fails when one of the coupling fragments contains additional basic functionality, as in most pharmaceutical substances. However, this problem is easily overcome by using a bipyridine-modified carbodiimide, with the removal of this species being entirely reliant on the binding coefficient of the bipyridine to the immobilised metal.

Table 4 Scavenging using bipyridyl dibromide

^{*a*} Purities >90% by LC-MS and ¹H NMR. ^{*b*} Amount of copper(II) resin required for "catching" (g mmol⁻¹).

Because of the perceived insolubility of a symmetrical 4,4'bifunctionalised carbodiimide reagent (especially the resultant urea) we opted to prepare the monosubstituted system 21 (Scheme 4). Hence a palladium-catalysed coupling of the α chloropyridine 22 and the organozinc reagent 23 under microwave irradiation gave the functionalised bipyridine 24 in excellent yield. Reduction and addition of the resultant amine 25 to cyclohexylisocyanate furnished the urea 26 which was successfully dehydrated using the polymer-supported Mukaiyama reagent 27. With the DCC equivalent 21 in hand, we coupled a small demonstration set of heterocyclic acids and amines (Table 5). The results were very encouraging, with conversion to the corresponding amides being almost quantitative, as determined by LC-MS. Likewise, extraction of the urea by-product 26 from the reaction mixture through selective sequestration with the immobilised copper(II) resin proceeded efficiently, enabling high yields of the amide products to be isolated without the need for chromatographic purification. It should be noted that during the course of this research a publication by Tye et al. reported

Scheme 4 Preparation of the DCC-supported reagent 21.

Table 5Synthesis of amides using DCC-supported reagent 21

Isolated yields"		
	HO ₂ C-	HO ₂ C N
	28a 87%	28d 83%
	28b 91%	28e 89%
N N N N N N N H ₂	28c 90%	28f 85%

" Purities >95% by LCMS and ¹H NMR.

on a similar reagent system for amide coupling reactions, also displaying a high degree of scavenging selectivity and great utility for high-throughput synthesis.¹⁴

Conclusion

In conclusion, we have developed a range of chemistries allowing rapid and efficient purification of a diverse set of compounds based on the ability to selectively sequester a chemically benign bipyridyl scaffold tag. This universal tag offers a very versatile handle for the development of many more reagents and scavengers. Many additional ligand templates and metal combinations can be envisaged, as well as additional applications in the areas of synthetic chemistry, chemical recycling and water purification.

Experimental

General

Melting points were determined on a Reichert hot-stage apparatus and are reported uncorrected. ¹H and ¹³C NMR spectra were recorded either on a Brüker DRX-600, DRX-500 or on a DPX-400 instrument with CHCl₃ (δ = 7.26) and CDCl₃ (δ = 77.0) as internal reference signals. Signals were assigned by means of DEPT and 2D spectra (COSY, HMQC, HMBC). IR spectra were recorded on a Perkin-Elmer 'Spectrum-One' spectrometer equipped with an Attenuated Total Reflectance (ATR) sampling accessory. Mass spectra and accurate mass data were recorded on a Micromass Platform LC-MS, Kratos MS890MS, Kratos Concept IH, Micromass Q-TOF or a Bruker BIOAPEX 4.7 FTICR spectrometer using electrospray (ESI) or electron impact (EI) techniques (the matrix was *m*-nitrobenzyl alcohol (NOBA)) at the Department of Chemistry, University of Cambridge: relative abundances and assignments are given in parentheses. LC-MS was performed on a Hewlett Packard HPLC 1100 chromatograph (Mercury hexylphenyl column) attached to a HP LC/MSD platform LC APCI mass spectrometer. Elution was carried out using a reverse phase gradient (flow rate 1 mL min⁻¹, 3 min, 5% MeCN, 3-5 min linear gradient to 95% MeCN, 5-6 min back to 5% MeCN, hold 5% MeCN 2 min) using acetonitrile-water both containing 0.1% TFA. Reactions were monitored by TLC on precoated glass-backed plates (Merck Kieselgel 60 F254) and visualised by UV. Optical rotations were measured on a Perkin-Elmer Model 343 polarimeter, and $[a]_{\rm D}$ values are reported in 10⁻¹ deg cm² g⁻¹; concentration (c) is in g per 100 cm³. Microanalyses were determined in the microanalytical laboratories at the Department of Chemistry, University of Cambridge using a CE-440 Elemental Analyser.

Preparation of Amberlite IRC-718 Cu(II) resin

Amberlite IRC-718 resin (iminodiacetic acid resin, as supplied by Aldrich) (50 g) was suspended in H_2O (150 cm³), and shaken for 30 min. It was filtered and washed with H_2O (500 cm³). The resin was then resuspended in a saturated solution of copper(II) sulfate (250 cm³) and shaken for 5 h. The resin was then filtered, resuspended again in a saturated solution of copper(II) (250 cm³) sulfate and shaken overnight. The resin was filtered, and washed with H_2O (500 cm³), DCM (500 cm³) and THF (500 cm³). The resulting blue resin was dried under high vacuum.

General procedure for Horner-Emmons reactions

Potassium *tert*-butoxide (1 M in THF; 480 μ L, 0.48 mmol, 1.2 equiv.) was added to a solution of bipyridine-supported phosphonate **2** (114 mg, 0.2 mmol) in THF (2.5 cm³) at 0 °C, and allowed to stir for 15 min. The specified aldehyde (0.44 mmol, 2.2 equiv.) in THF (2 cm³) was added to the reaction mixture, and the solution allowed to warm slowly to ambient temperature and stir overnight.

Work-up procedure A - the "catch-and-release" method for purification of soluble products. The reaction mixture was diluted with DCM (8 cm³), and then IRC-718 copper(II) resin (loading 1.3 mmol g^{-1} ; quantities as specified in Table 2) was added and the reaction mixture was gently shaken using a vortexing shaker. The "catching" process was monitored by both TLC and LC-MS (samples were typically left for 6-12 h). The suspended resin was filtered and washed with DCM ($5 \text{ cm}^3 \times 3$). The resin was then re-suspended in DCM (10 cm³) and TMEDA (2.5 equiv. based on the resin), and the release of the product back into solution monitored by TLC and LC-MS. The resin was then filtered, washed (5 cm³ \times 3), and the filtrate evaporated to dryness under high vacuum. The crude mixture was loaded onto a Bond Elut reservoir¹⁵ (22 mm in diameter, 1 g silica) and eluted with Et_2O-NEt_3 (1:0.1; 10 cm³ × 3). The combined filtrates were concentrated under reduced pressure to yield the corresponding Horner-Emmons products.

Work-up procedure B – direct filtration of the precipitated products. The precipitated bipyridine product was filtered and washed with diethyl ether (10 cm³), and the isolated solid dried under high vacuum.

4-Phenylazobenzoic acid 4'-(4-phenylazobenzoic acid)-[2,2']bipyridinyl-4-ylmethyl ester. Deep orange solid, 82% yield, LC retention time = 0.45 (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 72.25; H, 4.49; N, 13.29, C₃₈H₂₈N₆O₄ requires C, 72.14; H, 4.46; N, 13.28%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1714, 1656, 1599, 1445, 1364, 1269, 1133, 994, 708, 685; $\delta_{\rm H}$ (400 MHz; acetone-d₆-CDCl₃) 8.70 (2H, d, J 5 Hz, bipy H-6), 8.38 (2H, s, bipy H-3), 8.22 (4H, dd, J 7.8 Hz, Ph AA'BB'), 7.93 (4H, dd, J 7.8 Hz, Ph AA'BB'), 7.85 (4H, m, Ph-H), 7.55 (6H, m, Ph-H), 7.33 (2H, d, J 5 Hz, bipy H-5), 5.45 (bipy CH₂); $\delta_{\rm C}$ (100 MHz; CDCl₃) 167.8 (C=O), 156.8 (Ph C-4'), 156.6 (bipy C-2), 154.7 (Ph C-4), 149.9 (bipy C-6), 147.5 (bipy C-4), 133.2 (Ph C-1'), 131.7 (Ph C-1), 131.5 (Ph C-2', Ph C-6'), 128.9 (Ph C-2, Ph C-6), 124.2 (bipy C-3), 122.8, 122.6 (Ph C-3, Ph C-5), 120.1 (bipy C-5), 64.8 (bipy CH₂); *m/z* (ESI+) 633.24095 (M + H, $C_{38}H_{29}N_6O_4$ requires 633.22503); 655.2 (28%) (M + Na).

Synthesis of 4-phenylazobenzoic acid 2-nitrobenzyl ester. Deep orange solid, 78% yield, LC retention time = 0.45 (DCM–Et₂O = 1 : 1); (Found: C, 66.54; H, 4.56; N, 11.76, C₂₀H₁₅N₃O₄ requires C, 66.48; H, 4.18; N, 11.63%); $v_{max}(neat)/cm^{-1}$ 1712, 1667, 1526, 1429, 1399, 1165, 994, 839, 728; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3)$ 8.17 (2H, d, *J* 8 Hz, Ph–H), 8.12 (1H, s, Ph–H), 8.07 (2H, d, *J* 8 Hz, Ph–H), 7.99–7.45 (8H, m, Ph–H), 5.54 (benzyl CH₂); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3)$ 168.3 (C=O), 156.9 (Ph C-4'), 153.6 (Ph C-4), 146.3 (benzyl C-2), 136.2 (benzyl C-1), 135.3 (benzyl C-5), 134.5 (Ph C-1'), 131.2 (Ph C-4), 129.7 (Ph C-3, Ph C-5), 128.3 (benzyl C-6), 124.2 (benzyl C-3), 129.5 benzyl (C-4), 122.6 (Ph C-3', Ph C-5'), 130.2 (Ph C-2', Ph C-6'), 123.5 (Ph C-2, Ph C-6), 64.9 (Ph CH₂); m/z (EI+) 361.10757 (M⁺, C₂₀H₁₅N₃O₄ requires 361.10626); 361.1 (32%) (M⁺).

Microwave-assisted synthesis of (diethoxyphosphoryl)acetic acid 4'-[(diethoxyphosphoryl)acetoxymethyl]-[2,2']bipyridinyl-4ylmethyl ester (bipyridine-supported phosphonate) 2. To a solution of diethylphosphonoacetic acid (763 mg, 3.89 mmol, 2.8 equiv.) in DCM (2 cm3) and bipyridine diol (300 mg, 1.989 mmol, 1 equiv.) dissolved in THF (1 cm³) was added diisopropylcarbodiimide (DIPC) (732 mg, 5.80 mmol, 5 equiv.). The mixture was heated in an Emrys Liberator¹⁶ at 100 °C for 20 min. The reaction mixture was poured into DCM-light petroleum $(1:1)(30 \text{ cm}^3)$, and the insoluble by-product removed by filtration. The crude product was purified by flash column chromatography with DCM, then Et₂O-DCM (1:1), and finally Et₂O-DCM-NEt₃ (1 : 1 : 0.1). Recrystallisation from DCMlight petroleum gave the desired phosphonate product as an off-white solid, 85% yield, LC retention time = 0.23 (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.1$; mp 134 °C (lit. mp 134–137.5 °C); (Found: C, 50.21; H, 5.85; N, 4.77, P, 10.64. C₂₄H₃₄N₂O₁₀P₂

requires C, 50.35; H, 5.99; N, 4.89; P, 10.83%); v_{max} (neat)/cm⁻¹ 1734, 1598, 1557, 1232, 1016, 962, 828, 799; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.68 (2H, d, J 5 Hz, bipy H-6), 8.35 (2H, s, bipy H-3), 7.42 (2H, d, J 5Hz, bipy H-5), 5.32 (4H, s, bipy CH₂), 4.13 (8H, q, J 5 Hz, OCH₂CH₃), 3.12 (4H, d, J 26 Hz, COCH₂P), 1.32 (12H, t, J 5 Hz, OCH₂CH₃); δ_C(100 MHz; CDCl₃) 165.3 (C=O), 155.8 (bipy C-6), 152.3 (bipy C-2), 145.3 (bipy C-4), 121.9 (bipy C-5), 119.2 (bipy C-3), 65.2 (bipy CH₂), 62.6 (OCH₂CH₃), 33.7 (COCH₂P J 138 Hz), 16.2 (OCH₂CH₃); m/z (ESI+) 595.1584 (M + Na, $C_{24}H_{34}N_2O_{10}P_2Na$ requires 595.1586); 595.16 (100%) (M + Na), 573.18 (100%) (M + H), 353.1 (50%), 295.2 (70%). X-Ray crystallographic structure determination of **2**: Crystal data: $C_{24}H_{34}N_2O_{10}P_2$ MW = 572.47, colourless prism $0.37 \times 0.32 \times 0.18$ mm, triclinic $P\bar{1}$ (No. 2), a = 6.9456(5), b = 8.5692(5), c = 12.8364(8) Å, a = 95.764(4), c = 12.8364(8) $\beta = 92.302(3), \gamma = 113.556(3)^{\circ}, V = 694.09(8) \text{ Å}^3, T = 230(2)$ K, $D_{\rm X} = 1.370 \text{ g cm}^{-3}$, $\lambda = 0.71073 \text{ Å}$, $\mu = 0.213 \text{ mm}^{-1}$, Nonius Kappa CCD diffractometer, $3.57 < \theta < 27.54^{\circ}$, 6154 measured reflections, 3139 independent, 2671 with $I > 4\sigma(I)$. The structure was solved by direct methods (SHELXS-97)^{9a} and refined by least squares (SHELXL-97)⁹⁶ using Chebyshev weights on F_0^2 to $R_1 = 0.058$, $wR_2 = 0.141 [I > 2\sigma(I)]$, 174 parameters: all H atoms in calculated positions. Goodness-of-fit on F^2 1.079, residual electron density 0.71 e Å⁻³. CCDC reference number 242163. See http://dx.doi.org/10.1039/b503778f for crystallographic data in CIF or other electronic format.

(*E*)-3-(2,5-Dimethyl-1*H*-pyrazol-3-yl)acrylic acid 4'-[(*E*)-3-(2,5-dimethyl-1*H*-pyrazol-3-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3a). Light yellow solid, 95% yield, LC retention time = 0.39, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 65.73; H, 5.69; N, 16.57, $C_{28}H_{28}N_6O_4$ requires C, 65.61; H, 5.51; N, 16.40%); $v_{max}(neat)/cm^{-1}$ 1704, 1602, 1446, 1356, 1254, 1239, 1048, 961, 832, 807; $\delta_{H}(500 \text{ MHz};$ CDCl₃–DTFA–acetone-d₆) 8.79 (2H, d, *J* 5 Hz, bipy H-6), 8.43 (2H, s, bipy H-3), 7.69 (2H, d, *J* 5 Hz, bipy H-5), 7.49 (2H, d, *J* 15 Hz, H-3), 6.51 (2H, d, *J* 15 Hz, H-2), 5.40 (4H, s, bipy CH₂), 3.92 (6H, s, NCH₃), 2.22 (6H, s, pyrazole C-5 CH₃); *m/z* (ESI+) 513.26548 (M + H, $C_{28}H_{29}N_6O_4$ requires 513.22502); 531.3 (37%) (M + H).

(*E*)-3-(Benzo[1,3]dioxol-5-yl)acrylic acid 4'-[(*E*)-3-(benzo-[1,3]dioxol-5-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-yl-methyl ester (3b). Light yellow solid, 92% yield, LC retention time = 0.40, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 68.12; H, 4.32; N, 4.97, $C_{32}H_{24}N_2O_8$ requires C, 68.02; H, 4.28; N, 4.96%); $v_{max}(neat)/cm^{-1}$ 3374, 1703, 1602, 1501, 1454, 1228, 1036, 932, 796; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3-\text{DTFA}-\text{acetone-d}_6)$ 8.73 (2H, d, *J* 5 Hz, bipy H-6), 8.40 (2H, s, bipy H-3), 7.67 (2H, d, *J* 5 Hz, bipy H-5), 7.49 (2H, d, H-3), 6.87 (2H, s, benzodioxane H-4), 6.83 (2H, d, *J* 8 Hz, benzodioxane H-6), 6.60 (2H, d, *J* 8 Hz, benzodioxane H-7), 6.17 (2H, d, *J* 15 Hz, H-2), 5.81 (4H, s, benzodioxane H-2), 5.29 (4H, s, bipy CH₂); *m/z* (ESI+) 565.14684 (M + H, $C_{32}H_{23}N_4O_{12}$ requires 565.16110); 565.2 (45%) (M + H).

(*E*)-3-(4-*tert*-Butoxycarbonylaminopyridin-3-yl)acrylic acid 4'-[(*E*)-3-(4-*tert*-butoxycarbonylaminopyridin-3-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3c). Off-white solid, 85% yield, LC retention time = 0.39, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 64.42; H, 5.79; N, 11.98, C₃₈H₄₀N₆O₈ requires C, 64.40; H, 5.69; N, 11.86%); ν_{max} (CHCl₃)/cm⁻¹ 1722, 1691, 1575, 1504, 1409, 1312, 1279, 1226, 1175, 1157, 1043, 946, 821, 794, 720, 706; δ_{H} (400 MHz; CDCl₃) 9.06 (2H, d, *J* 5 Hz, py H-2), 8.72 (2H, d, *J* 5 Hz, bipy H-6), 8.71 (2H, d, *J* 7 Hz, py H-6), 8.57 (2H, s, py H-3), 8.49 (2H, d, *J* 6 Hz, bipy H-5), 7.81 (2H, d, *J* 15 Hz, H-3), 7.64 (2H, d, *J* 5 Hz, py H-5), 7.32 (2H, br s, N–H), 6.82 (2H, d, *J* 15 Hz, H-2), 5.42 (4H, s, bipy CH₂), 1.93 (18H, s, O'Bu); *m*/*z* (ESI+) 731.25093 (M + Na, C₃₈H₄₀N₆NaO₈ requires 731.28053); 731.3 (36%) (M + Na).

(E)-3-(2,3-Dihydrobenzofuran-5-yl)acrylic acid 4'-((E)-3-2,3dihydrobenzofuran-5-yl-acryloyloxymethyl)-[2,2']bipyridinyl-4ylmethyl ester (3d). Light yellow solid, 90% yield, LC retention time = 0.43, (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.05$); (Found: C, 72.94; H, 5.07; N, 5.02, C₃₄H₂₈N₂O₆ requires C, 72.84; H, 5.03; N, 5.00%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1708, 1603, 1489, 1223, 1049, 948, 797; $\delta_{\rm H}$ (500 MHz; CDCl₃–DTFA–acetone-d₆) 8.80 (2H, d, J 5 Hz, bipy H-6), 8.41 (2H, s, bipy H-3), 7.76 (2H, d, J 5 Hz, bipy H-5), 7.61 (2H, d, J 15 Hz, H-3), 7.33 (2H, s, benzofuran H-4), 7.20 (4H, d, J 8 Hz, bezofuran H-6), 6.63 (4H, d, J 8 Hz, benzofuran H-7), 6.26 (2H, d, J 15 Hz, H-2), 5.38 (4H, s, bipy CH₂), 4.47 (4H, t, J 8 Hz, benzofuran H-2), 3.10 (4H, t, J 8Hz, benzofuran H-3); $\delta_{\rm C}(125 \text{ MHz}; \text{ CDCl}_3)$ 168.1 (C=O), 157.7 (bipy C-2), 157.6 (benzofuran C-7a), 151.9 (C-3), 151.0 (bipy C-6), 147.5 (bipy C-4), 134.6 (benzofuran C-6), 129.8 (bipy C-5), 129.4 (benzofuran C-4), 126.4 (benzofuran C-5), 126.0 (benzofuran C-3a), 125.8 (bipy C-3), 117.1 (benzofuran C-2), 114.3 (benzofuran C-7), 76.5 (benzofuran C-2), 68.0 (bipy CH₂), 33.6 (benzofuran C-3); m/z (ESI+) 560.19987 (M⁺, $C_{34}H_{28}N_2O_6$ requires 560.19474); 560.2 (55%) (M⁺).

(*E*)-3-(1-Benzenesulfonyl-1*H*-indol-3-yl)acrylic acid 4'-[(*E*)-3-(1-benzenesulfonyl-1*H*-indol-3-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3e). White solid, 80% yield, LC retention time = 0.43, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 66.20; H, 4.13; N, 6.71, C₄₆H₃₄N₄O₈S₂ requires C, 66.17; H, 4.10; N, 6.71%); v_{max} (neat)/cm⁻¹ 1716, 1633, 1598, 1368, 1218, 1040, 945, 795, 740; δ_{H} (500 MHz; CDCl₃–DTFA– acetone-d₆) 8.74 (2H, d, *J* 5Hz, bipy H-6), 8.46 (2H, s, bipy H-3), 7.79 (4H, m, Ph H-2, Ph H-6), 7.77 (2H, d, *J* 7 Hz, indole H-4), 7.73 (4H, m, Ph H-3, Ph H-5), 7.57 (4H, d, *J* 5 Hz, bipy H-5), 7.37 (2H, t, *J* 7 Hz, indole H-7), 7.30 (2H, m, Ph H-4), 7.25 (2H, t, *J* 7 Hz, indole H-4, H-6), 7.10 (2H, m, indole H-2, H-5), 6.45 (4H, d, *J* 15 Hz, C-2), 5.32 (4H, s, bipy CH₂); *m/z* (ESI+) 834.18193 (M⁺, C₄₆H₃₄N₄O₈S₂ requires 834.18181); 834.2 (45%) (M⁺).

(E)-3-(3,4-Dihydro-2H-benzo[b][1,5]dioxepin-7-yl)acrylic acid 4'-((E)-3-(3,4-dihydro-2H-benzo[b][1,5]dioxepin-7-yl-acryloyloxymethyl) [2,2']-bipyridinyl-4-ylmethyl ester (3f). Off-white solid, 90% yield, LC retention time = 0.39, (DCM-Et₂O-NEt₃ = 1:1:0.05); (Found: C, 69.95; H, 5.53; N, 4.59, C₃₆H₃₂N₂O₈ requires C, 69.67; H, 5.20; N, 4.51%); v_{max} (neat)/cm⁻¹ 1712, 1645, 1625, 1564, 1285, 1125, 1012, 812, 735; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.68 (2H, d, J 5 Hz, bipy H-6), 8.43 (2H, s, bipy H-3), 7.64 (2H, d, J 15 Hz, H-3), 7.33 (2H, d, J 5 Hz, bipy H-5), 7.16 (2H, s, Ph H-6), 7.11 (2H, d, J 8 Hz, Ph H-8), 6.94 (2H, d, J 8 Hz, Ph H-9), 6.38 (2H, d, J 15 Hz, H-2), 5.33 (4H, s, bipy CH₂), 4.22 (8H, m, bezodioxepine H-2, H-4), 2.17 (4H, quin, J 6 Hz, benzodioxepine H-3); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 166.6 (C=O), 156.2 (bipy C-2), 153.2 (Ph C-9a), 151.1 (Ph C-5a), 149.5 (bipy C-6), 146.3 (bipy C-4), 145.0 (C-3), 129.5 (bipy C-7), 123.5 (Ph C-8), 122.1 (bipy C-5), 121.9 (Ph C-9), 121.1 (Ph C-6), 119.5 (bipy C-3), 116.0 (C-2), 70.4 (benzodioxepine C-2, C-7), 64.5 (bipy CH₂), 31.3 (benzodioxepine C-3); *m/z* (ESI+) 620.21467 (M+, C36H32N2O8 requires 620.21587); 620.2 (55%) (M+), 621.2 (M + H) (10%).

