Zwei neue Phosphorsulfide

Heike Nowottnick und Roger Blachnik*

Osnabrück, Institut für Chemie der Universität

Bei der Redaktion eingegangen am 23. Juli 1999.

Herrn Professor Gerhard Fritz zum 80. Geburtstag gewidmet

Two New Phosphorus Sulfides

Abstract. Jason [1] prepared by the reaction of triphenylantimony sulfide with α -P₄S₅ and α -P₄S₇ new phosphorus sulfides. The application of this method on α -P₄S₄ yielded the main product γ -P₄S₅ which was assumed to appear in low concentration in phosphorus-sulfur melts by *Bjorholm and Jakobsen* [2]. In addition the new isomers δ -P₄S₆ and ε -P₄S₆ were identified by ³¹P-NMR spectroscopy. Furtheron the sulfurization of α -P₄S₅ and β -P₄S₅ was studied. Reaction paths are suggested. In all cases the primary reaction is an exocyc-

Alle Phosphorsulfide entstehen formal durch exocyclische Addition von Schwefel an die Gerüste von β -P₄S₄, α -P₄S₄, β -P₄S₅ und ein unbekanntes P₄S₆-Gerüst mit Adamantanstruktur. Bisher sind nur die Mitglieder der β -P₄S₅-Reihe vollständig bekannt. 1997 fand *Jason* [1] über die Sulfurierung von P₄S_n (n \geq 5) mittels Triphenylantimonsulfid (1) oder Triphenylarsensulfid einen neuen Zugang zu Phosphorsulfiden. In der vorliegenden Arbeit sollte die Sulfurierung von schwefelärmeren Phosphorsulfiden untersucht werden.

Ergebnisse und Diskussion

Zur Prüfung der Reinheit der Sulfide wurden ³¹P-NMR-Spektren ihrer CS₂-Lösungen gemessen. Während α-P₄S₄ rein dargestellt werden konnte, enthielten die Lösungen von α -P₄S₅ und β -P₄S₅ weitere Sulfide (Tab. 2). Zur Klärung, ob in diesen Lösungen bei Zimmertemperatur oder bei Temperaturerhöhung Reaktionen ablaufen, wurden sie gelagert und danach ³¹P-NMR-Spektren gemessen. Während der Lagerung einer β -P₄S₅-Lösung nahm die Konzentration von β - P_4S_5 deutlich ab, die der durch Schwefel-Abstraktion (P_4S_3 , α -P₄S₄), Addition (β -P₄S₆) oder Insertion (γ -P₄S₅) gebildeten Isomere zu. Ähnlich, aber in geringerem Ausmaß reagierte α -P₄S₅. Die bei der Lagerung auftretende Disproportionierung in phosphorärmere und -reichere Sulfide wurde durch Temperaturerhöhung verstärkt. Diese Vorgänge laufen auch während der Untersuchungen ab, was das Auftreten von P₄S₃, oder von Isomeren mit basalen P₃-Gruppen aus Edukten ohne diese Baueinheit erklärt.

Institut für Chemie der Universität Osnabrück Postfach 44 69 D-49069 Osnabrück Telefon: Int. +541/9 69-28 07 Telefax: Int. +541/9 69-23 70 e-mail: rblachni@rz.Uni-Osnabrueck.de lic addition of phosphorus, followed by insertion or further addition.

Keywords: 1,5-thioxo-2,4,6,8-tetrathia-1,3,5,7-tetraphosphatricyclo[3.3.0.0^{3,7}]octane; 1-thioxo-2,4,6,8-tetrathia-1,3,5,7-tetraphosphatricyclo[3.3.0.0^{3,7}]octane; ³¹P NMR; δ-Tetraphosphorus hexasulfide, ε-Tetraphosphorus hexasulfide; γ-Tetraphosphorus pentasulfide

Bei der Sulfurierung sind drei Reaktionsschritte möglich, eine P^{III}-Addition von Schwefel an ein dreifach an Schwefel gebundenes Phosphoratom, eine P^{II}- Addition von Schwefel an ein zweifach an Schwefel gebundenes Phosphoratom, oder eine Insertion eines exoständigen Schwefelatoms in eine P–P Brücke. Über eine P^{III}-Addition erfolgt die Bildung von Produkten schneller als über die beiden anderen Reaktionswege. Die relativen Konzentrationen der Produkte sind in Tab. 1 und 2 enthalten. Die von *Jason* [1] mit F und H bezeichneten Verbindungen wurden ebenfalls bei hohen Konzentrationen an **1** gefunden, wahrscheinlich handelt es sich um schwefelreiche Phosphorsulfide.

