

Tetrahedron Letters 41 (2000) 8203-8206

TETRAHEDRON LETTERS

Two convenient and high-yielding preparations of 6,6'-dimethyl-2,2'-bipyridine by homocoupling of 6-bromopicoline

Tânia M. Cassol, F. W. Joachim Demnitz,* Marcelo Navarro and Eduardo A. d. Neves

Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50.670-901 Recife-PE, Brazil

Received 11 July 2000; accepted 1 August 2000

Abstract

6-Bromopicoline can be reductively homocoupled to provide 6,6'-dimethyl-2,2'-bipyridine in high yield either by an Ni·bpy catalysed electrosynthesis or by a catalytic modification of the Ullmann synthesis employing $Pd(OAc)_2$. Either procedure is operationally simple and represents a considerable improvement over most known syntheses of this important disubstituted bipyridine. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: 6-bromopicoline; 6,6'-dimethyl-2,2'-bipyridine; electrosynthesis; reductive homocoupling; Ullmann coupling.

Heteroaromatic chelates based on 2,2'-bipyridine (bpy, 1) are amongst the most important ligands for inorganic cations.¹ Homologation at the 6/6' positions leads to more exotic ligands of the podand, coronand and cryptate type bearing additional ligating groups.² Among the most common starting materials for achieving this is 6,6'-dimethyl-2,2'-bipyridine (dmbp, 2), which is usually transformed by NBS³ or NCS⁴ halogenation to the bis-halomethyl derivatives (3) as a first step in elaborating the side chains.

Despite the importance of **2**, its' synthesis remains less than satisfactory, a fact to which the numerous preparations that have been reported attest. These involve organometallic^{5a,e,f,h} and/or toxic or unpleasant reagents, ^{5a,f,g} low yields, ^{4,5b,c,e-j} high temperatures, ^{4,5b,c,i,j} as well as laborious and/or long reaction/purification procedures, ^{5b,c,k} often requiring chromatography^{5d} or vacuum distillation. ^{5b,c} The best method in terms of yield and execution appears to be the reductive homocoupling^{5d} of 6-bromopicoline^{5b} (Br-pic) using a nickel complex reducing agent. The main drawback in this method is the use of 4 equivalents of PPh₃ which necessitates chromatography for the purification of the product.

^{*} Corresponding author. Fax: +55 81 271 8442; e-mail: jdemnitz@npd.ufpe.br

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01310-1

Of the general approaches known for the synthesis of symmetrical bipyridines, the homocoupling of halopyridines, such as that promoted by low-valent nickel⁶ or $Pd(OAc)_2$,⁷ (and thereby avoiding the need to handle organometallic reagents and intermediates!) is the most promising, both from a standpoint of yield and operation. Nonetheless, the former of these methods,^{6a} apart from requiring stoichiometric PPh₃, proved capricious in our hands for the preparation of **2** from Br-pic. In that procedure, low valent nickel catalysis employs zinc powder as a reductant in order to prepare the Ni(0) species in situ from NiCl₂. According to a different protocol recently disclosed by Nédélec, Périchon and co-workers, aryl halides can be reductively cross-coupled in a simple electrosynthesis, catalytic in nickel *and devoid of PPh₃*, wherein the Ni(0) moiety is generated at constant current density. Thus clean reactions are achieved with activated alkyl halides,⁸ 3-thienylzinc bromide,⁹ 2-chloropyrimidine and 2-chloropyrazine¹⁰ as well as 2-halopyridines¹¹ to yield the corresponding coupling products.

We would like to report two simple and mild methods for the multigram preparation and ready isolation and purification of **2** in good yields. Firstly, adapting Nédélec and Périchon's procedure and homocoupling two moles of Br-pic¹² instead of one mole each of aryl halide and 2-halopyridine we were able to reproducibly prepare **2** in good yield. Secondly, the recently published⁷ variant of the Ullmann reaction using catalytic $Pd(OAc)_2$ can also be applied to Br-pic:

Although the electroreductive coupling proceeds cleanly at room temperature it does so somewhat more slowly than in the case of heterocouplings using aryl-¹¹ or activated alkyl-halides.⁸ This observation manifests itself in our inability to run the reaction at a current density of 200 mA typically employed in the examples cited above.^{8–11} Attempts to do so invariably resulted in potential overload of up to 3 V (versus Ag/AgCl) and large-scale substrate reduction. Consequently it is advisable to apply a current density of about 120 mA. The reduction in rate in this coupling involving Br-pic can be explained in terms of the inherently lower reactivity of halopyridines as compared to aryl halides in the rate determining oxidative addition of a reductively generated Ni(0) bipy species to the organic halide.⁶

Notwithstanding these conjectures, we consider the preparation of **2** at hand to be a considerable improvement over existing ones. It is operationally simple in that it can be carried out at room temperature in a wide-mouthed Erlenmeyer flask fitted with an appropriately pierced rubber stopper carrying gas inlet and outlet tubes, a zinc-rod anode and a copper wire for nickel foam cathode connection via a simple clip. We have used DMF both freshly distilled and after prolonged storage over molecular sieves with no apparent reduction in yield. The nickel cathode can be used repeatedly.¹³ The production of Zn^{2+} salts from the sacrificial anode does not affect the reaction, and work-up and purification are not only easy, but gratifyingly avoid chromatography, the only side products being water soluble salts.