(*E*)-3-Benzofuran-2-yl-acrylic acid 4'-((*E*)-3-benzofuran-2-ylacryloyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (3g). Offwhite solid, 85% yield, LC retention time = 0.39, (DCM– Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 73.54; H, 4.56; N, 5.29, $C_{34}H_{24}N_2O_6$ requires C, 73.37; H, 4.35; N, 5.03%); ν_{max} (CHCl₃)/cm⁻¹ 1720, 1638, 1600, 1252, 1209, 1164, 760; δ_{H} (400 MHz; CDCl₃) 8.70 (2H, d, *J* 5 Hz, bipy H-6), 8.70 (2H, s, bipy H-3), 7.63 (2H, d *J* 15 Hz, H-3), 7.57 (2H, t, *J* 7 Hz, benzofuran H-6), 7.47 (2H, m, benzofuran H-5), 7.37 (4H, m, benzofuran H-4, Py H-5), 7.23 (2H, d, *J* 7 Hz, benzofuran H-7), 6.98 (2H, s, benzofuran H-3), 6.59 (2H, d, *J* 15 Hz, H-2), 5.38 (4H, s, bipy CH₂); δ_{C} (100 MHz; CDCl₃) 166.2 (C=O), 155.7 (benzofuran C-2), 155.6 (benzofuran C-7a), 152.1 (bipy C-2), 149.4 (bipy C-6), 145.6 (bipy C-4), 131.5 (C-3), 128.3 (benzofuran C-3a), 126.7 (benzofuran C-4), 123.3 (benzofuran C-7), 122.5 (bipy C-5), 121.7 (benzofuran C-6), 119.4 (bipy C-3), 118.7 (C-2), 111.5 (benzofuran C-5), 111.4 (benzofuran C-3), 64.7 (bipy CH_2); m/z (ESI+) 556.18254 (M⁺, C₃₄H₂₄N₂O₆ requires 556.16344); 556.2 (65%) (M⁺).

(*E*)-3-(6-Nitrobenzo[1,3]dioxol-5-yl)acrylic acid 4'-[(*E*)-3-(6-nitrobenzo[1,3]dioxol-5-yl)acryloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3h). Light yellow solid, 95% yield, LC retention time = 0.42, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 58.76; H, 3.41; N, 8.75, C₃₂H₂₂N₄O₁₂ requires C, 58.72; H, 3.39; N, 8.56%); v_{max} (neat)/cm⁻¹ 3364, 1710, 1520, 1504, 1330, 1221, 1032, 945, 817, 794; $\delta_{\rm H}$ (500 MHz; CDCl₃–DTFA–acetone-d₆) 8.87 (2H, d, *J* 5 Hz, bipy H-6), 8.58 (2H, s, bipy H-3), 8.21 (2H, d, *J* 15 Hz, H-3), 7.82 (2H, d, *J* 5 Hz, bipy H-5), 7.17 (2H, s, benzodioxane H-7), 6.99 (2H, s, benzodioxane H-4), 6.31 (2H, d, *J* 15 Hz, H-2), 6.13 (4H, s, benzodioxane H-2), 5.52 (4H, s, bipy CH₂); *m*/*z* (ESI) 655.13279 (M + H, C₃₂H₂₃N₄O₁₂ requires 655.13126); 655.1 (45%) (M + H), 677.1 (18%) (M + Na).

(*E*)-3-(5-Cyano-6-(methylsulfanyl)pyridin-2-yl)acrylic acid 4'-[(*E*)-3-(5-cyano-6-(methylsulfanyl)pyridin-2-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3i). Off-white solid, 72% yield, LC retention time = 0.39, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 62.19; H, 4.12; N, 13.58, $C_{32}H_{24}N_6O_4S_2$ requires C, 61.92; H, 3.90; N, 13.54%); v_{max} (neat)/cm⁻¹ 3380, 2925, 1713, 1567, 1547, 1363, 1299, 1211, 1162, 1040, 947, 818, 796; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.80 (2H, d, *J* 5 Hz, bipy H-6), 8.41 (2H, s, bipy H-3), 7.75 (4H, d *J* 7 Hz, py H-3, py H-4), 7.57 (2H, d, *J* 15 Hz, H-3), 7.10 (2H, d, *J* 5 Hz, bipy H-5), 7.02 (2H, d, *J* 15 Hz, H-2), 5.40 (4H, s, bipy CH₂), 2.54 (6H, s, SCH₃); *m*/*z* (ESI+) 490.07865 (M⁺, C₂₄H₁₈N₄O₄S₂ requires 490.07695); 490.1 (65%) (M⁺).

(*E*)-3-[4-(Cyanomethyl(methyl)amino)phenyl]acrylic acid 4'-{(*E*)-3-[4-(cyanomethyl(methyl)amino)phenyl]acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3j). Light yellow solid, 85% yield, LC retention time = 0.41, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 71.28; H, 5.64; N, 13.24, C₃₈H₃₆N₆O₄ requires C, 71.23; H, 5.66; N, 13.12%); $v_{max}(neat)/cm^{-1}$ 1707, 1591, 1521, 1145, 1107, 1036, 957, 814, 765; $\delta_{H}(500 \text{ MHz};$ CDCl₃-DTFA-acetone-d₆) 8.86 (2H, d, *J* 5 Hz, bipy H-6), 8.46 (2H, s, bipy H-3), 7.71 (2H, d, *J* 5 Hz, bipy H-5), 7.64 (2H, d, *J* 15 Hz, H-3), 7.40 (4H, d, *J* 8 Hz, Ph AA'BB' H-2, H-6), 6.61 (4H, d, *J* 8 Hz, Ph AA'BB' H-3, H-5), 6.27 (2H, d, *J* 15 Hz, H-2), 5.22 (4H, s, bipy CH₂), 3.68 (4H, t, *J* 5 Hz, NCH₂CH₂CN), 3.04 (6H, s, NCH₃), 2.53 (4H, t, *J* 5 Hz, NCH₂CH₂CN); *m*/*z* (ESI+) 641.29261 (M + H, C₃₈H₃₇N₆O₄ requires 641.28763); 641.3 (25%) (M + H).

(*E*)-3-[5-(1-Methyl-5-trifluoromethyl-1*H*-pyrazol-3-yl)thiophen-2-yl]acrylic acid 4'-{(*E*)-3-[5-(1-methyl-5-trifluoromethyl-1*H*pyrazol-3-yl)thiophen-2-yl]acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (3k). Light yellow solid, 74% yield, LC retention time = 0.42, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 55.35; H, 3.28; N, 10.75, C₃₆H₂₆F₆N₆O₄S₂ requires C, 55.10; H, 3.34; N, 10.71%); v_{max} (neat)/cm⁻¹ 1710, 1624, 1599, 1302, 1224, 1205, 1165, 1120, 1085, 1038, 977, 944, 791; $\delta_{\rm H}$ (500 MHz; CDCl₃–DTFA–acetone-d₆) 8.80 (2H, d, *J* 5 Hz, bipy H-6), 8.41 (2H, s, bipy H-3), 7.78 (2H, d, *J* 15 Hz, H-3), 7.26 (2H, d, *J* 5 Hz, bipy H-5), 7.13 (2H, d, *J* 4 Hz, thiophene H-3), 6.59 (2H, s, thiophene H-4), 6.27 (2H, d, *J* 15 Hz, H-2), 5.37 (2H, s, pyrazole H-4), 5.19 (4H, Py CH₂), 3.93 (6H, s, pyrazole CH₃); *m*/*z* (ESI+) 784.14264 (M⁺, C₃₆H₂₆F₆N₆O₄S₂ requires 784.13611); 784.1 (36%) (M⁺).

(*E*)-3-(4-Imidazol-1-ylphenyl)acrylic acid 4'-[(*E*)-3-(4-Imidazol-1-ylphenyl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (31). Off-white solid, 87% yield, LC retention time = 0.39, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 71.02; H, 4.67; N, 13.83, $C_{36}H_{28}N_6O_4$ requires C, 71.04; H, 4.64; N, 13.81%);

 v_{max} (CHCl₃)/cm⁻¹ 3357, 1709, 1604, 1523, 1306, 1220, 1172, 1044, 948, 822, 743; δ_{H} (400 MHz; CDCl₃–DTFA–acetone-d₆) 9.31 (2H, s, imidazole H-2), 9.20 (2H, d, *J* 7 Hz, imidazole H-5), 8.75 (2H, d, *J* 5 Hz, py H-6), 8.49 (2H, s, py H-3), 8.00 (4H, d, *J* 7.8 Hz, Ph H-2, H-6), 7.78 (4H, d, *J* 7.8 Hz, Ph H-3, H-5), 7.70 (2H, d, *J* 8.9 Hz, H-3), 7.59 (2H, d, *J* 10 Hz, imidazole H-4), 6.55 (2H, d, *J* 15 Hz, H-2), 5.40 (2H, s, bipy CH₂); *m/z* (ESI+) 631.20756 (M + Na, C₃₆H₂₈N₆NaO₄ requires 631.20697); 631.2 (24%) (M + Na).

(*E*)-3-[2,2']Bithiophenyl-5-ylacrylic acid 4'-((*E*)-3-[2,2']bithiophenyl-5-yl-acryloyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (3m). Light yellow solid, 92% yield, LC retention time = 0.39, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 62.67; H, 3.89; N, 4.31, C₃₄H₂₄N₂O₄S₄ requires C, 62.55; H, 3.71; N, 4.29%); v_{max} (neat)/cm⁻¹ 3388, 1714, 1614, 1598, 1453, 1210, 1166, 1041, 946, 798, 697; $\delta_{\rm H}$ (500 MHz; CDCl₃-DTFA-acetone-d₆) 8.67 (2H, d, *J* 5 Hz, bipy H-6), 8.29 (2H, s, bipy H-3), 7.63 (2H, d, *J* 5 Hz, bipy H-5), 7.59 (2H, d, *J* 15 Hz, H-3), 7.05 (2H, m, thiophene H-4), 6.88 (6H, m, thiophene H-2', H-3', H-4'), 6.77 (2H, m, thiophene H-3), 6.00 (2H, d, *J* 15 Hz, H-2), 5.26 (4H, s, bipy CH₂); *m*/*z* (ESI+) 653.07891 (M⁺, C₃₂H₂₅N₂O₄S₄ requires 653.06972); 653.1 (48%) (M + H), 675.1 (M + Na) (16%).

(*E*)-3-Phenylacrylic acid 4'-[(*E*)-(3-phenylacryloyl)oxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (4a)^{17,18}. White solid, 98% yield, LC retention time = 0.43, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 75.47; H, 4.99; N, 5.79, C₃₀H₂₄N₂O₄ requires C, 75.63; H, 5.04; N, 5.88%); v_{max} (neat)/cm⁻¹ 1712, 1637, 1599, 1449, 1309, 1169, 978, 819, 765, 709; δ_{H} (400 MHz; CDCl₃) 8.68 (2H, d, *J* 5 Hz, bipy H-6), 8.35 (2H, s, bipy H-3), 7.78 (2H, d, *J* 15 Hz), 7.53 (4H, m, Ph H-2, H-6), 7.40 (6H, m, Ph H-3, H-4, H-5), 7.38 (2H, d, *J* 5 Hz, bipy H-5), 6.55 (2H, d, *J* 15 Hz, H-2), 5.35 (4H, s, bipy CH₂); δ_{C} (100 MHz; CDCl₃) 166.5 (C=O), 157.2 (bipy C-2), 149.5 (bipy C-6), 146.3 (bipy C-4), 145.8 (C-3), 134.2 (Ph C-1), 130.5 (Ph C-3, Ph C-5), 128.9 (Ph C-4), 128.2 (Ph C-2, Ph C-6), 122.2 (bipy C-3), 119.6 (bipy C-5), 117.3 (C-2), 64.5 (bipy CH₂); *m*/z (EI) 476.17452 (M⁺, C₃₀H₂₄N₂O₄ requires 476.52264); 476.2 (25%) (M⁺).

(E)-3-(4-Fluorophenyl)acrylic acid 4'-[(E)-3-(4-fluorophenylacryloyl)oxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (4b). White solid, 92% yield, LC retention time = 0.46, (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.05$; (Found: C, 70.32; H, 4.45; N, 5.56, $C_{30}H_{22}F_2N_2O_4$ requires C, 70.31; H, 4.33; N, 5.47%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2927, 1714, 1636, 1598, 1508, 1308, 1219, 1161, 1104, 980, 828, 819, 792, 777; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.67 (2H, d, J 5 Hz, bipy H-6), 8.46 (2H, s, bipy H-3), 7.72 (2H, d, J 15 Hz, H-3), 7.52 (4H, dd, J 14 Hz, 7 Hz, Ph AA'BB' H-2, H-6), 7.35 (2H, d, J 5 Hz, bipy H-5), 7.09 (4H, dd, J 17 Hz, 8 Hz, Ph H-3, Ph H-5), 6.42 (2H, d, J 15 Hz, H-2), 5.35 (4H, s, bipyCH₂); $\delta_{\rm C}(100 \text{ MHz}; \text{ CDCl}_3)$ 166.4 (C=O), 164.5 ($J_{\rm C-F}$ 240 Hz, Ph C-4), 156.2 (bipy C-2), 149.5 (bipy C-6), 146.2 (bipy C-4), 144.5 (C-3), 130.4 (Ph C-1), 130.1 (J_{C-F} 8.5 Hz, Ph C-2, Ph C-6), 122.2 (bipy C-3), 119.6 (C-2), 117.0 (bipy C-5), 116.0 (J_{C-F} 210 Hz, Ph C-3, Ph C-5), 64.6 (bipy CH₂); m/z (ESI+) 512.15458 (M⁺, C₃₀H₂₂F₂N₂O₄ requires 512.15476); 512.2 (20%) (M⁺).

(*E*)-3-(4-Methoxyphenyl)acrylic acid 4'-[(*E*)-3-(4-methoxyphenyl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (4c). White solid, 90% yield, LC retention time = 0.43, (DCM– Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 75.47; H, 4.99; N, 5.79, $C_{32}H_{28}N_2O_6$ requires C, 71.63; H, 5.26; N, 5.22%); v_{max} (neat)/cm⁻¹ 1709, 1634, 1602, 1514, 1292, 1253, 1157, 1025, 825, 816, 779; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.66 (2H, d, *J* 5 Hz, bipy H-6), 8.44 (2H, s, bipy H-3), 7.73 (2H, d, *J* 15 Hz, H-3), 7.50 (4H, d, *J* 8 Hz, Ph H-2, Ph H-6), 7.35 (2H, d, *J* 5 Hz, bipy H-5), 6.90 (4H, d, *J* 8 Hz, Ph H-3, Ph H-5), 6.43 (2H, d, *J* 15 Hz, H-2), 5.35 (4H, s, bipy CH₂), 3.85 (6H, s, OCH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 166.8 (C=O), 161.6 (Ph C-4), 156.9 (bipy C-2), 149.4 (bipy C-6), 147.2 (bipy C-4), 145.6 (C-3), 129.9 (Ph C-2, Ph C-6), 127.0 (Ph C-1), 122.2 (bipy C-5), 119.6 (bipy C-3), 114.7 (bipy Downloaded by Pennsylvania State University on 14 May 2012 Published on 27 July 2005 on http://pubs.rsc.org | doi:10.1039/B503778F C-5), 114.4 (Ph C-3, C-5), 64.4 (bipy CH₂), 55.4 (OCH₃); m/z (ESI+) 536.19863 (M⁺, C₃₂H₂₈N₂O₆ requires 536.19474); 537.2 (35%) (M + H), 536.2 (45%) (M⁺).

(E)-Non-2-enoic acid 4'-((E)-non-2-enoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4d). White solid, 85% yield, LC retention time = 0.53, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 73.25; H, 8.34; N, 5.89, C₃₀H₄₀N₂O₄ requires C, 73.14; H, 8.18; N, 5.69%); v_{max} (neat)/cm⁻¹ 2928, 1719, 1651, 1598, 1459, 1296, 1169, 1029, 977, 839, 824; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.63 (2H, d, J 5 Hz, bipy H-6), 8.37 (2H, s, bipy H-3), 7.37 (4H, d, J 5 Hz, bipy H-5), 7.13 (2H, dd, J 15 Hz, 5 Hz, H-3), 5.93 (2H, d, J 15 Hz, H-2), 5.35 (4H, s, bipy CH₂), 2.34 (4H, m, H-4), 1.45 (4H, m, H-8), 1.23 (12H, br d, H-5, H-6, H-7), 0.87 (6H, m, H-9); δ_c(100 MHz; CDCl₃) 166.2 (C=O), 156.1 (bipy C-2), 151.1 (bipy C-6), 149.4 (C-3), 146.3 (bipy C-4), 122.1 (bipy C-3), 120.4 (C-2), 119.5 (bipy C-5), 64.2 (bipy CH₂), 35.7 (C-4), 32.3 (C-7), 28.8 (C-6), 27.9 (C-8), 14.1 (C-9); m/z (ESI+) 492.29924 (M⁺. C₃₀H₄₀N₂O₄ requires 492.29881); 492.3 (45%) (M⁺), 515.3 (M + Na) (20%).

(*E*)-4-Methylpent-2-enoic acid 4'-((*E*)-4-methylpent-2-enoyloxymethyl)-[2,2']bipyidinyl-4-ylmethyl ester (4e). White solid, 82% yield, LC retention time = 0.43, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 75.47; H, 4.99; N, 5.79, C₃₀H₂₄N₂O₄ requires C, 75.63; H, 5.04; N, 5.88%); $v_{max}(neat)/cm^{-1}$ 1710, 1638, 1600, 1568, 1292, 1251, 996, 723; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3)$ 8.68 (2H, d, *J* 5 Hz, bipy H-6), 8.35 (2H, s, bipy H-3), 7.34 (2H, d, *J* 5 Hz, bipy H-5), 7.05 (2H, dd, *J* 15 Hz, 5 Hz, H-3), 5.85 (2H, d, *J* 15 Hz, H-2), 5.28 (4H, s, bipy CH₂), 2.55 (2H, m, H-4), 1.05 (12H, d, *J* 6 Hz, (CH₃)₂CH); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3)$ 166.5 (C=O), 156.9 (C-3), 156.2 (bipy C-2), 149.4 (bipy C-6), 146.3 (bipy C-4), 122.1 (bipy C-3), 199.6 (bipy C-5), 116.5 (C-2), 64.3 (bipy CH₂), 31.1 ((CH₃)₂CH), 21.1 ((CH₃)₂CH); *m*/*z* (ESI+) 409.21260 (M + 1, C₃₀H₂₄N₂O₄ requires 409.21284); 409.2 (25%) (M + 1), 431.2 (80%) (M + Na), 345.2 (10%).

(E)-3-Furan-2-ylacrylic acid 4'-((E)-3-furan-2-ylacryloyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4f). Off-white solid, 83% yield, LC retention time = 0.34 (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); mp 134 °C (Found: C, 68.64; H, 4.67; N, 6.19, C₂₆H₂₀N₂O₆ requires C, 68.42; H, 4.42; N, 6.14%); $v_{max}(neat)/cm^{-1}$ 1709, 1633, 1598, 1552, 1475, 1423, 1386, 1304, 1286, 1265, 1154, 990, 866, 821, 757, 732, 697; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.68 (2H, d, J 5 Hz, bipy H-6), 8.35 (2H, s, bipy H-3), 7.57 (2H, d, J 15 Hz, H-3), 7.52 (2H, br d, furan H-5), 7.35 (2H, d, J 5 Hz, Py H-5), 6.67 (2H, br d, furan H-3), 6.53 (2H, br t, furan H-4), 6.48 (2H, d, J 15 Hz, H-2) 5.37 (4H, s, bipy CH₂); δ_C(100 MHz; CDCl₃) 166.6 (C=O), 156.2 (bipy C-2), 150.7 (furan C-2), 149.5 (bipy C-6), 146.3 (bipy C-4), 145.0 (furan C-5), 132.0 (C-3), 122.1 (C-2), 119.5 (bipy C-3), 115.4 (bipy C-5), 114.8 (furan C-4), 112.4 (furan C-3), 64.5 (bipy CH₂); m/z (+EI) 456.13171 (M⁺, C₂₆H₂₀N₂O₆ requires 456.13213); 456.1 (20%) (M⁺).

(E)-3-Thiophen-2-ylacrylic acid 4'-((E)-3-thiophen-2-ylacryloylmethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4g). White solid, 70% yield, LC retention time = 0.43, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 75.47; H, 4.99; N, 5.79, C₂₆H₂₀N₂O₄S₂ requires C, 63.92; H, 4.13; N, 5.73%); $v_{max}(neat)/cm^{-1}$ 1715, 1636, 1598, 1508, 1307, 1219, 1162, 980, 829, 792; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.69 (2H, d, J 5 Hz, bipy H-6), 8.45 (2H, s, bipy H-3), 7.87 (2H, d, J 15 Hz, H-3), 7.42 (2H, d, J 6 Hz, thiophene H-3), 7.35 (2H, d, J 5 Hz, bipy H-5), 7.30 (2H, d, J 6 Hz, thiophene H-5), 7.08 (2H, t, J 6Hz, thiophene H-4), 6.35 (2H, d, J 15 Hz, H-2), 5.32 (4H, s, bipy CH₂); $\delta_{\rm C}$ (100 MHz; CDCl₃) 166.3 (C=O), 156.2 (bipy C-2), 149.5 (bipy C-6), 146.2 (bipy C-4), 139.4 (thiophene C-2), 138.2 (C-3), 131.3 (thiophene C-5), 128.9 (thiophene C-4), 128.1 (thiophene C-3), 122. (C-2), 119.5 (bipy C-3), 116.0 (bipy C-5), 64.5 (bipyCH₂); *m*/*z* (ESI+) 511.07590 (M + Na, $C_{26}H_{20}N_2O_4S_2Na$ requires 511.07622); 489.1 (65%) (M + 1), 511.1 (100%) (M + Na).

(E)-3-(3,5-Dimethylisoxazol-4-yl)acrylic acid 4'-[(E)-3-(3,5dimethylisoxazol-4-yl)acryloyloxymethyl)-[2,2']bipyridin-yl-4ylmethyl ester (4h). White solid, 92% yield, LC retention time = 0.39, (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.05$); (Found: C, 65.53; H, 5.21; N, 10.79, C₂₈H₂₆N₄O₆ requires C, 65.36; H, 5.09; N, 10.89%); v_{max} (neat)/cm⁻¹ 1712, 1654, 1608, 1586, 1524, 1302, 1157, 834, 820; δ_H(400 MHz; CDCl₃) 8.46 (2H, d, J 5 Hz, bipy H-6), 8.45 (2H, s, bipy H-3), 7.57 (2H, d, J 15 Hz, H-3), 7.44 (2H, d, J 5 Hz, bipy H-5), 6.24 (2H, d, J 15 Hz, H-2), 5.36 (4H, s, bipy CH₂), 2.52 (6H, s, C-5 CH₃), 2.42 (6H, s C-3 CH₃); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 170.1 (C-5), 166.3 (C=O), 158.4 (C-3), 156.2 (bipy C-2), 149.5 (bipy C-6), 146.1 (bipy C-4), 133.9 (H-3), 122.3 (bipy H-5), 119.6 (bipy H-3), 117.0 (C-2), 111.4 (C-4), 64.7 (bipy CH₂), 12.0 (C-5 CH₃), 11.7 (C-3 CH₃); m/z (ESI+) 514.18789 (M⁺, C₂₈H₂₆N₄O₆ requires 514.185524); $514.2 (35\%) (M^+), 515.2 (M + H) (20\%).$

(E)-3-(1-Benzyl-1H-indol-3-yl)acrylic acid 4'-[(E)-3-(1-benzyl-1H-indol-3-yl)acryloyloxymethyl)-[2,2']bipyridin-yl-4-ylmethyl ester (4i). Off-white solid, 65% yield, LC retention time = 0.39, (DCM- Et_2O - $NEt_3 = 1 : 1 : 0.05$); (Found: C, 78.24; H, 5.50; N, 7.45, C₄₈H₃₈N₄O₄ requires C, 78.45; H, 5.21; N, 7.62%); $v_{max}(neat)/cm^{-1}$ 1710, 1634, 1602, 1575, 1456, 1256, 1097, 825, 760, 734; δ_H(400 MHz; CDCl₃) 8.75 (2H, d, J 5 Hz, Py H-6), 8.45 (2H, s, Py H-3), 8.02 (2H, d, J 15 Hz, H-3), 7.95 (2H, m, indole H-2), 7.33–7.29 (18H, m, Ph–H), 6.52 (2H, d, J 15 Hz, H-2), 5.37 (4H, s, bipy CH₂), 5.33 (4H, s, benzyl CH₂); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 166.9 (C=O), 155.3 (C-3), 156.2 (bipy C-2), 150.1 (bipy C-6), 146.6 (bipy C-4), 139.2 (benzyl Ph C-1), 136.1 (indole C-7a), 129.9 (benzyl Ph C-2, C-6), 128.5 (benzyl Ph C-3, C-5), 128.0 (indole C-3a), 126.2 (benzyl Ph C-4), 124.4 (indole C-2), 122.7 (bipy C-5), 122.4 (indole C-5), 121.1 (indole C-4), 119.9 (indole C-6), 119.6 (bipy C-3), 117.0 (C-2), 111.9 (indole C-7), 102.8 (indole C-3), 64.7 (bipy CH₂), 60.3 (benzyl Ph CH₂); m/z (ESI+) 735.93464 (M + H, C₄₈H₃₉N₄O₄ requires 735.29714); 735.9 (35%) (M + H).