Tabelle 1 Produkte (in %) der Reaktionen von α -P₄S₄ mit Triphenylantimonsulfid^{a)}

α-P ₄ S ₄ : Ph ₃ SbS	1:0,3	1:1	1:2	1:2	1:3	1:4	1:1 ^{b)}	1:1 ^{c)}
P ₄ S ₃	8,2	1,2	-	_	_	-	1,3	1,8
$\alpha - P_4 S_4$	42,9	47,4	13,6	22,4	-	-	53,9	43,7
$\alpha - P_4 S_5$	8,5	2,3	-	-	-	-	7,4	12
$\beta - P_4 S_5$	1,9	-	-	-	-	-	1	1,1
$\gamma - P_4 S_5$	25,1	32,9	65,7	62,1	-	-	12,2	10,9
$\alpha - P_4 S_6$	1,7	0,5	-	-	-	-	≪1	2,2
$\beta - P_4 S_6$	1,0	0,5	3,8	2,9	-	-	4,4	7,7
$\gamma - P_4 S_6$	2,3	1,2	-	-	-	-	0,5	0,8
$\delta - P_4 S_6$	3,3	2,4	0,8	0,5	-	-	3,5	3,7
$\epsilon - P_4 S_6$	-	-	1,9	1,3	-	-	-	-
$\alpha - P_4 S_7$	2,8	0,7	5,6	4,7	28,0	13,1	1,1	3,3
$\beta - P_4 S_7$	2,4	1,9	7,0	6,1	-	-	4	4,8
$\beta - P_4 S_8$	-	-	-	-	20,0	6,2	-	-
$\alpha - P_4 S_9$	-	-	-	-	35,5	53,0	-	-
$\beta - P_4 S_9$	-	-	-	-	≥1	2,5	-	-
P_4S_{10}	-	-	-	-	16,5	18,1	-	-
Verbb. F u. H	-	_	-	-	-	2,6	-	-
unbekannt	-	9,0	1,6	≪1	-	4,2	10,7	8,1

^{a)} Die prozentualen Angaben in dieser und der folgenden Tabelle wurden durch Analyse der Spektren des in CS₂ löslichen Materials gewonnen. Wiederholte Messungen zur Bestimmung der Fehler zeigten, daß die Größenordnungen der prozentualen Anteile reproduzierbar sind; ^{b)} 28 d; ^{c)} 70 d.

^{*} Prof. Dr. Roger Blachnik

Sulfid	β -P ₄ S ₅	$ \begin{array}{c} \beta \text{-} P_4 S_5 \\ (28 \text{ d}) \end{array} $	α-P ₄ S ₅	α-P ₄ S ₅ (14 d)	α-P ₄ S ₅	β -P ₄ S ₅	β -P ₄ S ₅	β-P ₄ S ₅
Ph ₃ MS P ₄ S _x /Ph ₃ MS	Edukt	Edukt	Edukt	Edukt	Ph ₃ SbS 1:0,5	Ph ₃ SbS 1:0,5	Ph ₃ SbS 1:0,5 (7 d)	Ph ₃ SbS 1:1
P_4S_3	-	0,7	2,7	2,6	0,6	-	-	-
$\beta - P_4 S_4$	-	-	-	0,4	-	-	-	-
$\alpha - P_4 S_4$	1,8	4,0	-	0,4	-	1,7	2,3	2,7
$\alpha - P_4 S_5$	-	5,8	91,8	88,3	60,5	-	0,7	-
$\beta - P_4 S_5$	86,0	70,6	-	0,7	-	42,1	38,7	7,8
$\gamma - P_4 S_5$	-	0,7	-	-	-	0,9	2,8	-
$\alpha - P_4 S_6$	-	0,6	-	≪1	19,5	-	-	-
$\beta - P_4 S_6$	2,5	9,5	0,7	1,9	0,2	27,3	29,2	20,3
$\delta - P_4 S_6$	-	-	-	-	-	1,0	2,1	-
$\gamma - P_4 S_6$	-	-	-	0,5	13,7	-	-	-
$\alpha - P_4 S_7$	9,8	8,1	4,9	5,3	4,3	23,3	21,8	32,4
$\beta - P_4 S_7$	-	-	-	-	0,7	3,7	2,4	6,6
$\beta - P_4 S_8$	-	-	-	-	0,2	-	-	26,5
$\gamma - P_4 S_8$	-	-	-	-	-	-	-	-
$\alpha - P_4 S_9$	-	-	-	-	0,4	-	-	3,7
P_4S_{10}	-	-	-	-	-	-	-	≪1
unbekannt	_	_	_	_	_	_	_	_