Alternatively, we have employed Lemaire's $Pd(OAc)_2$ catalysed procedure⁷ for effecting exactly the same coupling. Thus **2** can be prepared in good yield and multigram quantities from readily available 6-bromopicoline.^{5b,12} We recommend either method for the synthesis of 6,6'-dimethyl-

2,2'-bipyridine to be considered amongst first line choices for obtaining this important intermediate.

Preparation of 6,6'-dimethyl-2,2'-bipyridine (2):

(a) By electroreductive homocoupling of 6-bromopicoline: A wide-mouthed Erlenmeyer flask was charged with a solution of 1,2-dibromoethane (188 mg, 1 mmol) and n-Bu₄NBF₄ (380 mg, 1.16 mmol) in distilled DMF (230 mL) and then equipped with a pierced rubber stopper carrying a zinc rod anode, a copper wire and a jaw-clip holding the nickel foam cathode (≈ 25 cm²) wrapped around the anode in a cylindrical fashion (anode–cathode distance ≈ 1 cm), as well as gas inlet and outlet tubes (see diagram). After passing N₂ for 10 min the solution was electrolysed at -2 V (versus Ag/AgCl) for 1 hour. A DMF solution of NiBr₂·dmbp¹⁴ [NiBr₂ (425 mg, 1.94 mmol, 6.7 mol%)/dimethylbipyridine (2) (357 mg, 1.94 mmol, 6.7 mol%)/DMF (20 mL)/rt/overnight] was then added, followed by Br-pic (5 g, 29.07 mmol). A current of 120 mA was applied¹⁵ and the reaction was monitored by TLC. Concurrent with the consumption of starting material, the end-point was indicated by a colour change from wine-red to dark brown. The solvent was removed in vacuo and the semi-solid residue taken up in CHCl₃. Washing with aq. NH_3 until the organic phase was light yellow, back extraction of the aqueous phases, drying (Na_2SO_4) , filtration and concentration gave an ocre solid, which was washed with cyclohexane to provide pure 6,6'-dimethyl-2,2'-bipyridine (2) (1.8 g, 67%, $mp = 88-89^{\circ}C$) (lit.⁴=88-89^{\circ}C). After removal of the solvent the filtrate crystallised. Slurrying in cyclohexane and renewed filtration provided more product (226 mg, 8%).

(b) By $Pd(OAc)_2$ catalysed homocoupling of 6-bromopicoline: A mixture of Br-pic^{5b,12} (3 g, 17.44 mmol), *n*-Bu₄NBr (2.81 g, 8.7 mmol, 0.5 equiv.), $Pd(OAc)_2$ (196 mg, 0.87 mmol, 5 mol%) and K₂CO₃ (2.41 g, 17.44 mmol, 1 equiv.) in DMF:H₂O, 2.4:1 (2.4 mL) was heated to 110°C under N₂. Then isopropyl alcohol (1.34 mL) was added and the flask was tightly stoppered. Stirring was continued at 110°C for 2 days. The cooled reaction mixture was diluted with water and extracted with EtOAc. Drying (Na₂SO₄), filtration and evaporation afforded a brown oil which was chromatographed (eluent: *n*-hex:EtOAc, 4:1) to give the desired 6,6'-dimethyl-2,2'-bipyridine (**2**) as a white solid (1.2 g, 74%).

Acknowledgements

Financial support from *Conselho Nacional de Pesquisa e Desenvolvimento* (CNPq–Brazilian Agency) is acknowledged. T.M.C. thanks CNPq for a fellowship, E.A.N. for a scholarship. M.N. thanks CAPES/COFECUB for a travel grant. Professor H. Uzar, Siegen University, Germany is acknowledged for a gift of 6-bromopicoline. We are also very grateful to Professors J.-Y. Nédélec and E. Leonel, CNRS-Thiais, France for useful and helpful tips and discussion.