(E)-3-(2H-Chromen-3-yl)acrylic acid 4'-((E)-3-(2H-chromen-3-ylacryloyloxymethyl)-[2,2']bipyridin-yl-4-yl methyl ester (4j). Light yellow solid, 80% yield, LC retention time = 0.39, $(DCM-Et_2O-NEt_3 = 1 : 1 : 0.05)$; (Found: C, 74.06; H, 4.98; N, 4.89, $C_{48}H_{38}N_4O_4$ requires C, 73.96; H, 4.83; N, 4.79%); $v_{\rm max}$ (neat)/cm⁻¹ 1719, 1599, 1488, 1459, 1241, 1161, 1041, 758, 732; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.69 (2H, d, J 5 Hz, bipy H-6), 8.49 (2H, s, bipy H-3), 7.44 (2H, d, J 15 Hz, H-3), 7.33 (2H, d, J 4 Hz, bipy H-5), 7.17 (2H, J 7 Hz, chromene H-5), 7.07 (2H, d, J 7 Hz, chromene H-7), 6.89 (2H, t, J 7 Hz, chromene H-6), 6.83 (2H, d, J 8 Hz, chromene H-8), 6.77 (2H, s, chromene H-4), 5.85 (2H, J 15 Hz, H-2), 5.33 (4H, s, bipy CH₂), 4.99 (4H, s, chromene H-2); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 166.3 (C=O), 157.5 (bipy C-2), 154.5 (chromene C-8a), 149.7 (bipy C-6), 145.3 (bipy C-4), 142.7 (C-3), 131.5 (chromene C-4), 131.0 (chromene C-5), 128.3 (chromene C-3), 128.1 (chromene C-7), 122.2 (chromene C-4a), 121.8 (bipy C-5), 121.6 (chromene C-6), 120.1 (bipy C-3), 116.0 (chromene C-8), 115.8 (C-2), 65.0 (chromene C-2), 64.6 (bipy CH₂); m/z (ESI+) 584.18908 (M⁺, C₃₆H₂₈N₂O₆ requires 584.19474); 584.2 (55%) (M⁺).

(*E*)-4,4,5,5,6,6,6-Heptafluorohex-2-enoic acid 4'-((*E*)-4,4,5,5,6, 6,6-heptafluorohex-2-enoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4k). White solid, 82% yield, LC retention time = 0.48, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 43.78; H, 2.35; N, 4.44; C₂₄H₁₄F₁₄N₂O₄ requires C, 43.65; H, 2.14; N, 4.24%); ν_{max} (neat)/cm⁻¹ 1712, 1623, 1598, 1525, 1286, 1224, 1145, 1025, 826; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.62 (2H, d, *J* 5 Hz, bipy H-6), 8.35 (2H, s, bipy H-3), 7.25 (2H, d, *J* 5 Hz, bipy H-5), 6.82 (2H, dd, *J* 15 Hz, 5 Hz, H-3), 5.58 (2H, d, *J* 15 Hz, H-2), 5.29 (4H, s, bipy CH₂); $\delta_{\rm C}$ (100 MHz; CDCl₃) 165.1 (C=O), 156.1 (bipy C-2), 149.6 (bipy C-6), 145.0 (bipy C-4), 144.9 (C-3), 131.6 (C-5), 131,4 (bipy C-5), 130.0 (bipy C-3), 122.2 (C-2), 111.7 (C-6), 108.6 (C-4), 65.6 (bipy CH₂); *m*/*z* (ESI+) 683.06458 (M + Na, $C_{24}H_{14}F_{14}N_2NaO_4$ requires 683.06277); 683.1 (45%) (M + Na), 661.1 (80%) (M + H).

(E)-3-(2-Trifluoromethoxyphenyl)acrylic acid 4'-[(E)-3-(2trifluoromethoxyphenyl)acryloyloxymethyl]-[2,2']bipyridinyl-4ylmethyl ester (41). White solid, 83% yield, LC retention time = 0.39, (DCM- Et_2O - $NEt_3 = 1 : 1 : 0.05$); (Found: C, 59.84; H, 3.47; N, 4.54, C₃₂H₂₂F₆N₂O₆ requires C, 59.63; H, 3.44; N, 4.35%); v_{max} (CHCl₃)/cm⁻¹ 1720, 1638, 1600, 1252, 1209, 1164, 760; δ_H(400 MHz; CDCl₃) 8.63 (2H, d, J 5 Hz, bipy H-6), 8.40 (2H, s, bipy H-3), 7.95 (2H, d, J 15 Hz, H-3), 7.62 (2H, dd, J 8 Hz, 1.5 Hz, Ph H-6), 7.36 (2H, dd, J 8 Hz, 1.5 Hz, Ph H-4), 7.29 (2H, d, J 5 Hz, bipy H-5), 7.24 (4H, m, Ph H-5, H-3), 6.52 (2H, d, J 15 Hz, H-2), 5.31 (4H, s, bipy CH_2); δ_c (125 MHz; CDCl₃) 165.9 (C=O), 156.2 (bipy C-2), 149.5 (bipy C-2), 146.1 (bipy C-4), 138.5 (C-3), 131.6 (Ph C-4), 128.1 (Ph C-6), 127.6 (Ph C-1), 127.1 (Ph C-5), 122.1 (bipy C-5), 121.4 (Ph C-3), 120.3 (C-2), 119.6 (bipy C-3), 119.5 (J_{C-F} 206 Hz, OCF₃), 64.7 (bipy CH₂); *m/z* (ESI+) 644.13984 (M⁺, C₃₂H₂₂F₆N₂O₆ requires 644.13821); 644.1 (42%) (M⁺), 131 (73%).

(S)-2-[(E)-2-(4'-{(E)-3-[1-(tert-Butoxycarbonyl)pyrrolidin-2yl|acryloyloxymethyl}-[2,2'|bipyridinyl-4-ylmethoxycarbonyl)vinyl|pyrrolidine-1-carboxylic acid tert-butyl ester (4m). Colourless oil, 75% yield, LC retention time = 0.46, (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.05$; (Found: C, 65.54; H, 7.23; N, 8.56, C₃₆H₄₆N₄O₈ requires C, 65.24; H, 7.00; N, 8.45%); $v_{\rm max}$ (neat)/cm⁻¹ 2976, 1702, 1790, 1164, 876, 765; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.67 (2H, d, J 5 Hz, bipy H-6), 8.38 (2H, s, bipy H-3), 7.29 (2H, d, J 5 Hz, bipy H-5), 6.51 (2H, br d, H-3), 5.92 (2H, d, J 15 Hz, H-2), 5.28 (4H, s, bipy CH₂), 4.32 (4H, br t, pyrrolidine H-2), 3.38 (2H, br t, pyrrolidine H-5), 1.84 (8H, br t, pyrrolidine H-3, H-4), 1.41 (6H, s, OMe₃); $\delta_{\rm C}(100 \text{ MHz};$ CDCl₃) 166.5 (bipy C=O), 157.6 (bipy C-2), 150.2 (C-3), 149.7 (bipy C-6), 146.9 (bipy C-4), 138.4 (pyrrolidine C=O), 122.4 (bipy C-5), 120.3 (C-2), 119.9 (bipy C-3), 80.3 (OC(CH₃)₃), 65.2 (bipy CH₂), 58.5 (pyrrolidine C-2), 46.7 (pyrrolidine C-5), 31.3 (pyrrolidine C-3), 29.2 (OC(CH₃)₃), 23.5 (pyrrolidine C-4); m/z (ESI+) 663.3589 (M + H, C₃₆H₄₇N₄O₈ requires 663.3394); 663.4 (52%) (M + H).

E-3-((5R,6R)-5,6-Dimethoxy-5,6-dimethyl-[1,4]dioxan-2yl)acrylic acid 4'-[(E)-3-((5S,6S)-5,6-dimethoxy-5,6-dimethyl-[1,4]dioxan-2-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4-ylmethyl ester (4n). Colourless oil, 95% yield, LC retention time = 0.35 (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); $v_{max}(neat)/cm^{-1}$ 2953, 1725, 1600, 1141, 1116, 1036, 878, 732; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.68 (2H, d, J 5 Hz, bipy H-6), 8.37 (2H, s, Py H-3), 7.30 (2H, d, J 5 Hz, bipy H-5), 6.87 (2H, dd, J 15, 4 Hz, bipy O₂CCHCHR), 6.27 (2H, d, J 15 Hz, bipy O₂CCHCHR), 5.27 (4H, m, bipy CH₂), 4.62 (2H, d, J 5 Hz, C-3), 3.52 (2H, m, C-2), 3.26 (6H, s, OMe); 1.27 (6H, m, CH₃); $\delta_{c}(100 \text{ MHz};$ CDCl₃) 165.6 (C=O), 156.1 (bipy C-2), 149.5 (C-6), 145.9 (bipy C-4), 143.6 (ArO₂CCHCHR), 122.1 (bipy C-5), 121.5 (ArO₂CCHCHR), 119.5 (bipy C-3), 99.4 (C-6), 98.0 (C-5), 66.8 (C-3), 64.6 (bipy CH₂), 62.0 (C-2), 48.1 (OMe), 17.7 (CH₃); m/z (ESI+) 672.29673 (M⁺, C₃₄H₄₄N₂O₁₂ requires 672.28943); 672.3 (53%) (M⁺).

(*S*)-2-[(*E*)-2-(4'-{(*E*)-3-[(*S*)-2-(ethoxycarbonyl)cyclopropyl]acryloyloxymethyl}-[2,2']bipyridinyl-4-ylmethoxycarbonyl)vinyl]cyclopropanecarboxylic acid ethyl ester (40). Colourless oil, 82% yield, LC retention time = 0.47, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 65.79; H, 6.01; N, 5.16, C₃₀H₃₂N₂O₈ requires C, 65.68; H, 5.88; N, 5.11%); $v_{max}(neat)/cm^{-1}$ 2982, 1708, 1701, 1381, 1454, 1305, 1187, 1023; $\delta_{\rm H}(500 \text{ MHz; CDCl}_3)$ 8.70 (2H, d, *J* 5 Hz, bipy H-6), 7.28 (2H, s, bipy H-3), 7.27 (2H, d, *J* 5 Hz, bipy H-5), 6.51 (2H, dd, *J* 9.9 Hz, 9.9 Hz, H-3), 6.08 (2H, d, *J* 15 Hz, H-2), 5.26 (4H, s, bipy CH₂), 4.14 (4H, q, *J* 7 Hz, OCH₂CH₃), 2.16 (2H, m, cyclopropane H-3), 1.86 (2H, ddd, *J* 10.0 Hz, 4.8 Hz, 3.3 Hz, cyclopropane H-1), 1.16 (2H, ddd, *J* 15.0 Hz, 4.8 Hz, 3.8 Hz, cyclopropane H-1), 1.15 (6H, t, *J* 7 Hz, OCH₂CH₃); $\delta_{\rm C}(100$ MHz; CDCl₃) 172.2 (cyclopropane ester C=O), 165.6 (C=O), 156.2 (bipy C-2), 150.1 (C-3), 149.4 (bipy C-6), 146.1 (bipy C-4), 122.1 (bipy C-5), 120.1 (C-2), 119.5 (bipy C-3), 64.3 (bipy CH₂), 61.0 (OCH₂CH₃), 24.3 (cyclopropane C-3), 23.1 (cyclopropane C-2), 16.5 (cyclopropane C-1), 14.2 (OCH₂CH₃); m/z (ESI+) 548.21453 (M⁺, C₃₀H₃₂N₂O₈ requires 548.21587); 549.2 (36%) (M + 1), 256.7 (25%).

(*E*)-3-Thiazol-2-ylacrylic acid 4'-((*E*)-3-thiazol-2-ylacryloyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4p). Off-white solid, 85% yield, LC retention time = 0.39, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 58.84; H, 3.82; N, 11.65, C₂₄H₁₈N₄O₄S₂ requires C, 58.76; H, 3.70; N, 11.42%); v_{max} (neat)/cm⁻¹ 1716, 1600, 1299, 1168, 907, 829, 726; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.69 (2H, d, *J* 5 Hz, bipy H-6), 8.48 (2H, s, bipy H-3), 7.97 (2H, d *J* 4 Hz, thiazole H-4), 7.85 (2H, d, *J* 15 Hz, H-3), 7.48 (2H, d, *J* 4 Hz, thiazole H-5), 7.37 (2H, d, *J* 5 Hz, bipy H-5), 6.82 (2H, d, *J* 15 Hz, H-2); $\delta_{\rm C}$ (100 MHz; CDCl₃) 166.3 (C=O), 163.2 (thiazole C-2), 156.2 (bipy C-2), 149.6 (bipy C-6), 145.8 (bipy C-4), 144.9 (thiazole C-4), 136.8 (C-3), 122.1 (bipy C-5), 122.0 (C-2), 121.7 (thiazole C-5), 119.5 (bipy C-3), 77.0 (bipy CH₂); *m/z* (ESI+) 491.09725 (M + H, C₂₄H₁₉N₄O₄S₂ requires 491.08478); 491.1 (65%) (M + H).

(*E*)-3-(2,5-Dimethylthiazol-4-yl)acrylic acid 4'-[(*E*)-3-(2,5dimethylthiazol-4-yl)acryloyloxymethyl]-[2,2']bipyridinyl-4ylmethyl ester (4q). Off-white solid, 70% yield, LC retention time = 0.39, (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 61.62; H, 4.91; N, 11.72, $C_{28}H_{26}N_4O_4S_2$ requires C, 61.52; H, 4.79; N, 11.71%); ν_{max} (CHCl₃)/cm⁻¹ 3391, 1715, 1615, 1224, 1056, 956, 796; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.71 (2H, d, *J* 5 Hz, bipy H-6), 8.44 (2H, s, bipy H-3), 7.67 (2H, d *J* 5 Hz, bipy H-5), 7.61 (2H, d, *J* 15 Hz, H-3), 6.09 (2H, d, *J* 15 Hz, H-2), 5.30 (4H, s, bipy CH₂), 2.64 (6H, s, thiazole C-4 CH₃), 2.35 (6H, s, thiazole C-2 CH₃); *m*/*z* (ESI+) 546.17635 (M⁺, $C_{28}H_{26}N_4O_4S_6$ requires 546.13955); 546.2 (36%) (M⁺), 169 (62%).

(2E,4E)-5-Phenylpenta-2,4-dienoic acid 4'-((2E,4E)-5phenylpenta-2,4-dienoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4r). White solid, 74% yield, LC retention time = 0.43, $(DCM-Et_2O-NEt_3 = 1 : 1 : 0.05)$; (Found: C, 77.26; H, 5.35; N, 5.34, C₃₄H₂₈N₂O₄ requires C, 77.25; H, 5.34; N, 5.30%); $v_{\rm max}$ (neat)/cm⁻¹ 1710, 1624, 1598, 1444, 1353, 1267, 1132, 994, 832, 819, 708, 684; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.70 (2H, d, J 5 Hz, bipy H-6), 8.38 (2H, s, bipy H-3), 7.55 (2H, dd, J 15 Hz, 15 Hz, H-3), 7.53-7.32 (8H, m, Ph H-2, H-3, H-4, H-5. H-6), 6.95 (4H, m, H-4, H-5), 6.12 (2H, d, J 15 Hz, H-2) 5.30 (bipy CH₂), 2.80 (2H, d, J 15 Hz, H-2); δ_c(100 MHz; CDCl₃) 166.5 (C=O), 156.2 (bipy C-2), 149.5 (bipy C-6), 146.3 (bipy C-4), 145.8 (C-4), 145.8 (C-3), 141.2 (C-5), 135.9 (Ph C-1), 129.2 (Ph C-4), 128.8 (Ph C-3, Ph C-5), 127.3 (C-4), 126.0 (Ph C-2, Ph C-6), 122.1 (C-2), 120.2 (bipy C-3), 119.6 (bipy C-5), 64.1 (bipy CH₂); *m/z* (EI) 528.20187 (M⁺, C₃₄H₂₈N₂O₄ requires 528.20491); 528.2 (43%) (M⁺).

(E)-3-Thiazol-2-ylbut-2-enoic acid 4'-((E)-3-thiazol-2-yl-but-2-enoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4s). Light yellow solid, 95% yield, mixed isomers, 3 : 2; LC retention time = 0.39, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 58.76; H, 3.26; N, 8.59, C₂₆H₂₂N₄O₄S₂ requires C, 60.21; H, 4.28; N, 10.80%); v_{max} (CHCl₃)/cm⁻¹ 1717, 1622, 1599, 1464, 1355, 1248, 1168, 1026, 826, 728; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.75, 8.69 (2H, d, J 5 Hz, bipy H-6), 8.40, 8.35 (2H, s, bipy H-3), 7.90, 7.85 (2H, d, J 4.8 Hz, thiazole H-4), 7.42, 7.25 (4H, d, J 4.8 Hz, thiazole H-5, bipy H-5), 6.88, 6.21 (2H, s, H-2), 5.30, 5.26 (4H, bipy CH₂), 2.70, 2.42 (6H, s, C-3 CH₃); δ_C(150 MHz; CDCl₃) 168.9 (C-3), 165.7, 165.4 (C=O), 163.9 (C-3), 156.2, 156.1 (bipy C-2), 149.5, 149.4 (bipy C-6), 147.9 (thiazole C-2), 145.8 (bipy C-4), 144.3 (thiazole C-2), 144.2, 142.8 (thiazole C-4), 121.6 (bipy C-3), 121.5 (bipy C-5), 120.9 (thiazole C-5), 119.5 (bipy C-3), 119.4, 117.8 (C-2), 64.6, 64.4 (bipy CH₂), 25.3, 16.9 (C-3 CH₃); m/z (ESI+) 519.115523 (M + H, C₂₆H₂₂N₄O₄S₂ requires 519.116075); 519.1 (M + H), 541.1 (50%) (M + Na).

(E)-3-Phenylbut-2-enoic acid 4'-((E)-3-phenylbut-2-enoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4t). Light yellow solid, 98% yield, mixed isomers, 3 : 2; LC retention time = 0.32, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 76.24; H, 5.62; N, 5.61, C₃₂H₂₈N₂O₄ requires C, 76.17; H, 5.59; N, 5.50%); $v_{\rm max}$ (neat)/cm⁻¹ 1722, 1626, 1624, 1357, 1266, 1056, 826, 739; $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3) 8.72, 8.66 (2\text{H}, \text{d}, J 5 \text{ Hz}, \text{bipy H-6}), 8.66,$ 8.64 (2H, s, bipy H-3), 7.39-7.15 (10H, m, Ph-H), 7.32, 7.28 (2H, d, J 5 Hz, bipy H-5), 6.21, 6.17 (H-2), 5.55, 5.42 (4H, bipy CH₂), 1.77, 1.72 (6H, s, C-3 CH₃); $\delta_{\rm C}$ (150 MHz; CDCl₃) 165.7, 165.4 (C=O), 163.9 (C-3), 158.2, 157.3 (bipy C-2), 149.9, 149.3 (bipy C-6), 148.8 (bipy C-4), 132.2, 131.5 (Ph C-3, C-5), 128.9, 127.5 (Ph C-2, C-6), 126.9 (Ph C-4), 125.1 (Ph C-1), 124.3 (bipy C-3), 121.9 (bipy C-5), 118.4, 116.5 (C-2), 65.2, 64.1 (bipy CH₂), 25.3, 16.9 (C-3 CH₃); m/z (ESI+) 504.20635 (M⁺, C₃₂H₂₈N₂O₄ requires 504.20491); 504.2 (M⁺).

(E)-3-(4-Methoxyphenyl)but-2-enoic acid 4'-((E)-3-(4-methoxyphenyl)but-2-enoyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (4u). White solid, 98% yield, mixed isomers, 3 : 2; LC retention time = 0.32, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 72.45; H, 4.99; N, 5.73, C₃₄H₃₂N₂O₆ requires C, 72.32; H, 4.96; N, 5.71%); v_{max}(neat)/cm⁻¹ 1765, 1678, 1645, 1276, 1067, 829, 749; δ_H(400 MHz; CDCl₃) 8.72, 8.66 (2H, d, J 5 Hz, bipy H-6), 8.66, 8.64 (2H, s, bipy H-3), 7.45-7.23 (4H, m, Ph AA'BB'), 7.32, 7.28 (2H, d, J 5 Hz, bipy H-5), 6.85-6.75 (4H, m, Ph AA'BB'), 6.21, 6.17 (H-2), 5.55, 5.42 (4H, bipy CH2), 1.77, 1.72 (6H, s, C-3 CH₃), 3.89 (6H, s, OMe); $\delta_{\rm C}$ (150 MHz; CDCl₃) 165.8, 165.2 (C=O), 162.9 (C-4), 158.2, 157.9 (bipy C-2), 151.2, 150.2 (bipy C-6), 149.2 (bipy C-4), 148.3 (Ph C-4), 115.3, 115.1 (Ph C-3, C-5), 129.0, 127.5 (Ph C-2, C-6), 128.2 (Ph C-1), 122.1 (bipy C-5), 125.3 (bipy C-3), 114.4, 113.5 (C-2), 67.3, 65.2 (bipy CH₂), 56.2 (OMe), 20.4, 17.4 (C-3 CH₃); m/z (ESI+) 564.23467 (M⁺, C₃₄H₃₂N₂O₆ requires 564.22604); 564.3 (M⁺).

Trans-3-phenylprop-2-enoic acid methyl ester (5).

Preparation A. Following the general procedure outlined by MacCoss *et al.*,¹⁹ **4a** (238 mg, 0.5 mmol) and immobilised potassium thiophenol (10 mg, catalyst) in MeOH (3.5 cm^3) were heated under microwave irradiation at 130 °C for 30 min. The suspended resin was removed by filtration and washed with DCM (2 cm³). The cleaved bipyridine diol was scavenged by the addition of IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 577 mg, 1.5 equiv.). Filtration of the resin followed by washing with DCM (3 × 5 cm³), and removal of solvent under reduced pressure yielded the desired ester **5** in 95% yield.