Abb. 1 Bezeichnung der neuen Phosphorsulfide

Bei etwa gleichen molaren Anteilen der Edukte (1:1, 1:2) war γ -P₄S₅ Hauptprodukt (Abb. 1), das bereits von *Bjorholm und Jakobsen* [2] in Phosphor–Schwefel-Schmelzen vermutet wurde. In geringen Mengen wurde ein neues Sulfid, δ -P₄S₆, beobachtet (Abb. 1). Bei einem Eduktverhältnis von 1:2 bildete sich ε -P₄S₆ (Abb. 1). Eine weitere Steigerung der Konzentration von **1** (1:3, 1:4) führte ausschließlich zur Bildung phosphorreicherer Sulfide, wie von P₄S₇, P₄S₈ und P₄S₉ sowie P₄S₁₀.

In der Primärreaktion entsteht γ -P₄S₅ durch exocyclische Addition von Schwefel an α -P₄S₄. Durch Insertion wandelt es sich in β -P₄S₅ um, während eine P^{II}-Addition zu ε -P₄S₆ führt. Bei geringen Konzentrationen von 1 ist der Anteil an δ -P₄S₆ und seiner Folgeprodukte größer als der von β -P₄S₆ und seiner Folgeprodukte. Bei größeren Mengen von 1 kehren sich die Verhältnisse um. Offenbar schließt sich bei geringen Anteilen von 1 der ersten Addition eine zweite an, während bei größeren Mengen von 1 der zweite Reaktions-

Abb.2 Mögliche Reaktionswege der Sulfurierung von α -P₄S₄

Abb. 3 Mögliche Reaktionswege der Sulfurierung von α -P₄S₅

schritt hauptsächlich über die Insertion von γ -P₄S₅ verläuft. Bei hohen Konzentrationen von **1** endet die Reaktionskette über P^{III}-Additionen bei α -P₄S₉ und P₄S₁₀. Der aus den Produktverteilungen gefolgerte Reaktionsablauf ist in Abb. 2 dargestellt.

Während einer Lagerung der abreagierten Lösung (Eduktverhältnis 1:1) von vier und zehn Wochen nahm die Konzentration von γ -P₄S₅ ab. Als Insertionsprodukt zeigte sich β -P₄S₅. Die Anteile von schwefelreicheren Isomeren wuchsen an. In diesem Fall wurden auch Isomere gefunden, die über die in den Lösungen der reinen Phosphorsulfide nachgewiesenen Gleichgewichtsreaktionen entstehen. Bei der Sulfurierung von β -P₄S₅ wurden bis auf Spuren von γ -P₄S₅ nur Additionsprodukte (Tab. 2) gefunden.

Hauptprodukte der Reaktion von α -P₄S₅ mit **1** waren α -P₄S₆, γ -P₄S₆, α -P₄S₇ und β -P₄S₈ (Tab. 3). Bei fast allen Reaktionsschritten blieb die P₃-Einheit erhalten (Abb. 3).

Zuordnung der ³¹P-NMR-Spektren

Die ³¹P-NMR-Spektren von δ -P₄S₆, ε -P₄S₆ und γ -P₄S₅ wurden nach den Regeln erster Ordnung analysiert. Die iterative Anpassung der NMR-Parameter erfolgte mit dem Programm WinDaisy [3]. Die Benennung der Phosphoratome