References

- 1. Reedijk, J. In *Comprehensive Coordination Chemistry*, Wilkinson, G., Ed.; Pergamon, Oxford, 1987; Vol. 2, p. 73; see also leading citations in Ref. 5d.
- Newkome, G. R.; Kiefer, G. E.; Kohli, D. K.; Xia, Y.-J.; Fronczek, F. R.; Baker, G. R. J. Org. Chem. 1989, 54, 5105; Dürr, H.; Zengerle, K.; Trierweiler, H.-P. Z. Naturforsch. 1988, 43b, 361; Mukkala, V.-M.; Kwiatkowski, M.; Kankare, J.; Takalo, H. Helv. Chim. Acta 1993, 76, 893; Harding, M. M.; Koert, U.; Lehn, J.-M.; Marquis-Rigault, A.; Piguet, C.; Siegel, J. Helv. Chim. Acta 1991, 74, 594; Echegoyen, L.; DeCian, A.; Fischer, J.; Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 828.
- 3. Rodriguez-Ubis, J.-C.; Alpha, B.; Plancherel, D.; Lehn, J.-M. Helv. Chim. Acta 1984, 67, 2264.
- Newkome, G. R.; Puckett, W. E.; Kiefer, G. E.; Gupta, V. K.; Xia, Y.; Coreil, M.; Hackney, M. A. J. Org. Chem. 1982, 47, 4116.
- (a) 65% from 6-chloropicoline with n-BuLi/SOCl₂: Oae, S.; Inibushi, Y.; Yoshihara, M. Phosphorous, Sulfur Silicon 1995, 103, 101; (b) 45–50% from 6-bromopicoline with NaOOCH/Pd–C/aq NaOH in phase transfer conditions: Newkome, G. R.; Pantaleo, D. C.; Puckett, W. E.; Ziefle, P. L.; Deutsch, W. A. J. Inorg. Nucl. Chem. 1981, 43, 1529; Kauffmann, Th.; König, J.; Woltermann, A. Chem. Ber. 1976, 109, 3864; Bamfield, P.; Quam, P. M. Synthesis 1978, 537; (c) 40% from 2-picoline/2-picoline-N-oxide in phase transfer conditions: Haginiwa, J.; Higuchi, Y. Yakugaku Zasshi 1973, 93, 144; (d) 73% from 6-bromopicoline with t-BuOH/NaH/Ni(OAc)₂/PPh₃: Fort, Y.; Becker, S.; Caubère, P. Tetrahedron 1994, 41, 11893; (e) 52% from 2,2'-bipyridine with MeLi/MnO₂: Shaul, M.; Cohen, Y. J. Org. Chem. 1999, 64, 9358; Dietrich-Bicheker, C. O.; Marnot, P. A.; Sauvage, J.-P. Tetrahedron Lett. 1982, 23, 5291; (f) 50% from 6,6'-dibromo-2,2'-bipyridine with BuLi/Me₂SO₄: Parks, J. E.; Wagner, B. E.; Holm, R. H. J. Organometal. Chem. 1973, 56, 53; (g) 22% from tris(6-methyl-2-pyridyl)phosphine with Br₂/MeOH: Uchida, Y.; Kajita, R.; Kawasaki, Y.; Oae, S. Tetrahedron Lett. 1995, 36, 4007; (h) 53% from 2-ethylsulfinyl-6-methylpyridine and MeMgBr: Uenishi, J.; Tanaka, T.; Wakabayashi, S.; Oae, S. Tetrahedron Lett. 1990, 31, 4625; (i) <1% from 6-aminopicoline: DeTar, D. R. Org. React. 1957, 9, 409; (j) 1% from 2-picoline with Pd–C: Fabian, R. H.; Klassen, D. M.; Sonntag, R. W. Inorg. Chem. 1980, 19, 1977; (k) 65% from Br-pic/Ra–Ni: Rode, T.; Breitmaier, E. Synthesis 1987, 574.
- (a) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. Synthesis 1984, 736; (b) Iyoda, M.; Otsuka, H.; Sato, K.; Nisato, N.; Oda, M. Bull. Chem. Soc. Jpn. 1990, 63, 80.
- 7. Hassan, J.; Pennlva, V.; Lavenot, L.; Gozzi, Ch.; Lemaire, M. Tetrahedron 1998, 54, 13793.
- 8. Durandetti, M.; Nédélec, J.-Y.; Périchon, J. J. Org. Chem. 1996, 61, 1748.
- 9. Gosmini, C.; Nédélec, J.-Y.; Périchon, J. Tetrahedron Lett. 1997, 38, 1941.
- 10. Gosmini, C.; Nédélec, J.-Y.; Périchon, J. Tetrahedron Lett. 2000, 41, 201.
- (a) Gosmini, C.; Lasry, S.; Nédélec, J.-Y.; Périchon, J. *Tetrahedron* 1998, 54, 1289; (b) Gosmini, C.; Nédélec, J.-Y.; Périchon, J. *Tetrahedron Lett.* 2000, 41, 5039.
- 12. The inclusion of the preparation of Br-pic from 6-aminopicoline^{5b} on a 100 gram scale in an undergraduate practical course attests to its reliability Professor H. Uzar, Universität Siegen, Germany, private communication.
- 13. In order to obtain best yields, it is advisable to clean the nickel foam before use by immersion in 6 M HCl for 10 min followed by sequential sonication in water and ethanol (10 min each) and drying in a desiccator.
- 14. Where dmbp (2) is not available, bpy (1) can be used with equal success. It is preferable to use 2 as a ligand in the catalytic species in as much as it avoids contamination of the product, which, in the former case can be used without recrystallisation.
- 15. It is best to monitor the current in such a way as to maintain the potential at ≥ -1.55 V in order to avoid reduction of Br-pic. In doing this, the current drops periodically to about 80 mA, slowly returning however to its original value.