Preparation B. 4a (238 mg, 0.5 mmol) and triethylamine (51 mg, 0.5 mmol) in a mixture of MeOH (2 cm³) and THF (2 cm³) were heated under microwave irradiation at 120 °C for 120 min. The cleaved bipyridine diol was scavenged by the addition of IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 577 mg, 1.5 equiv.). Filtration of the resin followed by washing with DCM (3 × 5 cm³), and removal of solvent under reduced pressure yielded the desired ester **5** in 95% yield.

3-Phenyl-3-phenylsulfanylpropionic acid 4'-(3-phenyl-3-(phenylsulfanyl)propionyloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (6). A solution of *n*-BuLi (0.144 cm³, 1.6 M, 0.231 mmol, 2 equiv.) in THF was added to a stirred solution of thiophenol (228 mg, 2.07 mmol, 18 equiv.) in THF at -78 °C over 10 min; the stirring was continued for an hour while the reaction was allowed to slowly warm up to -10 °C. A solution of the bipyridine supported Horner–Emmons ester 4a (55 mg, 0.116 mmol, 1 equiv.) in THF was added to this mixture over 15 min at -78 °C, and the reaction allowed to warm up to room temperature overnight. The progress of this reaction was followed by LC-MS and TLC. The solution was diluted with DCM (25 cm³), and IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 200 mg, 2.2 equiv.) suspended in the reaction mixture, which was allowed to stir

overnight. Uptake of the bipyridine product was followed by LC-MS. The copper(II) resin was then filtered through a Bond Elut reservoir, and washed with DCM (25 cm³) and ether (10 cm³). The "release" was carried out by suspending this resin in TMEDA (0.013 g, 0.116 mmol) in DCM (25 cm³) for 3 h. The resin was then filtered, washed with DCM (30 cm³), and the combined filtrate evaporated to give the desired product in 92% yield: White solid, LC retention time = 0.54, (DCM- $Et_2O-NEt_3 = 1 : 1 : 0.05$; (Found: C, 72.60; H, 5.25; N, 4.13, C₄₂H₃₆N₂O₄S₂ requires C, 72.39; H, 5.21; N, 4.02%); $v_{\rm max}$ (neat)/cm⁻¹ 1726, 1597, 1438, 1231, 1148, 1024, 824, 747, 696; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.55 (2H, d, J 5 Hz, bipy H-6), 8.28 (2H, s, bipy H-3), 7.30 (10H, m, Ph-H), 7.02 (2H, d, J 5 Hz, bipy H-5), 5.12 (4H, s, bipy CH₂), 4.68 (2H, t, J 6 Hz, PhCHCH₂CO₂), 3.05 (4H, d, J 6 Hz, PhCHCH₂CO₂); $\delta_{\rm C}(100 \,{\rm MHz};{\rm CDCl}_3)$ 170.3 (C=O), 156.0 (bipy C-2), 149.3 (bipy C-6), 148.4 (bipy C-4), 145.6 (Ph C-1), 140.2 (Ph C-1'), 133.4 (Ph C-3, Ph C-5), 128.9 (Ph C-2, Ph C-6), 128.5 (Ph C-2', Ph C-6', Ph C-4'), 127.7 (Ph C-4'), 121.3 (bipy C-5), 119.4 (bipy C-3), 64.7 (bipy CH₂), 49.2 (PhCHCH₂CO₂), 40.9 (PhCHCH₂CO₂); m/z (ESI+) 697.21810 (M + H, $C_{42}H_{37}N_2O_4S_2$ requires 697.21947); 697.2 (14%) (M + H), 576.4 (100%), 571.1 (50%), 335.1 (100%).

Synthesis of (\pm) -4-nitro-3-phenylbutyric acid 4'-(4-nitro-3phenylbutyryloxymethyl)-[2,2']bipyridinyl-4-ylmethyl ester (7) by nitromethane addition. A solution of TBAF (1 M in THF) (0.74 cm³, 0.735 mmol, 7.35 equiv.) was added to a stirred solution of nitromethane (38 mg, 0.63 mmol, 6 equiv.) and bipyridine-supported Horner-Emmons product 4a (47.6 mg, 0.1 mmol, 1 equiv.) in THF at -10 °C in a 25 cm³ roundbottomed flask. The solution was allowed to warm up to room temperature overnight. The progress of the reaction was followed by LC-MS and TLC. The solution was then diluted in turn with methanol (5 cm³), and DCM (10 cm³). IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 323 mg, 4 equiv.) was then suspended to the reaction mixture, and the uptake of the bipyridine product was followed by LC-MS. The resin was then filtered through a Bond Elut reservoir, and washed with DCM (5 cm^3) and THF (5 cm^3) . The release of the product from the resin was performed by re-suspending the resin in a solution of TMEDA (31 µl, 0.263 mmol, 2.5 equiv.) in DCM (10 cm³), and was stirred over 2 h. The resin was then filtered, and the filtrate was then evaporated to dryness under high vacuum to give our desired addition product in 78% yield: Colourless oil, LC retention time = 0.41, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); $v_{max}(neat)/cm^{-1}$ 2922, 1738, 1599, 1548, 1455, 1377, 1107, 823, 765, 699; δ_H(400 MHz; CDCl₃) 8.61 (2H, d, J 5 Hz, bipy H-6), 8.28 (2H, s, bipy H-3), 7.25 (5H, m, Ph-H), 7.08 (2H, d, J 5 Hz, bipy H-5), 5.18 (4H, s, bipy CH₂), 4.67 (4H, m, CH₂NO₂), 4.02 (2H, quin, J 6 Hz, PhCH), 2.92 (4H, d, J 6 Hz, CHCH₂CO₂); $\delta_{\rm C}(100 \text{ MHz}; \text{ CDCl}_3)$ 170.3 (C=O), 156.0 (bipy C-2), 149.5 (bipy C-6), 145.4 (Ph C-1), 137.9 (bipy C-4), 129.2 (Ph C-3, Ph C-5), 128.2 (Ph C-4), 127.4 (Ph C-2, Ph C-6), 122.1 (bipy C-3), 119.4 (bipy C-5), 79.4 (CH₂NO₂), 64.9 (bipy CH₂), 40.2 (PhCHCH2CO2), 21.1 (PhCHCH2CO2); m/z (ESI+) 621.19570 $(M + Na, C_{32}H_{30}NaN_4O_8$ requires 621.19613); 621.2 (75%) (M +Na), 600.2 (35%) (M + 2), 599.2 (100%) (M + 1).

4-Methyl-5-phenylcyclohexane-1,3-dione (8)²⁰. A solution of potassium *tert*-butoxide (83.1 mg, 0.741 mmol, 1.2 equiv.) was added to a solution of butan-2-one (53.3 mg, 0.741 mmol) in THF (2 cm³) at 0 °C in a 5 cm³ microwave sample vial, and was allowed to stir for 20 min at this temperature. Then a solution of bipyridine supported Horner–Emmons ester **4a** (295 mg, 0.62 mmol) in THF (2 cm³) was added and allowed to warm up to room temperature. The sample vial was then heated under microwave irradiation at 70 °C for 45 min. The by-product bipyridine diol was then scavenged by the addition of IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 713 mg, 1.5 equiv.). Filtration of resin, washing with DCM, and removal of solvents of the filtrate gave the desired cyclohexane-1,3-dione

in 92% yield: Off-white crystals, mp 106 °C (lit. mp 103– 105 °C);²⁰ $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.38 (3H, t, *J* 8.5 Hz, Ph H-3, H-5), 7.28 (2H, t, *J* 8.5 Hz, Ph H-2, Ph H-6), 7.19 (1H, m, Ph H-4), 3.58 (1H, m, H-2), 3.48 (1H, m, H-5), 2.92 (1H, m, H-4), 2.89 (2H, m, H-6), 1.04 (d, 3H, *J* 7 Hz, CH₃); ¹H NMR was in agreement with the literature assignments.²⁰

4-Methoxy-6-phenylpyrimidin-2-ylamine (9)^{21,22}. A solution of guanidine hydrochloride (21 mg, 0.221 mmol, 3 equiv.) in methanol (2.5 cm³) was added to a solution of bipyridinesupported Horner-Emmons ester 4a (35 mg, 0.074 mmol) in THF in a microwave sample vial, then polymer-supported triethylamine equivalent (280 mg, 0.384 mmol, 4 equiv., diethylaminomethylpolystyrene, \sim 3.2 mmol g⁻¹; Fluka Cat. No. 31866) was added, and the mixture heated at 150 °C for 7 h. The bipyridine by-product was then scavenged by the shaking with copper(II) resin (loading 1.3 mmol g⁻¹, 142 mg, 2.5 equiv.) at room temperature. After filtration of resin, and washing with DCM, the filtrate was evaporated to dryness. Recrystallisation gave the desired pyrimidine in 80% yield: Off-white solid, mp 153 °C (lit. mp^{21,22} 152 °C); LC retention time = 0.24 (DCM– NEt₃ = 2 : 1); (Found: C, 65.84; H, 5.62; N, 21.01, C₁₁H₁₁N₃O requires C, 65.66; H, 5.51; N, 20.88%); $v_{max}(neat)/cm^{-1}$ 3472, 3367, 1578, 1485, 1298, 1189, 1054, 823, 739, 723; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.56 (2H, d, J 7.2 Hz, Ph H-2, H-6), 7.43 (2H, t, J 7.2 Hz, Ph H-3, Ph H-5), 7.29 (1H, t, J 7.2 Hz, Ph H-4), 6.32 (1H, s, pyrimidine H-5), 5.54 (2H, br s, NH₂), 4.08 (3H, s, OCH₃); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 173.2 (pyrimidine C-4), 170.1 (pyrimidine C-6), 168.2 (pyrimidine C-2), 142.8 (Ph C-1), 130.9 (Ph C-4), 130.6 (Ph C-3, C-5), 128.2 (Ph C-2, Ph C-6), 105.5 (pyrimidine C-5), 59.4 (OCH₃); m/z (EI+) 202.09765 (M + H, C₁₁H₁₂N₃O requires 202.09094); 202.1 (55%) (M + H), 124.1 (36%), 77 (21%).

Microwave-assisted [3 + 2] cycloaddition of nitrile oxide and bipyridine-supported Horner–Emmons ester

A solution of phenyl isocyanate (79.3 mg, 0.672 mmol, 8 equiv.) and nitroethane (25.2 mg, 0.336 mmol) with a catalytic amount of polymer-supported triethylamine equivalent (80 mg, 0.256 mmol, diethylaminomethylpolystyrene, \sim 3.2 mmol g⁻¹; Fluka Cat. No. 31866) in THF (3 cm³) were heated under microwave irradiation at 90 °C for 40 min. To the reaction mixture was added bipyridine-supported Horner-Emmons ester 4a (47.6 mg, 0.1 mmol) in THF (1 cm³) and the reaction heated under microwave irradiation for 10 cycles of 30 min. The reaction progress was followed by LC-MS and TLC. Upon complete reaction the mixture was filtered, the resin washed with DCM $(2 \times 2 \text{ cm}^3)$ and the combined filtrates collected. It was then diluted with DCM (25 cm³), IRC-718 copper(II) resin (loading 1.3 mmol g⁻¹, 100 mg, 1.3 equiv.) added and allowed to shake for 5 h. The uptake of the bipyridine product to the resin was monitored by LC-MS. The resin was then filtered through a Bond Elut reservoir, and washed with DCM (2×10 cm³) and Et_2O (10 cm³). The resin was then re-suspended in a solution of TMEDA (24 mg, 0.21 mmol, 1.6 equiv. based on the resin) in DCM (20 cm³), and gently shaken for 5 h. The resin was filtered, washed DCM ($2 \times 5 \text{ cm}^3$), and the combined filtrates evaporated to yield compound 10 as a pale yellow oil comprising of a mixture of regioisomers. ¹H NMR was in agreement with the literature assignments.

Oxidation of the [3 + 2] cycloadduct with silica-supported ceric ammonium nitrate. To a cooled suspension of ceric ammonium nitrate on silica (1.871 g, 0.468 mmol, ammonium cerium(IV) nitrate on silica gel, ~0.25 mmol g⁻¹; Fluka Cat. No. 22254) in acetone (25 cm³) was added a solution of cycloadduct (75 mg, 0.117 mmol) in acetone (5 cm³). The solution was stirred for 2 h then filtered through a pad of Celite (4 g) and the solvent removed under reduced pressure to yield compound **11** as a mixture of regioisomers (**11a** and **11b**). ¹H NMR was in agreement with the literature assignments. (3-Methyl-4-phenylisoxazol-5-yl)acetic acid 4'-[(3-methyl-4-phenylisoxazol-5-yl)acetoxymethyl]-[2,2']bipyridinyl-4-yl methyl ester (11a). Off-white solid, v_{max} (neat)/cm⁻¹ 2974, 1757, 1743, 1599, 1557, 1456, 1233, 1204, 1028, 866, 744, 698; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.63 (2H, d, *J* 5 Hz, bipy H-6), 8.40 (2H, s, bipy H-3), 7.65 (4H, m, Ph H-2, H-6), 7.58 (4H, m, Ph H-3, Ph H-5), 7.52 (2H, m, Ph H-4), 7.32 (2H, d, *J* 5 Hz, bipy H-5), 5.34 (4H, s, bipy CH₂), 2.45 (6H, s, CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 169.5 (C=O), 160.2 (isoxazole C-5), 158.3 (bipy C-2), 153.2 (bipy C-6), 151.6 (isoxazole C-3), 147.2 (bipy C-4), 139.5 (Ph C-1), 131.4 (Ph C-3, Ph C-5), 129.7 (Ph C-4), 129.3 (Ph C-2, Ph C-6), 125.3 (bipy C-3), 122.4 (bipy C-5), 104.2 (isoxazole C-4), 67.5 (bipy CH₂), 8.5 (isoxazole CH₃); *m*/*z* (ESI+) 609.17823 (M + Na, C₃₄H₂₆N₄NaO₆ requires 609.17500); 609.2 (35%) (M + Na).

(3-Methyl-5-phenylisoxazol-4-yl)acetic acid 4'-[(3-methyl-5-phenylisoxazol-4-yl)acetoxymethyl]-[2,2']bipyridinyl-4-yl methyl ester (11b). ν_{max} (neat)/cm⁻¹ 1757, 1746, 1634, 1537, 1459, 1236, 1209, 1034, 866, 747; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.63 (2H, d, J 5 Hz, bipy H-6), 8.40 (2H, s, bipy H-3), 7.65 (4H, m, Ph H-2, H-6), 7.58 (4H, m, Ph H-3, Ph H-5), 7.52 (2H, m, Ph H-4), 7.32 (2H, d, J 5 Hz, bipy H-5), 5.34 (4H, s, bipy CH₂), 2.45 (6H, s, CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 169.5 (C=O), 160.2 (isoxazole C-5), 158.3 (bipy C-2), 153.2 (bipy C-6), 151.6 (isoxazole C-3), 147.2 (bipy C-4), 139.5 (Ph C-1), 131.4 (Ph C-3, Ph C-5), 129.7 (Ph C-4), 129.3 (Ph C-2, Ph C-6), 125.3 (bipy C-3), 122.4 (bipy C-5), 104.2 (isoxazole C-4), 67.5 (bipy CH₂), 8.5 (isoxazole CH₃); m/z (+EI) 609.17690 (M + Na, C₃₄H₂₆N₄NaO₆ requires 609.17500); 609.2 (75%) (M⁺).

4-Phenylpyrrolidin-2-one (12)^{23,24}. Polymer-supported borohyride resin (Amberlite IRA-400 as supplied by Aldrich; loading 2.5 mmol, 252 mg, 0.63 mmol, 6 equiv.) was suspended in a solution of nickel(II) chloride hexahydrate (150 mg, 0.63 mmol) in MeOH (25 cm3) and was shaken for 2 h. The resin was isolated by filtration and re-suspended in a solution of bipyridinesupported Horner-Emmons adduct 7 (50 mg, 0.105 mmol, 1 equiv.) in DCM (30 cm³). The progress of the reductive cyclisation was followed by LC-MS and TLC. Upon completion of the reaction, the nickel(II) borohydride resin was removed by filtration. IRC-718 copper(II) resin (loading 1.3 mmol, 323 mg, 4 equiv.) was added to the solution in order to scavenge any bipyridine diol by-products. The suspension was gently shaken for 2 h, and the copper(II) resin then filtered and washed with DCM (2×10 cm³). Concentration of the filtrate under reduced pressure yielded the desired γ -lactam in 60% yield: Colourless crystals, mp 95 °C (lit. mp 96–97 °C);^{23,24} LC retention time = 2.49 (m/z 162, M + H); v_{max} (neat)/cm⁻¹ 2419, 1609, 1498, 1298, 1178, 1127, 982, 721; δ_H(400 MHz; CDCl₃) 7.23 (2H, t, J 8.3 Hz, Ph H-3, H-5), 7.19 (2H, t, J 8.3 Hz, Ph H-2, Ph H-6), 7.12 (1H, t, J 8.3 Hz, Ph H-4), 3.73 (2H, d, J 5.3 Hz, pyrrolidine H-5), 3.45 (1H, m, pyrrolidine H-4), 2.58 (2H, d, J 5.3 Hz, pyrrolidine H-3); ¹H NMR was in agreement with the literature assignments.

General scavenging procedure using bipyridyl diol (1) as a substrate scavenger for the synthesis of heterocyclic sulfonamides and amides. Polymer-supported triethylamine equivalent (260 mg, 0.831 mmol, 3.0 equiv., diethylaminomethyl polystyrene, ~3.2 mmol g⁻¹; Fluka Cat. No. 31866) was suspended in a solution of the specified secondary amine (0.3 mmol, 1 equiv.) in DCM (5 cm³). To the reaction mixture was added a solution of the corresponding sulfonyl chloride (0.6 mmol, 2.0 equiv.) in DCM (5 cm³). The mixture was then shaken overnight. A solution of bipyridine diol (0.216 g, 0.594 mmol, 2.0 equiv.) in DCM (5 cm^3) was added and the reaction monitored by LC-MS. Upon complete reaction of the excess sulfonyl chloride, Amberlite IRC-718 copper(II) resin (520 mg, 0.743 mmol, loading 1.34 mmol g^{-1} , 2.5 equiv.) was added to the mixture; the "catching" of the bipyridine tag was monitored by LC-MS. The resin was removed by filtration, and washed in turn with ether (5 cm³) and DCM (5 cm³). The filtrates were combined and the solvent removed under reduced pressure. The purity of the corresponding sulfonamide was determined by LC-MS and ¹H NMR (see Table 3).

2-[4-(6-Morpholin-4-ylpyridine-3-sulfonyl)-[1,4]diazepam-1yl]nicotinonitrile (13a). Off-white solid, mp 168 °C, LC retention time = 2.94 (m/z 428.2, M⁺); $v_{max}(neat)/cm^{-1}$ 2859, 1585, 1551, 1504, 1308, 1143, 1104, 1042, 997, 941, 837, 758, 702; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.45 (1H, d, J 5 Hz, py H-6'), 8.19 (1H, d, J 5 Hz, py H-5), 7.68 (2H, d, J 8 Hz, py H-4), 7.63 (2H, d, J 8 Hz, py H-3'), 6.57 (1H, t, J 5 Hz, py H-5), 6.48 (1H, d, py H-5'), 3.94 (4H, t, J 6.5 Hz, diazepine H-3, H-5), 3.72 (4H, t, J 6.5 Hz, morpholine H-2, H-6), 3.56 (4H, t, J 6.5 Hz, morpholine H-3, H-5), 3.43 (2H, t, J 6.5 Hz, diazepine H-2), 3.19 (2H, t, J 6.5 Hz, diazepine H-7), 2.02 (2H, t, J 6.5 Hz, diazepine H-6); δ_c(125 MHz; CDCl₃) 160.2 (C), 157.6 (C), 152.2 (CH), 147.9 (CH), 144.8 (CH), 136.2 (CH), 123.7 (C), 119.0 (CN), 112.5 (CH), 105.3 (CH), 90.4 (C), 66.5 (CH₂), 51.3 (CH₂), 49.3 (CH₂), 48.6 (CH₂), 47.6 (CH₂), 44.9 (CH₂), 28.5 (CH₂); m/z (EI+) 428.16426 (M⁺, C₂₀H₂₄N₆O₃S requires 428.16306); 428.2 (100%) (M⁺).

2-[4-(4-Methyl-3,4-dihydro-2H-benzo[1,4]oxazine-7-sulfonyl)-[1,4]diazepan-1-yl]nicotinonitrile (13b). LC retention time = 3.42 (*m*/z 413.2); v_{max} (neat)/cm⁻¹ 1649, 1598, 1336, 1209, 1182, 1089, 1039, 928, 751; δ_H(500 MHz; CDCl₃) 8.30 (1H, d, J 6 Hz, py H-6), 7.45 (2H, d, J 6 Hz, py H-4), 6.95 (1H, m, benzooxazine H-8), 6.75 (1H, d, J 7.2 Hz, benzooxazine H-5), 6.63 (2H, t, J 6 Hz, py H-5), 4.24 (2H, t, J 7 Hz, benzooxazine H-2), 4.08 (2H, br t, diazepine H-3), 4.02 (2H, br t, diazepine H-2), 3.74 (2H, br t, diazepine H-7), 3.65 (2H, br t, diazepine H-5), 3.28 (2H, t, J 6 Hz, benzooxazine H-3), 2.85 (3H, s, benzooxazine N-4 CH₃), 2.17 (2H, br t, diazepine H-6); $\delta_{\rm C}$ (100 MHz; CDCl₃) 157.2 (sat. carbon), 152.4 (CH), 148.2 (sat. carbon), 144.9 (CH), 133.5 (sat. carbon), 128.6 (sat. carbon), 118.9 (CN), 118.1 (CH), 116.1 (CH), 112.9 (CH), 111.0 (CH), 91.3 (sat. carbon), 65.1 (CH₂), 51.4 (CH₂), 50.1 (CH₂), 48.1 (CH₂), 47.6 (CH₂), 45.2 (CH₂), 38.8 (CH₃), 26.4 (CH₂); m/z (EI+) 413.15425 (M⁺) C₂₀H₂₃N₅O₃S requires 413.15216); 413.2 (43%) (M⁺).

2-[4-(Quinoxaline-6-carbonyl)-[1,4]diazepan-1-yl]-nicotinonitrile (13c). Yellow oil, LC retention time = 2.74 (m/z 359.10); v_{max} (neat)/cm⁻¹ 2208, 1627, 1587, 1549, 1445, 1424, 1363, 1234, 1174, 1021, 906, 757, 743, 731; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.86 (2H, s, quinoxaline H-2, H-3), 8.30 (1H, d, *J* 6 Hz, py H-6), 8.12 (1H, s, quinoxaline H-5), 8.02 (4H, d, *J* 5.5 Hz, quinoxaline H-8), 7.45 (2H, d, *J* 6 Hz, py H-4), 6.63 (2H, t, *J* 6 Hz, py H-5), 4.08 (2H, br t, diazepine H-3), 4.02 (2H, br t, diazepine H-2), 3.74 (2H, br t, diazepine H-7), 3.65 (2H, br t, diazepine H-5), 2.17 (2H, br t, diazepine H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 168.2 (C=O), 157.3 (C), 152.2 (CH), 145.9 (CH × 2), 144.8 (CH), 143.1 (C), 142.4 (C), 129.9 (CH), 128.2 (CH), 127.4 (CH), 118.8 (CN), 112.8 (CH), 91.1 (C), 51.2 (CH₂), 50.4 (CH₂), 49.6 (CH₂), 48.4 (CH₂), 47.0 (CH₂), 45.1 (CH₂), 26.3 (CH₂); m/z (EI+) 358.15410 (M⁺, C₂₀H₁₈N₆O requires 358.15421); 358.2 (35%) (M⁺).