Tabelle 3 ³¹P-NMR-spektroskopische Daten von δ -P₄S₆, ε -P₄S₆ und γ -P₄S₅

P ₄ S _x	Spinsys.	P–P	P=S	δ_{A} ppm	$\delta_{ m B}$ ppm	$\delta_{ m C}$ ppm	² J _{AB} Hz	$^{1}J_{AC}$ Hz	$^{2}J_{BC}$ Hz	R-Wert %
$\delta - P_4 S_6$	AB ₂ C	B-B/A-C	С	165,42	131,23	22,74	30,2(4)	440,1(7)	34,4(4)	11,3
$\epsilon - P_4 S_6$	B_2C_2	B-B/C-C	С		115,19	27,23			8,2(1)	12,8
$\gamma - P_4 S_5$	AB_2C	B-B/A-C	С	209,95	120,78	98,14	31,0(2)	445,6(4)	14,9(2)	4,8

im Gerüst ist Abb. 1 zu entnehmen. Nach den bisherigen Erfahrungen ist der Betrag der ${}^{1}J_{P-P}$ -Kopplung des P–P=S Strukturfragmentes größer als der einer normalen ${}^{1}J_{P-P}$ -Kopplung. In der P–P–P-Kette des β -P₄S₄-Gerüsts beträgt der Wert der ${}^{1}J_{P-P}$ -Kopplung –167 Hz. Er wandert bei exoständigen Schwefelatomen an der P₃-Einheit in den Bereich von –240 Hz bis –299 Hz. Bei Verbindungen mit exoständigem Schwefel an einem P–P-Fragment, wie in α -P₄S₄ erstrekken sich die Werte der Kopplungskonstanten von –344 Hz bis –445 Hz. Mit Hilfe dieser Befunde konnten die Multipletts von γ -P₄S₅, δ -P₄S₆ und ε -P₄S₆ identifiziert werden. Die Zuordnung der Kernresonanzdaten zeigt Tab. 3.

Experimentelles

Triphenylphosphin wurde von Aldrich Chemical Co, Triphenylantimonsulfid von Strem Chemical Co bezogen. Alle Reaktionen wurden mit der Schlenktechnik bei Zimmertemperatur in CS₂-Lösungen durchgeführt. Die Darstellung von α -P₄S₄ erfolgte aus α -P₄S₃I₂, das mit Bis-Trimethylzinnsulfid im Verhältnis 1:1 umgesetzt wurde [4, 5]. α -P₄S₃I₂ wurde durch Aufschmelzen stöchiometrischer Mengen der Elemente (roter Phosphor: Knapsack, 99,999%; Schwefel: Merck, 99,9%; Iod: Merck 99,8%), oder durch Aufschmelzen äquimolarer Mengen von P₄S₃ mit Iod in evakuierten Quarzglasampullen bei ca. 450 K präpariert und anschließend aus CS₂ umkristallisiert. β -P₄S₅ wurde durch Entschwefelung von α -P₄S₇ mittels Triphenylphosphin dargestellt [5].

Reaktion von Triphenylantimonsulfid mit α -P₄S₄: 0,2 g (0,8 mmol) α -P₄S₄ werden in einem 100 mL Schutzgaskolben

in 20 mL CS₂ gelöst und mit Hilfe eines Tropftrichters mit Druckausgleich mit einer Lösung von 0,31 g (0,8 mmol) (C₆H₅)₃SbS in 15 mL CS₂ innerhalb von 30 Minuten bei Raumtemperatur versetzt. Die anderen Reaktionen wurden in der gleichen Art durchgeführt.

Die NMR-Spektren wurden mit einem Bruker Avance-250 DPX Spektrometer bei einer Meßfrequenz von 101,3 MHz für ³¹P und 298 K in 5 mm Probenröhrchen aufgenommen. Die Aufnahme der Spektren erfolgte in über P_4O_{10} getrocknetem CS₂. Zur Frequenzstabilisierung wurden abgeschmolzene Glaskapillaren hinzugefügt, die mit Deuterobenzol gefüllt waren. Die chemischen Verschiebungen beziehen sich auf externe 85% H₃PO₄/H₂O Lösungen.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds für Chemie für die Unterstützung der Arbeiten.

- [1] M. E. Jason, Inorg. Chem. 1997, 36, 2641.
- [2] T. Bjorholm, H. J. Jakobsen. J. Am. Chem. Soc. 1991, 113, 27.
- [3] WinDaisy, Spektreniterationsprogramm, Version 4.0, Bruker Franzen Analytik, **1996**.
- [4] A. M. Griffin, P. C. Minshall, G. M. Sheldrick, J. Chem. Soc., Chem. Commun. 1976, 809.
- [5] R. Blachnik, A. Hoppe, Z. Anorg. Allg. Chem. 1979, 457, 91.