2-[4-(3,5-Dimethylisoxazole-4-carbonyl)-[1,4]diazepan-1yl]nicotinonitrile (13d). Off-white solid, mp 103 °C, LC retention time = 3.22 (m/z 326.0); $v_{max}(neat)/cm^{-1}$ 2920, 1587, 1503, 1439, 1333, 1171, 1120, 977, 902, 839, 755, 690; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.22 (1H, d, J 5 Hz, py H-6), 7.65 (1H, d, J5 Hz, py H-4), 6.65 (1H, s, py H-5), 3.95 (4H, t, J 6 Hz, diazepine H-2, H-3), 3.48 (2H, t, J 6 Hz, diazepine H-5), 3.29 (2H, t, J 6 Hz, diazepine H-7), 2.61 (3H, s, isoxazole C-5 CH₃), 2.28 (3H, s, isoxazole C-3 CH₃), 2.08 (2H, t, J 6 Hz, diazepine H-6); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 173.2 (C=O), 166.4 (C), 157.4, 157.4 (C), 152.2 (CH), 144.8 (CH), 118.0 (CN), 116.0 (C), 112.8 (CH), 90.5 (C), 51.4 (CH₂), 48.9 (CH₂), 48.8 (CH₂), 47.1 (CH₂), 28.6 (CH₂), 12.8 (CH₃), 11.1 (CH₃); m/z (EI+) 325.15745 (M⁺, C₁₇H₁₉N₅O₂ requires 325.15387); 202.1 (55%) (M + H), 124.1 (36%). **2-**[4-(1,5-Dimethyl-1*H*-pyrazole-3-carbonyl)-[1,4]diazepan-1yl]nicotinonitrile (13e). Yellow oil, LC retention time = 2.75 (*m*/*z* 325.1, M + H); v_{max} (neat)/cm⁻¹ 2924, 1613, 1587, 1549, 1496, 1427, 1220, 1160, 1113, 939, 759, 730; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.18 (1H, d, *J* 5 Hz, py H-6), 7.62 (1H, d, *J* 5 Hz, py H-4), 6.53 (1H, t, *J* 5 Hz, py H-6), 7.62 (1H, d, *J* 5 Hz, py H-4), 6.53 (1H, t, *J* 6 Hz, diazepine H-2, H-3), 3.89, 3.83 (4H, t, *J* 6 Hz, diazepine H-5, H-7), 3.75 (3H, s, pyrazole N-1 CH₃), 2.22 (3H, s, pyrazole C-5 CH₃), 2.05 (2H, quintet, *J* 6 Hz, diazepine H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 164.0 (C=O), 157.6 (C), 152.2 (C), 144.8 (CH), 141.8 (C), 138.9 (C), 119.2 (CN), 112.16 (CH), 108.0 (CH), 90.2 (C), 52.5 (CH₂), 50.1 (CH₂), 48.8 (CH₂), 46.2 (CH₂), 36.5 (CH₃), 25.7 (CH₂), 11.0 (CH₃); *m*/*z* (EI+) 324.16858 (M⁺, C₁₇H₂₀N₆O requires 324.16986); 324.2 (45%) (M⁺).

2-[4-(1-Methyl-1*H***-imidazole-4-sulfonyl)-[1,4]diazepan-1yl]nicotinonitrile (13f).** Yellow crystals, mp 151–152 °C, LC retention time = 2.73 (*m*/*z* 347.1); v_{max} (neat)/cm⁻¹ 2211, 1585, 1552, 1486, 1454, 1443, 1327, 1218, 1156, 1117, 1039, 958, 868, 857, 759, 691; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.19 (1H, d, *J* 6 Hz, py H-6), 7.34 (1H, d, *J* 6 Hz, py H-4), 7.33 (2H, m, imidazole H-2, py H-5), 6.55 (1H, t, *J* 6 Hz, py H-5), 3.94 (4H, m, diazepine H-2, H-3), 3.66 (3H, imidazole N-1 CH₃), 3.54, 3.34 (4H, t, *J* 6 Hz, diazepine H-5, H-7), 2.03 (2H, m, diazepine H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 157.7 (C), 152.2 (CH), 144.8 (CH), 140.3 (C), 138.9 (CH), 123.7 (CH), 119.1 (CN), 112.3 (CH), 90.3 (C), 51.6 (CH₂), 49.6 (CH₂), 48.5 (CH₂), 48.1 (CH₂), 33.9 (CH₃), 28.5 (CH₂); *m*/*z* (EI+) 346.12050 (M⁺, C₁₅H₁₈N₆O₂S requires 346.12119); 346.1 (45%) (M⁺), 264.1 (45%).

2-[4-(1,2-Dimethyl-1*H***-imidazole-4-sulfonyl)-[1,4]diazepan-1**yl]nicotinonitrile (13g). Colourless crystals, mp 105 °C, LC retention time = 2.54 (*m*/*z* 361.0); v_{max} (neat)/cm⁻¹ 1586, 1547, 1460, 1329, 1148, 1123, 1034, 903, 759, 707, 672; δ_{H} (500 MHz; CDCl₃) 8.20 (1H, d, *J* 5 Hz, py H-6), 7.62 (1H, d, *J* 5 Hz, py H-4), 7.21 (1H, s, imidazole H-5), 6.57 (1H, t, *J* 5 Hz, py H-5), 3.93 (4H, t, *J* 6 Hz, diazepine H-2, H-3), 3.55 (2H, t, *J* 6 Hz, diazepine H-7), 3.50 (3H, s, imidazole N-1 CH₃), 3.35 (2H, t, *J* 6 Hz, diazepine H-6); δ_{C} (125 MHz; CDCl₃) 157.6 (C), 152.2 (CH), 146.9 (C), 144.7 (CH), 137.5 (CH), 124.2 (CH), 119.1 (CN), 112.3 (CH), 90.2 (C), 51.5 (CH₂), 49.5 (CH₂), 49.5 (CH₂), 48.0 (CH₂), 33.3 (CH₃), 28.5 (CH₂), 13.0 (CH₃); *m*/*z* (EI+) 360.13838 (M⁺, C₁₆H₂₀N₆O₂S requires 360.13684); 360.1 (25%) (M⁺), 201.1 (36%).

4{**5**[**4**(2-Nitro-4(trifluoromethyl)phenyl)piperazine-1-sulfonyl]pyridin-2-yl}morpholine (14a). Yellow solid, mp 202–203 °C, LC retention time = 2.78 (*m*/*z* 502.1, M + H); $v_{max}(neat)/cm^{-1}$ 1621, 1512, 1317, 1225, 1178, 1128, 935, 856, 767; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.52 (1H, s, py H-6), 7.92 (1H, s, Ph H-3), 7.78 (1H, m, *J* 7 Hz, py H-4), 7.71 (1H, m, py H-3), 7.05 (1H, d, *J* 8.2 Hz, Ph H-5), 6.48 (1H, d, *J* 8.2 Hz, Ph H-6), 3.65 (4H, br t, morpholine H-3, H-5), 3.57 (4H, br t, piperazine H-2, H-6), 3.07 (4H, br t, morpholine H-2, H-6), 2.98 (4H, br t piperazine H-3, H-5); $\delta_{\rm c}$ (125 MHz; CDCl₃) 160.3 (C), 148.6 (CH), 147.6 (C), 141.5 (CH), 139.4 (C), 136.7 (CH), 130.3 (CH), 125.1 (C), 123.7 (CH), 121.6 (CH), 120.3 (*J*_{C-F} 48 Hz, CF₃), 119.0 (C), 105.4 (CH), 66.3 (CH₂), 50.6 (CH₂), 45.6 (CH₂), 44.7 (CH₂); *m*/*z* (EI+) 501.12867 (M⁺, C₂₀H₂₂F₃N₅O₅S requires 501.12937); 501.1 (48%) (M⁺).

4-Methyl-7-[4-(2-nitro-4-(trifluoromethyl)phenyl)piperazine-1-sulfonyl]-3,4-dihydro-2*H***-benzo[1,4]oxazine (14b). Pale yellow gum, LC retention time = 3.34 (m/z 486.1); v_{max}(neat)/cm⁻¹ 1638, 1581, 1310, 1292, 1192, 1122, 1074, 1045, 928, 756, 769; \delta_{\rm H}(400 MHz; CDCl₃) 8.12 (1H, s, Ph H-3), 7.72 (1H, d,** *J* **7.1 Hz, Ph H-5), 7.18 (1H, d,** *J* **7.5 Hz, benzooxazine H-6), 7.07 (1H, d,** *J* **7.1 Hz, Ph H-6), 6.95 (1H, s, benzooxazine H-8), 6.85 (1H, d,** *J* **7.5 Hz, benzooxazine H-5), 4.38 (4H, br d, benzooxazine H-2, H-3), 3.35 (4H, br d, piperazine H-3, H-5), 3.25 (3H, s, N-1 CH₃), 2.95 (4H, br d,** piperazine H-2, H-6); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 147.8 (sat. carbon), 141.7 (sat. carbon), 136.9 (sat. carbon), 130.4 (CH), 127.5 (sat. carbon), 123.9 ($J_{\rm C-F}$ 278.2 Hz, CF₃), 121.4 (CH), 118.0 (CH), 116.0 (CH), 110.9 (CH), 65.0 (CH₂), 50.6 (CH₂), 48.2 (CH₂), 46.0 (CH₂), 29.7 (N-CH₃); m/z (EI+) 486.11925 (M⁺, C₂₀H₂₁F₃N₄O₅S requires 486.11847); 486.1 (43%) (M⁺).

[4-(2-Nitro-4-(trifluoromethyl)phenyl)piperazin-1-yl]quinoxalin-6-ylmethanone (14c). Yellow crystals, mp 142 °C, LC retention time = 3.45 (m/z 432.1, M + H); $v_{max}(neat)/cm^{-1}$ 1621, 1533, 1323, 1234, 1119, 1013, 905, 727; $\delta_{H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.85 (2H, s, quinoxaline H-2, H-3), 8.11 (2H, m, quinoxaline H-7, H-8), 8.04 (1H, s, quinoxaline H-5), 7.68 (1H, d, J 8 Hz, Ph H-3), 7.66 (1H, d, J 8Hz, Ph H-5), 7.14 (1H, d, Ph H-6), 3.64 (4H, br d, piperazine H-3, H-5), 3.07 (4H, br d, piperazine H-2, H-6); $\delta_{C}(125 \text{ MHz}; \text{CDCl}_3)$ 169.1 (C=O), 147.7 (C), 146.1 (CH), 146.0 (CH), 143.3 (C), 142.4 (C), 141.7 (C), 136.7 (C), 130.5 (CH), 130.4 (CH), 128.7 (CH), 128.2 (CH), 124.1 (CH), 122.0 (CF₃), 121.2 (CH), 51.0 (CH₂), 49.8 (CH₂); m/z (EI+) 431.11906 (M⁺, C₂₀H₁₆F₃N₅O₃ requires 431.12052); 431.1 (25%) (M + H).

3,5-Dimethylisoxazol-4-yl-[4-(2-nitro-4-(trifluoromethyl)phenyl)piperazin-1-yl]methanone (14d). Yellow crystals, mp 151 °C, LC retention time = 3.67 (*m/z* 437.0, M + K); $v_{max}(neat)/cm^{-1}$ 1626, 1537, 1328, 1182, 1152, 1126, 1089, 944, 731; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.02 (2H, s, Ph H-3), 7.67 (1H, d, *J* 8 Hz, Ph H-5), 7.14 (1H, d, *J* 8 Hz, Ph H-6), 3.26 (4H, t, *J* 5 Hz, piperazine H-2, H-6), 3.16 (4H, t, *J* 5 Hz, piperazine H-3, H-5), 2.60 (3H, s, isoxazole C-5 CH₃), 2.36 (3H, s, isoxazole C-3 CH₃); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 168.2 (C=O), 174.0 (C=O), 157.9 (C), 147.6 (C), 142.1 (C), 130.5 (CH), 124.8 (q, *J* 34.4 Hz, CF₃), 124.1 (CH), 121.9 (C), 121.6 (CH), 113.2 (C), 50.9 (CH₂), 45.3 (CH₂), 13.0 (CH₃), 11.4 (CH₃); *m/z* (EI+) 398.12145 (M⁺, C₁₇H₁₇F₃N₄O₄ requires 398.12019); 398.1 (25%) (M⁺).

1,5-Dimethyl-1*H*-pyrazol-3-yl-[4-(2-nitro-4-(trifluoromethyl)phenyl)piperazin-1-yl]methanone (14e). Yellow solid, mp 115–116 °C, LC retention time = 3.40 (m/z 398.1, M⁺); v_{max} (neat)/cm⁻¹ 1622, 1537, 1322, 1279, 1263, 1120, 1088, 998, 826, 811, 764; δ_{H} (500 MHz; CDCl₃) 8.02 (1H, d, *J* 2 Hz, Ph H-3), 7.62 (1H, d, *J* 8.7 Hz, Ph H-5), 7.11 (1H, d, *J* 8.7 Hz, Ph H-6), 6.40 (1H, s, pyrazole H-4), 3.87 (4H, br d, piperazine H-3, H-5), 3.73 (3H, s, pyrazole N-1 CH₃), 3.12 (4H, br d, piperazine H-2, H-6), 2.21 (3H, s, pyrazole C-5 CH₃); δ_{C} (125 MHz; CDCl₃) 163.1 (C=O), 147.9 (C), 145.1 (C), 140.9 (C), 139.2 (C), 130.2 (CH), 124.2 (CH), 123.0 (CF₃), 122.1 (C), 120.7 (CH), 108.4 (CH), 51.7 (CH₂), 50.6 (CH₂), 46.5 (CH₂), 42.2 (CH₂), 36.5 (CH₃), 11.0 (CH₃); m/z (EI+) 397.13467 (M⁺, C₁₇H₁₈F₃N₅O₃ requires 397.13617); 397.1 (45%) (M⁺).

1-(1-Methyl-1*H***-imidazole-4-sulfonyl)-4-(2-nitro-4-(trifluoromethyl)phenyl)piperazine (14f).** Yellow crystals, mp 156 °C, LC retention time = 3.26 (*m*/*z* 420.0, M + H); v_{max} (neat)/cm⁻¹ 2211, 1586, 1553, 1486, 1454, 1327, 1156, 1118, 1040, 715; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.99 (1H, s, Ph H-3), 7.63 (1H, d, *J* 8.7 Hz, Ph H-6), 7.46 (1H, s, imidazole H-2), 7.20 (1H, s, imidazole H-5), 7.13 (1H, d, *J* 8.7 Hz, Ph H-6), 3.72 (3H, imidazole N-1 CH₃), 3.32 (4H, t, *J* 4.8 Hz, piperazine H-2, H-6), 3.16 (4H, t, *J* 4.8 Hz, piperazine H-3, H-5); $\delta_{\rm C}$ (125 MHz; CDCl₃) 147.9 (C), 141.8 (CH), 137.6 (C), 130.3 (CH), 124.7 (CH), 124.1 (*J*_{C-F} 47 Hz, CF₃), 124.0 (CH), 122.0 (C), 121.4 (CH), 50.9 (CH₂), 46.0 (CH₂), 34.1 (CH₃); *m*/*z* (EI+) 419.08824 (M⁺, C₁₅H₁₆F₃N₅O₄S requires 419.08751); 419.1 (35%) (M⁺).

1-(1,2-Dimethyl-1*H***-imidazole-4-sulfonyl)-4-(2-nitro-4-(trifluoromethyl)phenyl)piperazine (14g).** Yellow crystals, mp 205 °C, LC retention time = 2.89 (*m*/*z* 203.1, M + H); $v_{max}(neat)/cm^{-1}$ 1623, 1533, 1324, 1122, 1086, 944, 917, 815, 766, 727; $\delta_{\rm H}(500 \text{ MHz}; \text{ CDCl}_3)$ 8.05 (1H, s, Ph H-3), 7.70 (1H, d, *J* 6.7 Hz, Ph H-5), 7.26 (1H, s, imidazole H-5), 7.26 (1H, d, *J* 6.7 Hz, Ph H-6), 3.65 (3H, s, N-1 CH₃), 3.36 (4H, t, *J* 5.2 Hz, piperazine H-2, H-6), 3.21 (3H, t, *J* 5.2 Hz, piperazine H-3, H-5), 2.42 (3H, s, imidazole C-2 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 163.2 (C=O), 148.2 (C), 143.2 (C), 135.6 (C), 131.6 (CH), 125.7 (CH), 124.1 (C), 121.5 (CH), 116.7 (CH), 50.9 (CH₂), 45.9 (CH₂), 33.5 (CH₃), 13.0 (CH₃); *m*/*z* (EI+) 202.09765 (M + H, C₁₆H₁₈N₅O₄F₃ requires 202.09094); 202.1 (55%) (M + H), 124.1 (36%), 77 (21%).

2-(6-Morpholin-4-yl-pyridine-3-sulfonyl)-1,2,3,4-tetrahydroisoquinoline (15a). White solid, mp 148 °C, LC retention time = 3.23 (m/z 360.1, M⁺); $v_{max}(neat)/cm^{-1}$ 2833, 1593, 1542, 1508, 1426, 1330, 1264, 1176, 1108, 953, 819, 776, 729; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.53 (1H, d, J 3 Hz, pyridine H-2), 7.74 (1H, d, J 8.5 Hz, pyridine H-4), 7.07–7.01 (3H, m, isoquinoline H-6, H-8, H-5), 6.95 (1H, m, pyridine H-5), 6.53 (1H, d, J 8 Hz, isoquinoline H-7), 4.19 (2H, s, isoquinoline H-1), 3.72 (4H, t, J 5 Hz, morpholine H-2), 3.57 (4H, t, J 5 Hz, morpholine H-3), 3.29 (2H, t, J 6 Hz, isoquinoline H-2), 2.86 (2H, t, J 6 Hz, isoquinoline H-4); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 160.4 (C), 148.7 (CH), 136.9 (CH), 133.1 (C), 131.6 (C), 128.8 (CH), 126.8 (CH), 126.4 (CH), 120.6 (C), 105.3 (CH), 66.5 (CH₂), 47.5 (CH₂), 44.9 (CH₂), 43.6 (CH₂), 28.8 (CH₂); m/z (EI+) 359.13134 (M⁺, C₁₈H₂₁N₃O₃S requires 359.13036); 359.1 (65%) (M⁺).

7-(3,4-Dihydro-1H-isoquinoline-2-sulfonyl)-4-methyl-3,4dihydro-2*H*-benzo[1,4]oxazine (15b). LC retention time = 2.56 (*m*/z 345.1, M + H); v_{max} (neat)/cm⁻¹ 2208, 1587, 1574, 1486, 1468, 1325, 1167, 1119, 976, 725; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.04 (4H, m, isoquinoline H-5, H-6, H-7, H-8), 6.95 (2H, m, benzooxazine H-8, benzooxazine H-6), 6.75 (1H, d, J 7.2 Hz, benzooxazine H-5), 4.24 (2H, t, J 7 Hz, benzooxazine H-2), 4.19 (2H, s, isoquinoline H-1), 3.28 (3H, t, J 6 Hz, benzooxazine H-3), 3.22 (2H, t, J 5.2 Hz, isoquinoline H-4), 2.85 (3H, s, benzooxazine N-4 CH₃); $\delta_c(125 \text{ MHz}; \text{ CDCl}_3)$ 147.9 (sat. carbon), 136.7 (sat. carbon), 133.2 (sat. carbon), 131.9 (sat. carbon), 128.9 (CH), 128.5 (sat. carbon), 126.7 (CH), 126.7 (CH), 126.4 (CH), 126.3 (CH), 118.2 (CH), 115.9 (CH), 111.1 (CH), 65.0 (CH₂), 48.3 (CH₂), 47.6 (CH₂), 43.8 (CH₂), 38.7 (CH₃), 28.9 (CH₂); m/z (EI+) 344.11954 (M⁺, C₁₈H₂₀N₂O₃S requires 344.11946); 344.1 (35%) (M+).

(3,4-Dihydro-1*H*-isoquinolin-2-yl)quinoxalin-6-ylmethanone (15c). Yellow oil, LC retention time = 2.92 (m/z 290.1); v_{max} (neat)/cm⁻¹ 2924, 1627, 1445, 1429, 1368, 1302, 1263, 1244, 1176, 1021, 905, 869, 818, 743; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.85 (2H, s, quinoxaline H-2, H-3), 7.18 (2H, d, *J* 3 Hz, quinoxaline H-7, H-8), 7.80 (1H, s, quinoxaline H-5), 7.15–7.06 (4H, m, isoquinoline H-5, H-6, H-7, H-8), 4.59 (2H, br t, isoquinoline H-1), 3.64 (2H, br t, isoquinoline H-3), 2.84 (2H, br t, isoquinoline H-4); $\delta_{\rm C}$ (125 MHz; CDCl₃) 167.8 (C=O), 145.9 (CH × 2), 143.3 (C), 142.5 (C), 138.6 (C), 137.6 (C), 132.6 (C), 130.3 (CH), 128.7 (CH), 128.1 (CH), 127.8 (CH), 127.1 (CH), 126.8 (CH), 125.9 (CH), 45.0 (CH₂), 28.3 (CH₂ × 2); m/z (EI+) 289.12161 (M + H, C₁₈H₁₅N₃O requires 289.12151); 289.1 (100%) (M⁺), 157.0 (86%), 129.0 (67%).

3,4-Dihydro-1*H***-isoquinolin-2-yl-(3,5-dimethylisoxazol-4-yl)methanone (15d).** Colourless crystals, mp 88 °C, LC retention time = 3.37 (*m*/*z* 257.1, M + H); $v_{max}(neat)/cm^{-1}$ 2933, 1587, 1406, 1369, 1337, 1179, 1129, 956, 922, 770, 737; $\delta_{\rm H}(500 \text{ MHz; CDCl}_3)$ 7.11 (2H, m, isoquinoline H-8, H-6), 7.06 (1H, m, isoquinoline H-5), 6.99 (1H, m, isoquinoline H-7), 4.32 (2H, s, isoquinoline H-1), 3.43 (2H, t, *J* 6 Hz, isoquinoline H-3), 2.86 (2H, t, *J* 6 Hz, isoquinoline H-4), 2.62 (3H, s, isoxazole C-5 CH₃), 2.34 (3H, s, isoxazole C-3 CH₃); $\delta_{\rm C}(125 \text{ MHz; CDCl}_3)$ 173.7 (C), 166.3 (C=O), 157.9 (C), 132.8 (C), 131.1 (C), 129.0 (CH), 127.1 (CH), 126.6 (CH), 126.3 (CH), 114.4 (C), 46.8 (CH₂), 43.1 (CH₂), 28.6 (CH₂), 13.0 (CH₂), 11.2 (CH₂); *m*/*z* (EI+) 256.12123 (M⁺, C₁₅H₁₆N₂O₂ requires 256.12118); 256.1 (100%) (M⁺).

3,4-Dihydro-1*H***-isoquinolin-2-yl-(1,5-dimethyl-1***H***-pyrazol-3-yl)methanone (15e).** Off-white solid, mp 81–82 °C, LC retention time = 2.91 (m/z 256.1, M⁺); v_{max} (neat)/cm⁻¹ 2921, 2852, 1589, 1459, 1376, 1312, 1179, 963, 902, 802, 749, 720, 701; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.05 (3H, m, isoquinoline H-5, H-8, H-6), 6.36 (1H, s, pyrazole H-4), 4.80 (1H, s, isoquinoline H-1), 3.93 (2H, t, *J* 6 Hz, isoquinoline H-3), 3.74 (3H, s, pyrazole N-1 CH₃), 2.86 (2H, t, *J* 6 Hz, isoquinoline H-4), 2.20 (3H, s, pyrazole C-5 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 163.5 (C=O), 145.6 (C), 139.0 (C), 134.6 (C), 133.4 (C), 128.9 (CH), 126.1 (CH × 3), 107.7 (CH), 49.0 (CH₂), 44.7 (CH₂), 36.6 (CH₃), 29.7 (CH₂), 14.1 (CH₃); m/z (EI+) 255.13819 (M⁺, C₁₅H₁₇N₃O requires 255.13716); 255.1 (75%) (M⁺).

2-(1-Methyl-1*H*-imidazole-4-sulfonyl)-1,2,3,4-tetrahydroisoquinoline (15f). LC retention time = 2.86 (*m*/*z* 278.1, M + H); v_{max} (neat)/cm⁻¹ 2231, 1612, 1575, 1499, 1467, 1328, 1176, 1129, 976, 754; δ_{H} (500 MHz; CDCl₃) 7.39 (2H, m, imidazole H-2, isoquinoline H-6), 7.06 (1H, m, isoquinoline H-8), 7.02 (2H, m, isoquinoline H-5, H-7), 6.96 (1H, m, imidazole H-5), 4.37 (2H, s, isoquinoline H-1), 3.68 (3H, s, imidazole N-1 CH₃), 3.45 (2H, t, *J* 6 Hz, isoquinoline H-3), 3.14 (2H, t, *J* 6 Hz, isoquinoline H-4), 2.88 (3H, s, benzooxazine N-1 CH₃); δ_{C} (125 MHz; CDCl₃) 138.16 (CH), 137.6 (C), 132.4 (C), 131.0 (C), 127.8 (CH), 125.4 (CH), 125.2 (CH), 123.6 (CH), 46.6 (CH₂), 43.0 (CH₂), 33.0 (CH₃), 28.0 (CH₂); *m*/*z* (EI+) 277.08963 (M⁺, C₁₃H₁₅N₃O₂S requires 277.08850); 277.1 (95%) (M⁺).

2-(1,2-Dimethyl-1*H***-imidazole-4-sulfonyl)-1,2,3,4-tetrahydro-isoquinoline (15g).** Colourless crystals, mp 195 °C, LC retention time = 3.34 (*m*/*z* 292.1, M + H); v_{max} (neat)/cm⁻¹ 1519, 1455, 1403, 1329, 1153, 1130, 1073, 1024, 979, 957, 926, 767, 757, 734; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.32 (1H, d, *J* 6 Hz, isoquinoline H-6), 7.18 (1H, s, imidazole H-5), 7.06 (1H, m, isoquinoline H-8), 6.99 (1H, m, isoquinoline H-5), 6.97 (1H, m, isoquinoline H-7), 4.37 (2H, s, isoquinoline H-1), 3.51 (3H, s, imidazole N-1 CH₃), 3.44 (2H, t, *J* 6 Hz, isoquinoline H-3), 2.89 (2H, t, *J* 6 Hz, isoquinoline H-4), 2.33 (3H, s, imidazole C-2 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 147.1 (C), 135.5 (C), 133.5 (C), 132.2 (C), 128.8 (CH), 126.4 (CH), 126.2 (CH), 124.2 (CH), 47.6 (CH₂), 43.9 (CH₂), 33.4 (CH₃), 29.7 (CH₂), 13.0 (CH₃); *m*/*z* (EI+) 291.10526 (M⁺, C₁₄H₁₇N₃O₂S requires 291.10415); 291.1 (87%) (M⁺).

4-{**5**-[**4**-(**3**-Chloro-6-(trifluoromethyl)pyridin-2-yl)piperazine-**1**-sulfonyl]pyridin-2-yl}morpholine (16a). Off-white solid, mp 199–200 °C, LC retention time = 2.56 (m/z 492.1, M + H); v_{max} (neat)/cm⁻¹ 2221, 1598, 1563, 1493, 1454, 1327, 1156, 1121, 998, 720; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.46 (1H, d, *J* 2.5 Hz, py H-2), 8.30 (1H, d, *J* 6.7 Hz, py H-4), 7.70 (1H, d, *J* 9 Hz, py H-4), 7.68 (1H, d, *J* 2.5 Hz, py H-5), 6.56 (1H, d, *J* 9 Hz, py H-4'), 7.68 (1H, d, *J* 2.5 Hz, py H-5), 6.56 (1H, d, *J* 9 Hz, py H-5'), 3.73 (2H, t, *J* 5 Hz, morpholine H-2, H-6), 3.59 (2H, t, *J* 5 Hz, morpholine H-3, H-5), 3.51, 3.11 (4H, t, *J* 5 Hz, piperazine H-2, H-3, H-5, H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 160.4 (C), 159.3 (C), 148.9 (CH), 143.0 (CH), 137.0 (CH), 136.1 (CH), 122.1 ($J_{\rm C-F}$ 270 Hz, Py C-6'), 120.9 (C), 120.8 (q, $J_{\rm C-F}$ 12.6 Hz, CF₃), 119.7 (C), 105.3 (CH), 66.5 (CH₂), 48.6 (CH₂), 45.7 (CH₂), 44.9 (CH₂); m/z (EI+) 491.10237 (M⁺, C₁₉H₂₁ClF₃N₅O₃S requires 491.10057); 491.1 (35%) (M⁺).

7-[4-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)piperazine-1sulfonyl]-4-methyl-3,4-dihydro-2H-benzo[1,4]oxazine (16b). Off-white solid, mp 167 °C, LC retention time = 3.24 (*m/z* 477.1, M + H); $v_{max}(neat)/cm^{-1}$ 2225, 1599, 1578, 1486, 1355, 1125, 1078, 989, 745; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 7.63 (1H, d, *J* 8Hz, py H-4), 7.12 (1H, d, *J* 8.5 Hz, benzooxazine H-6), 6.96 (1H, d, *J* 8.5 Hz, benzooxazine H-8), 6.79 (1H, br d, py H-5), 6.76 (1H, d, *J* 8.5 Hz, benzooxazine H-5), 4.28 (4H, t, *J* 4.7 Hz, piperazine H-2, H-6), 2.62 (4H, t, *J* 4.7 Hz, piperazine H-3, H-5), 3.14 (4H, br t, benzooxazine H-2, H-3), 2.88 (3H, s, benzooxazine N-1 CH₃); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 162.5 (C), 147.8 $(J_{C-F} 34.4 \text{ Hz}, \text{Py C-6}), 141.7 (C), 136.9 (C), 130.4 (CH), 127.5 (C), 126.3 (<math>J_{C-F} 18 \text{ Hz}, \text{ CF}_3$), 122.0 (C), 121.4 (CH), 118.1 (CH), 116.0 (CH), 110.9 (CH), 65.0 (CH₂), 50.9 (CH₂), 48.3 (CH₂), 45.8 (CH₂), 38.6 (CH₂); m/z (EI+) 476.09102 (M⁺, C₁₉H₂₀ClF₃N₄O₃S requires 476.08967); 476.1 (100%) (M⁺).

[4-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)piperazin-1yl]quinoxalin-6-ylmethanone (16c). White solid, mp 136 °C, LC retention time = 2.45 (m/z 422.1, M + H); v_{max} (neat)/cm⁻¹ 1625, 1526, 1367, 1252, 1165, 1112, 945, 867; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.85 (2H, s, quinoxaline H-2, H-3), 8.35 (1H, s, quinoxaline H-5), 8.13 (2H, d, J 7 Hz, quinoxaline H-7, H-8), 4.28 (1H, d, J 5 Hz, pyridine H-4), 7.74 (1H, d, J 5 Hz, pyridine H-5), 3.95 (4H, br t, piperazine H-3, H-5), 3.59 (4H, br t, piperazine H-2, H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 169.1 (C=O), 159.5 (C), 146.0 (CH × 2), 143.3 (C), 142.4 (CH), 137.0 (CH), 136.2 (C), 130.4 (CH), 128.8 (CH), 128.2 (CH), 124.2 (C), 121.3 (C), 121.0 ($J_{\rm C-F}$ 50 Hz, CF₃); m/z (EI+) 421.09256 (M⁺, C₁₉H₁₅ClF₃N₅O requires 421.09172); 421.1 (51%) (M⁺).

[4-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl]-(3,5-dimethylisoxazol-4-yl)methanone (16d). White solid, mp 126 °C, LC retention time = 3.76 (m/z 427.0, M + K); v_{max} (neat)/cm⁻¹ 1585, 1489, 1405, 1345, 1318, 1282, 1252, 1180, 1120, 1058, 956, 922, 733; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.33 (1H, d, J 5 Hz, py H-4), 7.72 (1H, d, J 5 Hz, py H-5), 3.53 (2H, t, J6 Hz, piperazine H-2, H-6), 3.21 (1H, t, J 6 Hz, piperazine H-3, H-5), 2.60 (3H, s, isoxazole C-3 CH₃), 2.37 (3H, s, isoxazole C-5 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 173.9 (C=O), 159.2 (py C-2), 158.0 (py C-6), 143.1 (CH), 136.2 (CH), 126.3, 124.2 (isoxazole C-3, C-5), 121.5 (isoxazole C-4), 120.7 (q, $J_{\rm C-F}$ 27.2 Hz, CF₃), 113.2 (Py C-3), 48.0 (CH₂), 45.2 (CH₂), 13.0 (CH₃), 11.4 (CH₃); m/z(EI+) 388.09156 (M⁺, C₁₆H₁₆N₄O₂CIF₃ requires 388.09139); 388.1 (55%) (M⁺), 264.3 (35%).

[4-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl]-(1,5-dimethyl-1*H*-pyrazol-3-yl)methanone (16e). White solid, mp 72 °C, LC retention time = 3.21 (m/z 388.1, M + H); v_{max} (neat)/cm⁻¹ 2221, 1598, 1563, 1493, 1454, 1327, 1156, 1121, 998, 720; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.33 (1H, d, *J* 4.5 Hz, py H-4), 7.70 (1H, d, *J* 4.5 Hz, py H-5), 6.38 (1H, s, pyrazole H-4), 4.13 (4H, br t, piperazine H-3, H-5), 3.73 (3H, s, N-1 CH₃), 3.53 (4H, br t, piperazine H-2, H-6), 2.22 (3H, s, pyrazole C-5 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 163.2 (C=O), 159.7 (C), 145.3 (C), 143.0 (CH), 139.1 (C), 136.1 (CH), 122.2 (C), 120.9 (C), 120.4 (q, *J*_{C-F} 38 Hz, CF₃), 108.2 (CH), 48.5 (CH₂), 44.8 (CH₂), 36.5 (CH₃); m/z (EI+) 387.10865 (M⁺, C₁₆H₁₇ClF₃N₅O requires 387.10737); 387.1 (35%) (M⁺).

1-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)-4-(1-methyl-1H-imidazole-4-sulfonyl)piperazine (16f). Off-white crystals, mp 193 °C, LC retention time = 3.26 (*m*/*z* 410.0, M + 2), $v_{max}(neat)/cm^{-1}$ 1601, 1483, 1445, 1341, 1317, 1243, 1169, 1117, 1097, 946, 927, 734; $\delta_{H}(500 \text{ MHz; CDCl}_{3})$ 8.30 (1H, d, *J* 5 Hz, py H-4), 7.68 (1H, s, imidazole H-2), 7.40 (1H, d, *J* 5 Hz, py H-5), 7.20 (1H, s, imidazole H-2), 7.40 (1H, d, *J* 5 Hz, py H-5), 7.20 (1H, s, imidazole H-5), 3.70 (3H, s, imidazole N-1 CH_3), 3.51 (4H, t, *J* 6 Hz, piperazine H-2, H-6), 3.30 (4H, t, *J* 6 Hz, piperazine H-3, H-5); $\delta_{C}(125 \text{ MHz; CDCl}_{3})$ 147.1 (C), 135.5 (C), 133.5 (C), 132.2 (C), 128.8 (CH), 126.4 (CH), 126.2 (CH), 124.2 (CH), 47.6 (CH₂), 43.9 (CH₂), 33.4 (CH₃), 29.7 (CH₂), 13.0 (CH₃); *m*/*z* (EI+) 409.05871 (M⁺, C₁₄H₁₅F₃N₅O₂SC1 requires 409.05884); 409.1 (100%) (M + H).

1-(3-Chloro-6-(trifluoromethyl)pyridin-2-yl)-4-(1,2-dimethyl-1H-imidazole-4-sulfonyl)piperazine (16g). White crystals, mp 236 °C, LC retention time = 2.78 (m/z 502.1, M + H); v_{max} (neat)/cm⁻¹ 1635, 1516, 1317, 1239, 1159, 1110, 948, 842, 722; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.14 (1H, d, J 5 Hz, py H-4), 7.52 (1H, d, J 5 Hz, py H-5), 7.23 (1H, s, imidazole H-5), 3.45 (3H, s, imidazole N-1 CH₃), 3.32 (2H, br t, piperazine CH₂), 3.06 (2H, br t, piperazine CH₂), 2.78 (3H, s, imidazole N-1 CH₃); Downloaded by Pennsylvania State University on 14 May 2012 Published on 27 July 2005 on http://pubs.rsc.org | doi:10.1039/B503778F
$$\begin{split} &\delta_{\rm C}(125~{\rm MHz};{\rm CDCl_3})~167.8~({\rm C}),~163.2~({\rm C}),~161.2~({\rm C}),~147.6~({\rm C}),\\ &141.5~({\rm CH}),~139.4~({\rm C}),~127.1~({\rm CH}),~123.7~({\rm CH}),~121.6~({\rm CH}),\\ &120.3~(J_{\rm C-F}~48~{\rm Hz},~{\rm CF_3}),~115.0~({\rm C}),~114.1~({\rm CH}),~57.6~({\rm CH}_2),\\ &47.2~({\rm CH}_2),~33.2~({\rm CH}_3),~10.2~({\rm CH}_3);~m/z~({\rm EI+})~423.07532~({\rm M}^+,\\ &{\rm C}_{15}{\rm H}_{17}{\rm ClF_3}{\rm N}_5{\rm O}_2{\rm S}~{\rm requires}~423.07436);~423.1~(32\%)~({\rm M}^+). \end{split}$$

1-(6-Morpholin-4-yl-pyridine-3-sulfonyl)morpholine (17a)²⁵. Off-white solid, mp 190 °C (lit²⁵ mp 189–191 °C), LC retention time = 2.89 (*m*/*z* 313.1, M + H); v_{max} (neat)/cm⁻¹ 2863, 1586, 1494, 1310, 1260, 1165, 1107, 941, 723; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.52 (1H, s, py H-2), 7.66 (2H, d, *J* 6.2 Hz, py H-4), 6.55 (2H, d, *J* 6.2 Hz, py H-5), 3.74 (3H, t, *J* 6 Hz, morpholine H-2, H-6), 3.67 (3H, t, *J* 6 Hz, morpholine H-2', H-6'), 2.58 (4H, t, *J* 6 Hz, morpholine H-3, H-5), 2.92 (4H, t, *J* 6 Hz, morpholine H-3', H-5'); $\delta_{\rm C}$ (125 MHz; CDCl₃) 160.4 (py C-6), 148.9 (py C-2), 137.0 (py C-4), 119.3 (py C-3), 105.2 (py C-5), 66.5 (morpholine C-2, C-6), 66.1 (morpholine C-2', C-6'), 45.9 (morpholine C-3, C-5), 44.9 (morpholine C-3', C-5'); *m*/*z* (EI+) 313.11245 (M⁺, C₁₃H₁₉N₃O₄S requires 313.10963); 313.1 (45%) (M⁺).

4-Methyl-7-(morpholine-4-sulfonyl)-3,4-dihydro-2*H***-benzo-[1,4]oxazine (17b).** Off-white crystals, mp 111 °C, LC retention time = 2.91 (*m*/*z* 299.0, M + H); $v_{max}(neat)/cm^{-1}$ 1600, 1506, 1317, 1239, 1156, 1106, 945, 842, 719; $\delta_{H}(500 \text{ MHz; CDCl}_{3})$ 6.97 (1H, d, *J* 5.4 Hz, benzooxazine H-6), 6.89 (1H, d, *J* 5.4 Hz, benzooxazine H-7), 6.78 (1H, d, *J* 9 Hz, benzooxazine H-5), 4.28 (2H, t, *J* 5.1 Hz, benzooxazine H-2), 3.68 (4H, t, *J* 4.8 Hz, morpholine H-2, H-6), 3.26 (2H, t, *J* 5.1 Hz, benzooxazine H-3), 2.92 (4H, t, *J* 4.8 Hz, morpholine H-3, H-5), 2.86 (3H, s, benzooxazine N-4 CH₃); $\delta_{C}(125 \text{ MHz; CDCl}_{3})$ 148.0 (C), 136.8 (C), 127.2 (C), 118.3 (CH), 115.9 (CH), 111.2 (CH), 66.2 (CH₂), 65.0 (CH₂), 48.3 (CH₂), 46.1 (CH₂), 38.6 (CH₃); *m*/*z* (EI+) 298.09873 (M⁺, C₁₃H₁₈N₂O₄S requires 298.09873); 298.1 (45%) (M⁺).

Morpholin-4-ylquinoxalin-6-ylmethanone (17c)²⁶. Off-white crystals, mp 124 °C, LC retention time = 2.12 (m/z 244.1, M + H); v_{max} (neat)/cm⁻¹ 2964, 1725, 1620, 1449, 1428, 1304, 1270, 1244, 1178, 1020, 898, 754, 744; δ_{H} (500 MHz; CDCl₃) 7.66 (2H, d, J 3 Hz, quinoxaline H-2, H-3), 8.09 (1H, d, J 5.5 Hz, quinoxaline H-7), 8.07 (1H, s, quinoxaline H-5), 7.75 (3H, d, J 5.5 Hz, quinoxaline H-8), 3.63 (4H, br t, morpholine H-3, H-5), 3.58 (4H, br t, morpholine H-2, H-6); δ_{C} (125 MHz; CDCl₃) 168.9 (C=O), 145.9 (CH × 2), 143.3 (C), 142.4 (C), 136.8 (C), 130.4 (CH), 128.8 (CH), 128.1 (CH), 66.9 (CH₂ × 2); m/z (EI+) 243.10147 (M⁺, C₁₃H₁₃N₃O₂ requires 243.10078); 243.1 (65%) (M⁺).

(3,5-Dimethylisoxazol-4-yl)morpholin-4-ylmethanone (17d). White crystals, mp 130 °C, LC retention time = 2.54 (m/z 210.1); ν_{max} (neat)/cm⁻¹ 1584, 1343, 1262, 1181, 1114, 946, 733; $\delta_{\rm H}$ (500 MHz; CDCl₃) 3.71 (2H, t, J 5.5 Hz, morpholine H-2, H-6), 3.03 (1H, d, J 5.5 Hz, morpholine H-3, H-5), 2.57 (3H, s, isoxazole C-5 CH₃), 2.34 (3H, s, isoxazole C-3 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 174.0 (C=O), 158.0 (C-5), 151.4 (C-3), 112.9 (isoxazole C-4), 60.0 (morpholine C-2, C-6), 45.4 (morpholine C-3, C-5), 13.0 (isoxazole C-5 CH₃), 11.4 (isoxazole C-3 CH₃); m/z (EI+) 210.10371 (M⁺, C₁₀H₁₄N₂O₃ requires 210.10044); 210.1 (35%) (M⁺).

(1,5-Dimethyl-1*H*-pyrazol-3-yl)morpholin-4-ylmethanone (17e). White solid, mp 87 °C, LC retention time = 1.76 (*m*/*z* 210.0); v_{max} (neat)/cm⁻¹ 2921, 1718, 1607, 1491, 1371, 1272, 1231, 1220, 1111, 982, 834, 770, 756; $\delta_{\rm H}$ (500 MHz; CDCl₃) 6.35 (1H, s, pyrazole H-4), 3.99 (4H, br d, morpholine H-2, H-5), 3.70 (3H, s, pyrazole N-1 CH₃), 3.61 (4H, br d, morpholine H-3, H-6), 2.19 (3H, s, pyrazole C-5 CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 163.1 (C=O), 145.2, 139.1 (pyrazole C-5, pyrazole C-3), 108.2 (pyrazole C-4), 47.6 (pyrazole C-2, C-5), 42.8 (pyrazole C-3, C-6), 36.5 (pyrazole N-1 CH₃), 11.0 (pyrazole C-5 CH₃); *m*/*z* (EI+) 209.11756 (M⁺, C₁₀H₁₅N₃O₂ requires 209.11643); 209.1 (100%) (M⁺). **4-(1-Methyl-1***H***-imidazole-4-sulfonyl)morpholine (17f).** Offwhite crystals, mp 122–123 °C, LC retention time = 1.31 $(m/z \ 232.0, M + H); v_{max}(neat)/cm^{-1} \ 1530, \ 1339, \ 1255, \ 1163, \ 1112, \ 1069, \ 938, \ 732; \ \delta_{\rm H}(500 \ MHz; \ CDCl_3) \ 7.43 \ (1H, \ s, \ imidazole \ H-2), \ 7.37 \ (1H, \ s, \ imidazole \ H-5), \ 3.70 \ (3H, \ s, \ imidazole \ H-2), \ 7.37 \ (1H, \ s, \ imidazole \ H-5), \ 3.70 \ (3H, \ s, \ imidazole \ N-1 \ CH_3), \ 3.67 \ (4H, \ t, \ J \ 5.2 \ Hz, \ morpholine \ H-3, \ H-5); \ \delta_{\rm C}(125 \ MHz; \ CDCl_3) \ 139.3 \ (imidazole \ C-2), \ 137.4 \ (imidazole \ C-4), \ 124.8 \ (imidazole \ C-5), \ 66.2 \ (morpholine \ C-2, \ C-6), \ 46.2 \ (morpholine \ C-3, \ C-5), \ 34.0 \ (imidazole \ N-1 \ CH_3); \ m/z \ (EI+) \ 231.06729 \ (M^+, \ C_8H_{13}N_3O_3S \ requires \ 231.06776); \ 231.1 \ (25\%) \ (M^+).$

4-(1,2-Dimethyl-1*H***-imidazole-4-sulfonyl)morpholine** (17g)²⁷. White solid, mp 198 °C, LC retention time = 2.80 (*m/z* 246.1, M + H); ν_{max} (neat)/cm⁻¹ 1530, 1336, 1324, 1159, 1112, 939, 771, 729; δ_{H} (500 MHz; CDCl₃) 7.20 (1H, s, imidazole H-5), 3.67 (4H, t, *J* 6 Hz, morpholine H-3, H-5), 3.55 (3H, s, imidazole N-1, CH₃), 3.11 (4H, t, *J* 6 Hz, morpholine H-2, H-6), 2.34 (3H, s, imidazole C-2 CH₃); δ_{C} (125 MHz; CDCl₃) 147.2 (imidazole C-2), 134.7 (imidazole C 4), 125.4 (imidazole C-5), 66.2 (morpholine C-3, C-5), 46.2 (morpholine C-2, C-6), 33.4 (imidazole N-1 CH₃), 13.0 (imidazole C-2 CH₃); *m/z* (EI+) 245.09387 (M⁺, C₉H₁₅N₃O₃S requires 245.08341); 245.1 (100%) (M⁺).

1-(6-Morpholin-4-ylpyridine-3-sulfonyl)-5-trifluoromethyl-2,3-dihydro-1H-[1,4]diazepine (18a). Off-white solid, mp 114–115 °C, LC retention time = 2.76 (m/z 390, M H); $v_{\rm max}$ (neat)/cm⁻¹ 2966, 1587, 1546, 1346, 1312, 1178, 1106, 1057, 1003, 963, 855, 828, 773, 701; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.43 (1H, s, py H-2), 7.61 (1H, d, J 7 Hz, py H-4), 7.30 (1H, d, J 7 Hz, py H-5), 6.53 (1H, d, J 9Hz, diazepine H-7), 5.33 (1H, d, J 9Hz, diazepine H-6), 3.83 (2H, br s, diazepine H-3), 3.62 (4H, br t, morpholine H-2, H-6), 3.58 (4H, br t, morpholine H-3, H-5), 3.26 (2H, t, J 5 Hz, diazepine H-2); $\delta_{\rm C}$ (125 MHz; CDCl₃) 161.2 (C), 155.7 (q J_{C-F} 27.5 Hz, diazepine C-5), 148.8 (CH), 145.1 (CH), 138.0 (CH), 137.3 (CH), 136.2 (CH), 121.2 (C), 120.2 (J_{C-F} 277.5 Hz, CF₃), 106.4 (CH), 95.2 (CH), 81.3 (CH), 66.8 (CH₂), 54.3 (CH₂), 49.1 (CH₂), 45.4 (CH₂); m/z (EI+) 390.09823 (M⁺, C₁₆H₁₇F₃N₄O₃S requires 390.09734); 390.1 (75%) (M⁺).

4-Methyl-7-(5-trifluoromethyl-2,3-dihydro-[1,4]diazepine-1-sulfonyl)-3,4-dihydro-2*H*-benzo[1,4]oxazine (18b). LC retention time = 3.22 (m/z 376.0); $v_{max}(neat)/cm^{-1}$ 1644, 1591, 1326, 1238, 1189, 1120, 1087, 1039, 926, 772, 758; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.32 (1H, d, J 7 Hz, benzooxazine H-6), 6.97 (1H, d, J 7 Hz, benzooxazine H-8), 6.84 (1H, s, benzooxazine H-5), 6.78 (1H, d, J 9Hz, H-7), 5.33 (1H, d, J 9Hz, diazepine H-6), 4.27 (2H, t, J 5 Hz, benzooxazine H-3), 3.75 (2H, br s, diazepine H-2), 3.55 (2H, br s, diazepine H-3), 3.26 (2H, t, J 5 Hz, benzooxazine H-2), 2.87 (3H, s, NCH₃); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 155.7 (q, J_{C-F} 27.5 Hz, diazepine C-5), 148.8 (diazepine C-7), 138.0 (CH), 137.3 (C), 128.7 (C), 121.3 (J_{C-F} 277.5 Hz, CF₃), 119.1 (CH), 116.4 (CH), 109.9 (CH), 94.8 (CH), 65.0 (CH₂), 54.1 (CH₂), 48.6 (CH₂), 49.0 (CH₂), 38.5 (CH₃); m/z (EI+) 375.08801 (M⁺, C₁₅H₁₆F₃N₃O₃S requires 375.08645); 375.1 (35%) (M⁺).

Quinoxalin-6-yl-(5-trifluoromethyl-2,3-dihydro-[1,4]diazepin-1-yl)methanone (18c). Yellow oil, LC retention time = 3.36 (m/z 321.1, M + H); $v_{max}(neat)/cm^{-1}$ 2215, 1587, 1489, 1418, 1223, 1156, 1119, 1103, 978, 869, 863, 789, 699; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.90 (2H, d, J 4 Hz, quinoxaline H-2, H-3), 8.20 (1H, d, J 4 Hz, quinoxaline H-7), 8.18 (1H, s, quinoxaline H-5), 7.82 (1H, d, J 4 Hz, quinoxaline H-8), 7.20 (1H, br d, diazepine H-7), 5.33 (1H, diazepine H-6), 4.19, 4.02 (4H, br d, diazepine H-2, H-3); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 168.0 (C=O), 155.5 ($J_{\rm C-F}$ 32.3Hz, diazepine C-5), 146.8 (CH), 146.4 (CH), 143.9 (C), 142.2 (C), 138.8 (CH), 134.4 (C), 130.9 (CH), 130.3 (CH), 128.9 (CH), 119.0 (CF₃), 96.5 (CH), 54.6 (CH₂ × 2); m/z (EI+) 320.08956 (M⁺, C₁₅H₁₁F₃N₄O requires 320.08849); 320.1 (83%) (M⁺).

3,5-Dimethylisoxazol-4-yl-(5-trifluoromethyl-2,3-dihydro-[1,4]diazepin-1-yl)methanone (18d). Off-white solid, mp 61 °C, LC retention time = 3.08 (*m*/*z* 287.1, M⁺); $v_{max}(neat)/cm^{-1}$ 1646, 1583, 1322, 1188, 1094, 1122, 1036, 956, 903, 850, 784, 716; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 7.28 (1H, d, *J* 8 Hz, diazepine H-7), 5.40 (1H, d, *J* 8 Hz, diazepine H-6), 3.95 (2H, br s, diazepine H-3), 3.54 (2H, br s, diazepine H-2), 2.63 (3H, s, isoxazole C-3 CH₃), 2.30 (3H, s, isoxazole C-5 CH₃); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 175.1 (C=O), 157.1 (C), 155.7 (q, *J*_{C-F} 27.2 Hz, CF₃), 136.6 (CH), 123.3 (C), 118.9 (d *J*_{C-F} 222 Hz, diazepine C-5), 114.0 (C), 95.6 (diazapine C-6), 54.0 (diazepine C-3), 48.2 (diazapine C-2), 13.0 (isoxazole C-3 CH₃), 11.0 (isoxazole C-5 CH₃); *m*/*z* (EI+) 287.08764 (M⁺, C₁₂H₁₂F₃N₃O₂ requires 287.08816); 287.1 (45%) (M + H).

1,5-Dimethyl-1*H***-pyrazol-3-yl-(5-trifluoromethyl-2,3-dihydro-**[**1,4]diazepin-1-yl)methanone** (**18e**). Yellow crystals, mp 115 °C, LC retention time = 2.48 (*m*/*z* 287.0, M + H); v_{max} (neat)/cm⁻¹ 1642, 1591, 1439, 1325, 1236, 1190, 1118, 1085, 925, 778, 757; δ_{H} (500 MHz; CDCl₃) 8.15 (1H, d, *J* 10 Hz, diazepine H-7), 6.51 (1H, s, pyrazole H-4), 5.33 (1H, d, *J* 10 Hz, diazepine H-6), 4.06 (4H, br t, diazepine H-2, H-3), 3.76 (3H, s, pyrazole N-1 CH₃), 2.21 (3H, s, pyrazole C-5 CH₃); δ_{C} (125 MHz; CDCl₃) 161.6 (C=O), 155.6 (C), 143.6 (C), 140.7 (CH), 140.0 (C), 117.0 (CF₃), 108.2 (CH), 95.3 (CH), 54.8 (CH₂), 36.9 (CH₃), 11.0 (CH₃); *m*/*z* (EI+) 286.10440 (M⁺, C₁₂H₁₃F₄N₄O requires 286.10414); 286.1 (35%) (M⁺), 123.1 (36%).

1-(1-Methyl-1*H***-imidazole-4-sulfonyl)-5-trifluoromethyl-2,3dihydro-1***H***-[1,4]diazepine (18f). LC retention time = 3.22 (***m***/***z* **308.1); v_{max}(neat)/cm⁻¹ 1648, 1593, 1329, 1234, 1193, 1123, 928, 779, 768; \delta_{\rm H}(400 MHz; CDCl₃) 7.48 (1H, s, imidazole H-2), 7.45 (1H, s, imidazole H-5), 7.30 (1H, d,** *J* **7.6 Hz, diazepine H-7), 5.34 (1H, d,** *J* **7.6 Hz, diazepine H-6), 3.90 (4H, bs, diazepine H-2, H-3), 3.71 (3H, s, N-1 CH₃); \delta_{\rm C}(100 MHz; CDCl₃) 155.6 (sat. carbon), 139.9 (CH), 138.3 (CH), 138.0 (sat. carbon), 125.1 (CH), 119.0 (J_{\rm C-F} 278.2 Hz, CF₃), 95.2 (CH), 54.4 (CH₂), 49.0 (CH₂), 34.2 (CH₃);** *m***/***z* **(EI+) 308.05623 (M⁺, C₁₀H₁₁F₃N₄O₂S requires 308.05548); 308.1 (39%) (M⁺).**

1-(1,2-Dimethyl-1*H***-imidazole-4-sulfonyl)-5-trifluoromethyl-2,3-dihydro-1***H***-[1,4]diazepine (18g).** Colourless crystals, mp 159 °C, LC retention time = 2.26 (*m*/*z* 323.0, M + H); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1644, 1591, 1366, 1320, 1166, 1114, 960, 843, 765, 682; $\delta_{\text{H}}(500 \text{ MHz}; \text{CDCl}_3)$ 7.30 (1H, d, *J* 10 Hz, diazepine H-7), 7.20 (1H, s, imidazole H-5), 5.33 (1H, d, *J* 10 Hz, diazepine H-6), 3.93 (4H, br t, diazepine H-2, H-3), 3.55 (3H, s, imidazole N-1 CH_3), 2.31 (3H, s, imidazole C-2 CH_3); $\delta_{\text{C}}(125 \text{ MHz}; \text{CDCl}_3)$ 156.0 (C=O), 148.2 (C), 138.4 (CH), 135.3 (C), 125.8 (CH), 117.0 (CF_3), 95.0 (CH), 54.5 (CH_2), 48.9 (CH_2), 33.7 (CH_3), 13.0 (CH_3); *m*/*z* (EI+) 322.07113 (M⁺, C₁₁H₁₃F₃N₄O₂ requires 322.07113); 322.1 (56%) (M⁺).

4,4'-Dibromomethylbipyridine (19). Light pink solid, (Found: C, 42.18; H, 2.99; N, 8.23, $C_{12}H_{10}Br_2N_2$ requires C, 42.14; H, 2.95; N, 8.19%); $v_{max}(neat)/cm^{-1}$ 1537, 1326, 1212, 1029, 832, 723; $\delta_{H}(400 \text{ MHz}; \text{CD}_3\text{OD})$ 8.82 (2H, d, *J* 5 Hz, bipy H-6), 8.65 (2H, s, bipy H-3), 7.82 (2H, d, *J* 5 Hz, bipy H-5), 4.95 (4H, s, bipy CH_2); ¹H NMR was in agreement with the literature assignment.²⁸

General scavenging procedure using bipyridyl dibromide as a reaction scavenger in the synthesis of tertiary amines (20a–d) from 1,2,3,4-tetrahydroisoquinoline. To a solution of benzyl bromide (60 mg, 0.35 mmol, 1 equiv.) in DCM (1.5 cm³) was added a solution of 1,2,3,4-tetrahydroisoquinoline (117 mg, 0.88 mmol, 2.5 equiv.) in DCM (1.5 cm³) and polymer-supported

triethylamine equivalent (167 mg, 0.525 mmol, 1.5 equiv., diethylaminomethyl polystyrene, \sim 3.2 mmol g⁻¹; Fluka Cat. No. 31866). The mixture was then heated by microwave irradiation at 80 °C for 30 min. Bipyridyl dibromide **19** (257 mg, 0.75 mmol, 0.85 equiv.) was then added to react with the excess isoquinoline. The bipyridine adduct was then scavenged by the addition of IRC 718 copper(II) resin (1.0 g, loading 1.3 mmol g⁻¹, 1.7 equiv.); the uptake was followed by LC-MS. The resin was then removed by filtration, washed with DCM (2 × 10 cm³), and the combined washings and filtrate evaporated to dryness yielding the corresponding benzyl-protected amine.

2-Benzyl-1,2,3,4-tetrahydroisoquinoline (20a).^{20,21}. White solid, 92% yield, mp 35–36 °C (lit.²⁰ mp 37 °C); LC retention time = 0.52 (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 86.12; H, 7.65; N, 6.28, C₁₆H₁₇N requires C, 86.05; H, 7.67; N, 6.27%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2210, 1599, 1565, 1487, 1435, 1336, 1167, 956, 770; $\delta_{\text{H}}(600 \text{ MHz}; \text{CDCl}_3)$ 7.35–7.23 (4H, m, Ph–H), 7.10 (3H, m, quinoline H-5, H-6, H-8), 7.09 (1H, m, Ph–H), 6.96 (1H, t, *J* 8 Hz, quinoline H-7), 3.74 (2H, s, N-benzyl CH₂), 3.68 (2H, s, quinoline H-1), 2.95 (2H, t, *J* 6 Hz, quinoline H-3), 2.83 (2H, t, *J* 6 Hz, quinoline H-4). ¹H NMR was in agreement with the literature assignment.

2-(4-[1,2,3]Thiadiazol-5-ylbenzyl)-1,2,3,4-tetrahydroisoquino**line (20b).** Light yellow solid, 92% yield, LC retention time = 0.39, (DCM- Et_2O - $NEt_3 = 1 : 1 : 0.05$); (Found: C, 75.12; H, 6.85; N, 18.65, C₁₉H₂₀N₄ requires C, 74.97; H, 6.62; N, 18.41%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1612, 1575, 1512, 1198, 1028, 865, 765; $\delta_{\rm H}$ (600 MHz; CDCl₃) 8.65 (1H, s, thiadiazole H-4), 8.05 (2H, d, J 8 Hz, Ph AA'BB' H-3, H-5), 7.55 (2H, d, J 8 Hz, Ph AA'BB' H-2, H-6), 7.10 (3H, s, quinoline H-8, H-6, H-5), 6.95 (1H, br t, quinoline H-7), 3.78 (2H, s, N-benzyl CH₂), 3.68 (2H, s, quinoline C-1), 2.92 (2H, t, J 6 Hz, quinoline H-3), 2.76 (2H, t, J 6 Hz, quinoline H-4); $\delta_{\rm C}$ (150 MHz; CDCl₃) 160.4 (Ph C-4), 142.8 (thiadiazole C-5), 134.7 (quinoline C-4a), 134.3 (quinoline C-8a), 129.9 (Ph C-1), 129.8 (thiadiazole C-4, Ph C-2, C-6), 128.7 (quinoline C-5, C-6, C-8), 127.4 (Ph C-3, C-5), 126.2 (quinoline C-7), 125.6, 123.1 (quinoline C-5, C-6, C-8), 62.4 (N-benzyl CH₂), 56.1 (quinoline C-1), 50.7 (quinoline C-3), 25.0 (quinoline C-4); m/z (ESI) 307.11756 (M⁺, C₁₈H₁₇N₃S requires 307.11432); 307.1 (45%) (M+).

2-(5-Methyl-2-phenyl-2H-[1,2,3]triazol-4-ylmethyl)-1,2,3,4tetrahydroisoquinoline (20c). Light tan solid, 95% yield, LC retention time = 0.41, (DCM-Et₂O-NEt₃ = 1:1:0.05); (Found: C, 75.12; H, 6.85; N, 18.65, C₁₉H₂₀N₄ requires C, 74.97; H, 6.62; N, 18.41%); v_{max} (neat)/cm⁻¹ 1723, 1665, 1543, 1575, 1514, 1292, 1256, 1159, 1089, 824, 816, 789; $\delta_{\rm H}$ (600 MHz; CDCl₃) 8.02 (2H, d, J 8 Hz, Ph H-2, H-6), 7.43 (2H, t, J 8 Hz, Ph H-3, H-5), 7.27 (1H, t, J 8 Hz, Ph H-4), 3.83 (2H, s, N-benzyl CH₂), 3.66 (2H, s, J 6 Hz, quinoline H-1), 2.91 (2H, t, J 6 Hz, quinoline H-3), 2.81 (2H, t, J 6 Hz, quinoline H-4), 2.42 (3H, s, triazole C-5 CH₃); $\delta_{\rm C}(150$ MHz; CDCl₃) 144.9 (triazole C-4), 144.1 (triazole C-5), 134.5 (quinoline C-4a), 134.2 (quinoline C-8a), 129.5 (Ph C-1), 129.1 (Ph C-3, C-5), 128.62 (quinoline C-5, C-6, C-8), 126.8 (Ph C-4), 126.5 (quinoline C-5, C-6, C-8), 125.6 (quinoline C-7), 118.4 (Ph H-2, H-6), 55.8 (quinoline C-1), 52.2 (N-Benzyl CH₂), 50.5 (quinoline C-4), 29.1 (quinoline C-3), 10.3 (triazole C-5 CH₃); m/z (ESI) 304.167896 (M⁺, C₁₉H₂₀N₄ requires 304.16880); 305.2 (25%) (M⁺).

2-(4-[1,2,4]Triazol-1-ylbenzyl)-1,2,3,4-tetrahydroisoquinoline (**20d**). Light tan solid, 95% yield, LC retention time = 0.46, (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 74.68; H, 6.13; N, 19.47, C₁₈H₁₈N₄ requires C, 74.46; H, 6.25; N, 19.30%); v_{max} (neat)/cm⁻¹ 1712, 1656, 1635, 1589, 1512, 1299, 1162, 1028, 829, 772; $\delta_{\rm H}$ (600 MHz; CDCl₃) 8.57 (1H, s, triazole H-5), 8.08 (1H, s, triazole H-3), 7.63 (4H, d, *J* 8 Hz, Ph AA'BB' H-3, H-5), 7.55 (4H, d, *J* 8 Hz, Ph AA'BB' H-2, H-6), 7.10 (3H, m, quinoline H-5, H-6, H 8), 6.96 (1H, t, *J* 8 Hz, quinoline H-7), 3.77 (2H, s, *N*-benzyl CH₂), 3.69 (2H, s, quinoline H-1), 2.93 (2H, t, *J* 6 Hz, quinoline H-3), 2.82 (2H, t, *J* 6 Hz, quinoline H-4); $\delta_{\rm C}(150$ MHz; CDCl₃) 152.7 (triazole C-3), 140.8 (triazole C-5), 137.6 (Ph C-1), 136.1 (Ph C 4), 133.9 (quinoline C-4a), 131.4 (Ph C-2, C-6), 128.8 (quinoline C-1a), 128.7 (quinoline C-8), 126.6 (quinoline C-7), 126.4 (quinoline C 5), 125.8 (quinoline C-6), 120.0 (Ph C-3, C-5), 61.5 (*N*-Benzyl CH₂), 55.6 (quinoline C-1), 50.4 (quinoline C-4), 28.3 (quinoline C-3); *m/z* (ESI) 290.153234 (M⁺, C₁₈H₁₈N₄ requires 290.15315); 290.1 (25%) (M⁺).

Synthesis of [2,2']bipyridinyl-4-ylmethylcyclohexylcarbodiimide (21). To a solution of urea 26 (0.7 g, 2.26 mmol) in anhydrous DMF (10 cm³) weas added the polymer-supported Mukaiyama reagent 27 (loading 2.43 mmol g⁻¹, 2.24 g, 5.4 mmol, 2.4 equiv.), and triethylamine (45.7 mg, 0.452 mmol, 2 equiv.). The reaction was heated by microwave irradiation at 90 °C for 3 cycles of 10 min. The resin was then removed by filtration and washed successively with DMF (10 cm³) and MeOH (2 \times 10 cm³). The solvent was removed by evaporation to yield the corresponding carbodiimide (561 mg, 85% yield): White solid, Retention time = 0.35 (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 74.10; H, 6.93; N, 19.19, C₁₈H₂₀N₄ requires C, 73.94; H, 6.89; N, 19.16%); v_{max} (neat)/cm⁻¹ 2122, 1645, 1526, 1324, 1209, 1024, 866, 747; δ_H(400 MHz; CDCl₃) 8.85 (2H, d, J 5 Hz, bipy H-6), 8.70 (2H, s, bipy H-3, H-3'), 8.45 (2H, d, J 5 Hz, bipy H-6'), 7.87 (1H, t, J 5 Hz, bipy H-4'), 7.53 (2H, d, J 5 Hz, bipy H-5), 7.40 (2H, m, bipy H-5'), 2.89 (2H, s, bipy CH₂), 1.44 (10H, m, CH₂); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 164.2 (N=C=N), 158.9, 158.4 (bipy C-2, C-2'), 151.3, 151.0 (bipy C-6, C-6'), 143.2 (bipy C-4), 138.3 (bipy C-4'), 123.4 (bipy C-3), 123.2 (bipy C-3'), 121.2 (bipy C-5'), 60.2 (bipy CH₂), 52.5 (cyclohexyl CH), 34.2 (cyclohexyl CH), 28.2 (cyclohexyl CH), 23.2 (cyclohexyl CH); m/z (EI+) 292.16924 (M⁺, C₁₈H₂₀N₄ requires 292.16880); 292.2 (35%) (M⁺).

Synthesis of [2,2']bipyridinyl-4-ylmethylcyanide (24). To a solution of 2-chloro-4-cyanopyridine (100 mg, 0.722 mmol, 1 equiv.) in anhydrous DCM (10 cm³) was added Pd(PPh₃)₄ (16.1 mg, 0.014 mmol, 2 mol%) followed by 2-pyridylzinc bromide (0.5 M in THF, 2.88 cm³, 1.44 mmol, 2 equiv.). The mixture was heated by microwave irradiation for 2 cycles of 30 min at 130 °C. The reaction mixture was then concentrated under reduced pressure and the crude material purified by column chromatography on silica (DCM-Et₂O, 1 : 1; then DCM-Et₂O-NEt₃, 1 : 1 : 0.1, 1 : 0.5: 0.5). The purified product was concentrated, and recrystallisation from DCM-light petroleum (1:3) gave the corresponding bipyridine (111 mg, 85%): White solid, 85% yield, LC retention time = 0.21 (DCM-Et₂O-NEt₃ = 1:1:0.05); (Found: C, 73.02; H, 3.97; N, 23.24, C₁₁H₇N₃ requires C, 72.92; H, 3.89; N, 23.19%); v_{max}(neat)/cm⁻¹ 1526, 1324, 1209, 1024, 838, 725; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.85 (2H, d, J 5 Hz, bipy H-6), 8.76 (2H, s, bipy H-3, H-3'), 8.46 (2H, d, J 5 Hz, bipy H-6'), 7.85 (1H, t, J 5 Hz, bipy H-4'), 7.58 (2H, d, J 5 Hz, bipy H-5), 7.41 (2H, m, bipy H-5'); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 159.2, 158.9 (bipy C-2, C-2'), 151.8, 151.2 (bipy C-6, C-6'), 143.8 (bipy C-4), 138.3 (bipy C-4'), 124.2 (bipy C-3), 123.2 (bipy C-3'), 121.2 (bipy C-5'), 120.4 (CN); m/z (EI+) 181.06564 (M⁺, C₁₁H₇N₃ requires 181.06400); 181.1 (75%) (M⁺).

Synthesis of [2,2']bipyridinyl-4-ylmethylamine (25). To a solution of [2,2']bipyridinyl-4-ylmethylcyanide (50 mg, 0.276 mmol, 1 equiv.) in anhydrous THF (10 cm³) at 0 °C was added a solution of LiAlH₄ (1 M in THF, 0.552 cm³, 0.552 mmol, 2 equiv.). The mixture was allowed to warm to ambient temperature and stirred overnight. The solution was then quenched by the addition of Na₂SO₄·10H₂O (177.7 mg, 0.552 mmol). The crude mixture was filtered and the filtrate concentrated under reduced pressure. The material was used for the next step in the synthesis without further purification. White solid, 82% yield, LC retention time = 0.21 (DCM–Et₂O–NEt₃ = 1 : 1 : 0.05); (Found: C, 71.45; H, 6.07; N, 22.78, C₁₁H₁₁N₃ requires C, 71.33; H, 5.99; N, 22.69%); v_{max} (neat)/cm⁻¹ 2935, 1526, 1324, 1209, 1024, 838, 725; δ_{H} (400 MHz; CDCl₃) 8.85 (2H, d, *J* 5 Hz, bipy H-6), 8.75 (2H, s, bipy H-3, H-3'), 8.46 (2H, d, *J* 5 Hz, bipy H-6'), 7.85 (1H, t, *J* 5 Hz, bipy H-4'), 7.53 (2H, d, *J* 5 Hz, bipy H-5), 7.40 (2H, m, bipy H-5'), 4.04 (2H, s, bipy CH₂); δ_{C} (125 MHz; CDCl₃) 158.9, 158.4 (bipy C-2, C-2'), 151.3, 151.0 (bipy C-6, C-6'), 143.5 (bipy C-4), 138.3 (bipy C-4'), 124.2 (bipy C-3), 123.2 (bipy C-3'), 121.2 (bipy C-5'), 50.2 (bipy CH₂); m/z (EI+) 185.09634 (M⁺, C₁₁H₁₁N₃ requires 185.09530); 185.1 (65%) (M⁺).

Synthesis of 1-[2,2"]bipyridinyl-4-methyl-3-cyclohexyl urea (26). To a solution of [2,2''] bipyridinyl-4-ylmethylamine (100 mg, 0.540 mmol, 1 equiv.) in anhydrous DCM (15 cm³), was added a solution of cyclohexyl isocyanate (94.5 mg, 0.756 mmol, 1.4 equiv.) in THF (4 cm³) and polymer-supported triethylamine equivalent (0.338 g, 1.08 mmol, 2 equiv., diethylaminomethyl polystyrene, \sim 3.2 mmol g⁻¹; Fluka Cat. No. 31866). The mixture was allowed to stir overnight at room temperature. The solution was then filtered, and the filtrate was taken to dryness; recrystallisation from DCM-light petroleum (1:2) gave the corresponding bipyridine (142.4 mg, 85%): White solid, 82% yield, LC retention time = 0.65 (DCM-Et₂O-NEt₃ = 1 : 1 : 0.05); (Found: C, 69.73; H, 7.18; N, 18.06, C₁₈H₂₂N₄O requires C, 69.65; H, 7.14; N, 18.05%); v_{max} (neat)/cm⁻¹ 2939, 1634, 1589, 1218, 1029, 869, 756; δ_H(400 MHz; CDCl₃) 8.86 (2H, d, J 5 Hz, bipy H-6), 8.70 (2H, s, bipy H-3, H-3'), 8.47 (2H, d, J 5 Hz, bipy H-6'), 7.87 (1H, t, J 5 Hz, bipy H-4'), 7.53 (2H, d, J 5 Hz, bipy H-5), 7.44 (2H, m, bipy H-5'), 4.78 (2H, s, bipy CH₂), 3.56 (1H, m, CH), 1.73 (2H, m, CH₂), 1.64 (2H, m, CH₂), 1.44 (6H, m, CH₂); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 165.2 (C=O), 158.9, 158.1 (bipy C-2, C-2'), 151.3, 151.0 (bipy C-6, C-6'), 142.5 (bipy C-4), 135.3 (bipy C-4'), 123.4 (bipy C-3), 123.8 (bipy C-3'), 122.2 (bipy C-5'), 56.2 (bipy CH₂), 52.5 (cyclohexyl CH), 34.2 (cyclohexyl CH), 28.2 (cyclohexyl CH), 23.2 (cyclohexyl CH); *m/z* (EI+) 310.17978 (M⁺, C₁₈H₂₂N₄O requires 310.17936); 310.2 (75%) (M⁺).

General procedure for amide coupling using the monosubstituted carbodiimide reagent (21). To a solution of the carboxylic acid (0.35 mmol) in anhydrous DCM (3 cm³) was added bipyridyl-supported carbodiimide 17 (146 mg, 0.5 mmol, 1.4 equiv.). After stirring at ambient temperature for 30 min, the amine (0.35 mmol, 1 equiv.) and diisopropylethylamine (62.8 mg, 0.486 mmol, 1.4 equiv.) were added. The mixture was stirred at ambient temperature overnight. To the reaction mixture was added Amberlite IRC-718 copper(II) resin (784 mg, 1.05 mmol, loading ~1.34 mmol g⁻¹, 3 equiv.) the "catching" process was monitored by LC-MS. Upon completion the reaction mixture was filtered and washed in turn with ether (5 cm³) and DCM (10 cm³). The filtrate was evaporated to dryness under reduced pressure, and the purity of the corresponding amide was determined by LC-MS and ¹H NMR.

1,5-Dimethyl-1H-pyrazol-3-yl)-[4-(4-trifluoromethylpyrimidin-2-yl)-[1,4]diazepam-1-yl]methanone (28a). Yellow oil, LC retention time = $2.89 (m/z 368.2, M^+)$; (Found: C, 52.21; H, 5.15; N, 22.79, C₁₆H₁₉F₃N₆O requires C, 52.17; H, 5.20; N, 22.81%); v_{max}(neat)/cm⁻¹ 1628, 1523, 1325, 1282, 1187, 1112, 1025, 925, 772, 721; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.53 (1H, d, J 6.5 Hz, pyrimidine H-2), 6.46 (1H, d, J 6.5 Hz, pyrimidine H-3), 6.10 (1H, s, pyrazole H-4), 3.85 (3H, s, N-CH₃), 2.89 (2H, t, J 5.5 Hz, diazepam H-2), 2.75 (2H, t, J 5.5 Hz, diazepam H-3), 2.72 (2H, quintet, J 5.5 Hz, diazepam H-7), 2.63 (pyrazole C-5 CH₃), 2.53 (2H, t, J 5.5 Hz, diazepam H-5), 1.90 (2H, quintet, J 5.5 Hz, diazepam H-6); δ_c(100 MHz; CDCl₃) 171.2 (C), 165.3 (C), 160.2 (CH), 160.1 (C=O), 143.2 (C), 141.2 (C), 119.5 (CF₃), 111.2 (CH), 107.2 (CH), 56.2 (CH₂), 54.2 (CH₂), 47.3 (CH₂), 46.1 (CH₂), 34.2 (CH₃), 29.2 (CH₂), 5.4 (CH₃); C₁₆H₁₉F₃N₆O requires 368.15724; m/z (ESI+) 368.16235 (M⁺, C₁₆H₁₉F₃N₆O requires 368.15724); 368.2 (56%) (M+).

(4aS, 8aS)-2-(1,5-Dimethyl-1H-pyrazole-3-carbonyl)decahydroisoquinoline-3-carboxylic acid tert-butylamide (28b). Yellow oil, LC retention time = $2.89 (m/z 368.2, M^+)$; (Found: C, 66.52; H, 8.72; N, 15.50, C₂₀H₃₂N₄O₂ requires C, 66.63; H, 8.95; N, 15.54%); v_{max} (neat)/cm⁻¹ 1641, 1584, 1372, 1229, 1165, 1112, 935, 798, 745; $\delta_{\rm H}$ (400 MHz; CDCl₃) 6.52 (1H, s, pyrazole H-4), 4.49 (1H, t, J 7.3 Hz, isoquinoline H-3), 3.89 (3H, s, pyrazole N-CH₃), 3.15 (2H, m, isoquinoline C-1 CH₂), 2.32 (3H, s, pyrazole C-5 CH₃), 1.86 (2H, m, isoquinoline H-4), 1.68 (4H, m, isoquinoline H-4a, H-8a), 1.45 (4H, m, isoquinoline H-6, H-7), 1.35 (9H, s, t-Bu CH₃), 1.35 (4H, m, isoquinoline H-5, H-8); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 174.6 (C=O), 170.8 (C=O), 142.1 (C), 106.3 (CH), 141.3 (C), 33.9 (CH₃), 142.3 (C), 54.5 (CH), 45.4 (CH₂), 41.9 (C), 35.2 (CH), 33.1 (CH), 28.9 (CH₂), 28.7 (CH₃), 27.9 (CH₂), 27.4 (CH₂), 26.3 (CH₂), 24.4 (CH₂), 6.6 (CH₃); m/z (ESI+) 360.25432 (M⁺, C₂₀H₃₂N₄O₂ requires 360.25253); 360.3 (48%) (M⁺).

1,5-Dimethyl-1*H*-pyrazole-3-carboxylic acid (1,3,5-trimethyl-**1***H*-pyrazol-4-yl methyl)amide (28c). White crystals, mp 236 °C, LC retention time = 2.78 (*m*/*z* 502.1, M + H); (Found: C, 59.72; H, 7.32; N, 26.82, C₁₃H₁₉N₅O requires C, 59.75; H, 7.33; N, 26.80%); $v_{max}(neat)/cm^{-1}$ 1625, 1593, 1354, 1287, 1198, 1114, 925, 855; $\delta_{H}(400 \text{ MHz; CDCl}_{3})$ 6.52 (1H, s, pyrazole H-4'), 4.37 (2H, d, *J* 6.5 Hz, benzylic CH₂), 3.75 (6H, s, 2 × N–CH₃), 2.32 (9H, s, pyrazole C-3, C-5, C-5' CH₃); $\delta_{C}(100 \text{ MHz; CDCl}_{3})$ 161.9 (C), 146.0 (C), 144.9 (C), 139.9 (C), 112.8 (C), 108.1 (CH), 36.7 (N–CH₃), 35.7 (N–CH₃), 32.6 (CH₂), 11.6 (CH₃), 11.1 (CH₃), 9.5 (CH₃); *m*/*z* (EI+) 261.15978 (M⁺, C₁₃H₁₉N₅O requires 261.15896); 501.1 (52%) (M⁺).

Quinoxalin-6-yl-[4-(4-trifluoromethylpyrimidin-2-yl)-[1,4]diazepam-1-yl]methanone (28d). White solid, mp 236 °C, LC retention time = 2.63 (m/z 402.1, M + H); (Found: C, 56.72; H, 4.29; N, 20.92, C₁₉H₁₇F₃N₆O requires C, 56.71; H, 4.26; N, 20.89%); $v_{max}(neat)/cm^{-1}$ 1623, 1592, 1425, 1315, 1205, 1123, 915, 745, 721; δ_H(500 MHz; CDCl₃) 8.86 (2H, d, J 7.2 Hz, quinoxaline H-2, H-3), 8.84 (1H, s, quinoxaline H-5), 7.52 (2H, d, J 7.2 Hz, quinoxaline H-7, H-8), 7.23 (1H, d, J 6.8 Hz, pyrimidine H-6), 3.45 (1H, d, J 6.8 Hz, pyrimidine H-5), 3.89 (4H, br t, diazepam CH₂ H-2, H-7), 3.15 (2H, br t, diazepam CH₂ H-3), 3.10 (2H, br t, diazepam CH₂ H-5), 2.08 (2H, quintet, diazepam CH₂ H-6); $\delta_{\rm C}$ (125 MHz; CDCl₃) 172.2 (C), 170.2 (C), 164.5 (C), 159.3 (CH), 148.2 (CH), 147.8 (CH), 1441. (C), 142.6 (C), 139.1 (C), 130.2 (CH), 128.2 (CH), 119.5 (CF₃), 118.3 (CH); m/z (EI+) 402.14235 (M⁺, C₁₉H₁₇F₃N₆O requires 402.14159); 402.2 (35%) (M⁺).

(4aS, 8aS)-2-(Quinoxaline-6-carbonyl)decahydroisoquinoline-3-carboxylic acid tert-butylamide (28e). Yellow oil, LC retention time = $2.74 (m/z 394.2, M^+)$; (Found: C, 70.03; H, 7.54; N, 14.15, C₂₃H₃₀N₄O₂ requires C, 70.02; H, 7.66; N, 14.20%); $v_{\rm max}$ (neat)/cm⁻¹ 1641, 1545, 1423, 1325, 1297, 1184, 1112, 1021, 926, 776, 715; $\delta_{\rm H}$ (400 MHz; CDCl₃) 8.91 (2H, d, J 7.5 Hz, quinoxaline H-2, H-3), 8.45 (1H, d, J 7 Hz, quinoxaline H-7), 8.29 (2H, m, quinoxaline H-5, H-8), 4.31 (1H, t, J 7.3 Hz, isoquinoline C-1 CH₂), 1.85 (2H, m, isoquinoline H-4), 1.67 (1H, m, isoquinoline H-4a, H-8a), 1.47 (4H, m, isoquinoline H-6, H-7), 1.35 (9H, s, t-Bu CH₃), 1.35 (4H, m, isoquinoline H-5, H-8); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 175.6 (C=O), 170.8 (C=O), 148.2 (CH), 146.4 (CH), 141.8 (C), 144.9 (C), 130.1 (CH), 128.2 (CH), 138.1 (C), 132.1 (CH), 144.9 (C), 57.1 (CH), 46.2 (CH₂), 35.1 (CH), 33.2 (CH), 28.7 (CH₂), 28.2 (CH₂), 27.2 (CH₂), 25.4 (CH₂), 25.1 (CH₂); m/z (ESI+) 394.23735 (M⁺, C₂₃H₃₀N₄O₂ requires 394.23688); 394.2 (48%) (M⁺).

Quinoxaline-6-carboxylic acid (1,3,5-trimethyl-1*H*-pyrazol-4-ylmethyl)amide (28f). Yellow oil, LC retention time = 2.78 (m/z 502.1, M + H); (Found: C, 65.12; H, 5.75; N, 23.72, C₁₆H₁₇N₅O requires C, 65.07; H, 5.80; N, 23.71%); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 1634, 1489, 1345, 1265, 1192, 1115, 1097, 1076, 915, 767, 723; $\delta_{\text{H}}(400 \text{ MHz}; \text{CDCl}_3)$ 8.74 (2H, d, J 5 Hz, quinoxaline H-2, H-3), 8.78 (1H, s, quinoxaline H-5), 8.39 (1H, d, J 5 Hz, quinoxaline H-7), 8.23 (1H, d, J 5 Hz, quinoxaline H-8), 4.56 (2H, s, pyrazole CH₂), 3.84 (2H, s, N-1 CH₃), 2.82 (6H, s, N-3, N-5 CH₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.2 (C=O), 151.9 (C), 148.2 (CH), 145.6 (CH), 144.9 (C), 144.2 (C), 141.6 (C), 137.3 (C), 131.3 (CH), 130.2 (CH), 127.8 (CH), 117.3 (C), 29.2 (CH₂), 34.9 (CH₃), 8.2 (CH₃), 1.2 (CH₃); m/z (EI+) 295.14531 (M⁺, C₁₆H₁₇N₅O requires 295.14331); 295.1 (32%) (M⁺).

Acknowledgements

We gratefully acknowledge the financial support from the Pfizer Global Research and Development for a Postdoctoral Fellowship (to J.S.), Croucher Foundation Research Fellowship (to J.S.), Royal Society Wolfson Research Fellowship (to I.R.B and S.V.L), the B.P. Endowment and Novartis Research Fellowship (to S.V.L.) for funding. We thank Dr J. E. Davies for determining the crystal structure of **2** and the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer.

References and notes

- 1 (a) I. R. Baxendale, R. I. Storer, S. V. Ley, Supported Reagents and Scavengers in Multi-Step Organic Synthesis in Polymeric Materials in Organic Synthesis and Catalysis, ed. M. Buchmeiser, Wiley-VCH, 2003; (b) S. V. Ley and I. R. Baxendale, Chem. Rec., 2002, 2, 377; (c) S. V. Ley, I. R. Baxendale, G. Brusotti, M. Caldarelli and A. Massi, Farmaco, 2002, 57, 321; (d) S. V. Ley and I. R. Baxendale, Nat. Rev. Drug Discovery, 2002, 1, 573; (e) A. Kirschning, H. Monenschein and R. Wittenberg, Angew. Chem., Int. Ed., 2001, 40, 650; (f) B. Clapham, T. S. Reger and K. D. Janda, Tetrahedron, 2001, 57, 4637; (g) D. C. Sherrington, J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2364; (h) S. Bhattacharyya, Ind. J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2001, 878; (i) S. V. Ley, I. R. Baxendale, R. N. Bream, P. S. Jackson, A. G. Leach, D. A. Longbottom, M. Nesi, J. S. Scott, R. I. Storer and S. J. Taylor, J. Chem. Soc., Perkin Trans. 1, 2000, 3815; (j) L. A. Thompson, Curr. Opin. Chem. Biol., 2000, 4, 324; (k) S. Kobayashi, Curr. Opin. Chem. Biol., 2000, 4, 338; (l) S. Bhattacharyya, Comb. Chem. High Throughput Screening, 2000, 3, 3998; (m) S. J. Shuttleworth, S. M. Allin, R. D. Wilson and D. Nasturica, Synthesis, 2000, 8, 1035; (n) R. J. Booth and J. C. Hodges, Acc. Chem. Res., 1999, 32, 18; (o) J. J. Parlow, R. V. Devraj and M. S. South, Curr. Opin. Chem. Biol., 1999, 3, 320; (p) D. H. Drewry, D. M. Coe and S. Poon, Med. Res. Rev., 1999, 19, 97; (q) J. C. Hodges, Synlett, 1999, 1, 152; (r) R. J. Booth and J. C. Hodges, J. Am. Chem. Soc., 1997, 19, 4882; (s) S. J. Shuttleworth, S. M. Allin and P. K. Sharma, Synthesis, 1997, 1217; (t) S. W. Kaldor, M. G. Siegel, B. A. Dressman and P. J. Hahn, Tetrahedron Lett., 1996, 37, 7193; (u) A. Chakrabarti and M. M. Sharma, React. Polym., 1993, 20, 1; (v) A. Akelah and D. C. Sherrington, Polymer, 1983, 24, 1369; (w) A. Akelah and D. C. Sherrington, Chem. Rev., 1981, 81, 557; (x) S. Sussman, Ind. Eng. Chem., 1946, 38, 1228.
- 2 M. G. Siegel, P. J. Hahn, B. A. Dressman, J. E. Fritz, J. R. Grunwell and S. W. Kaldor, *Tetrahedron Lett.*, 1997, 38, 3357.
- 3 S. V. Ley, A. Massi, F. Rodriguez, D. C. Horwell, R. A. Lewthwaite, M. C. Pritchard and A. M. Reid, *Angew. Chem.*, *Int. Ed.*, 2001, 40, 1053.
- 4 D. P. Curran, Angew. Chem., Int. Ed., 1998, 37, 1174.
- 5 The solid support may be purchased from the Sigma Aldrich Company Ltd. The copper(II)-containing beads were prepared as follows: Macroporous IRC-718 beads were shaken for 30 min in a 2 M aqueous solution of copper sulfate. The blue beads were filtered and washed with water followed by diethyl ether. The dried copper(II)containing beads were stored and used as required..
- 6 For solid-phase Horner–Emmons reactions, see: (a) J.K. Bang, K. Hasegawa, T. Kawakami, S. Aimoto and K. Akaji, *Tetrahedron Lett.*, 2004, **45**, 99; (b) T. Groth and M. Meldal, J. Comb. Chem., 2001, **3**, 33; (c) J. M. Salvino, T. J. Kiesow and S. Darnbrough, J. Comb. Chem., 1999, **2**, 134.
- 7 (*a*) For a solution-phase Wittig reaction using a phase-switch approach, see: T. Bosanac, J. Yang and C. S. Wilcox, *Angew. Chem., Int. Ed.*, 2001, **40**, 1875; (*b*) For the use of ROMP-Gel for Horner–Emmons synthesis, see: A. G. M. Barrett, S. M. Cramp, R. S. Roberts and F. J. Zecri, *Org. Lett.*, 1999, **1**, 579.
- 8 L. D. Ciana, W. J. Dressich and A. von Zelewky, J. Heterocycl. Chem., 1990, 27, 163.

- 9 (a) G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.
- (a) J. Habermann, S. V. Ley and J. S. Scott, J. Chem. Soc., Perkin Trans. 1, 1998, 3127; (b) J. Habermann, S. V. Ley and J. S. Scott, J. Chem. Soc., Perkin Trans. 1, 1999, 1253; (c) C. Blackburn, B. Guan, P. Fleming, K. Shiosaki and S. Tsai, Tetrahedron Lett., 1998, 39, 3635; (d) M. G. Siegel, P. J. Hahn, B. A. Dressman, J. E. Fritz, J. R. Grunwell and S. W. Kaldor, Tetrahedron Lett., 1997, 38, 3357; (e) A. J. Shuker, M. G. Siegel, D. P. Matthews and L. O. Weigel, Tetrahedron Lett., 1997, 38, 6149.
- (a) M. W. Creswell, G. L. Bolton, J. C. Hodges and M. Meppen, *Tetrahedron*, 1998, 54, 3983; (b) D. L. Flynn, J. Z. Crich, R. V. Devraj, S. L. Hockerman, J. J. Parlow, M. S. South and S. Woodard, *J. Am. Chem. Soc.*, 1997, 119, 4874; (c) R. J. Booth and J. C. Hodges, *J. Am. Chem. Soc.*, 1997, 119, 4882; (d) G. L. Bolton, R. J. Booth, M. W. Creswell, J. C. Hodges, J. S. Warmus, M. W. Wilson and R. M. Kennedy, 'Rapid Purification by Polymer-supported Quench', US *Pat.*, 1997, W097/42230.
- 12 (a) J. J. Parlow and D. L. Flynn, *Tetrahedron*, 1998, **54**, 4013; (b) J. J. Parlow, W. Naing, M. S. South and D. L. Flynn, *Tetrahedron Lett.*, 1997, **38**, 7959.
- 13 Copper leaching was measured by sampling the reaction mixture and performing Inductively Coupled Plasma (ICP) analysis. This indicated less than 20 ppm Cu (wt/wt), corresponding to approx. 0.25% leaching based upon the original Cu content of the beads.
- 14 E. Convers, H. Tye and M. Whittaker, Tetrahedron, 2004, 60, 8729.

- 15 The Bond Elut cartridges were purchased from Varian Ltd.: 28, Manor Road, Walton-on-Thames, Surrey, UK KT12 2QF [fax: +44 (0)1932 228769, www.varianinc.com].
- 16 A fully automated coherent Emrys Liberator microwave system was used. This was purchased from Biotage AG, Hamnesplanaden 5, 75319 Uppsala, Sweden..
- 17 O. P. Shkurko, M. I. Terekhova, E. S. Petrov, V. P. Marnaev and A. I. Shatenshtein, *Zhurnal Organiceskoi Khimii*, 1981, **17**, 312.
- 18 S. M. S. Chauhan and H. Junjappa, Synthesis, 1974, 880.
- 19 R. N. MacCoss, D. J. Henry, C.T. Brain and S. V. Ley, *Synlett*, 2004, 675.
- 20 C. Perrio-Huard, C. Aubert and M.-C. Lasne, J. Chem. Soc., Perkin Trans. 1, 2000, 3, 311.
- 21 L. Lemoucheux, J. Rouden, M. Ibazizene, F. Sobrio and M.-C. Lasne, J. Org. Chem., 2003, 68, 7289.
- 22 T. Ishikawa, R. Kadoya, M. Arai, H. Takahashi, Y. Kaisi, T. Mizuta, K. Yoshikai and S. Saito, J. Org. Chem., 2001, 66, 8000.
- 23 R. E. Zelle, Synthesis, 1991, 11, 1023.
- 24 J. Habermann, S. V. Ley and J. S. Scott, *J. Chem. Soc., Perkin Trans. 1*, 1999, 1253.
- 25 C. Naegeli, W. Kündig and H. Brandenburger, *Helv. Chim. Acta*, 1938, 21, 1746.
- 26 Patent; Merck and Co.; DE 1695532; 1971.
- 27 A. Shafiee, N. Rastkary and A. Foroumadi, J. Heterocycl. Chem., 1998, 35, 607.
- 28 (a) G. Will, G. Boschloo, S. N. Rao and D. Fitzmaurice, J. Phys. Chem., 1999, 103, 8067; (b) P. R. Ashton, V. Balzani, A. Credi, O. Kocian and D. Pashini, Chem. Eur. J., 1998, 4, 590.