

View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: K. gullapalli, R. ragam and V. narayanarao, *RSC Adv.*, 2015, DOI: 10.1039/C5RA00646E.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Published on 20 February 2015. Downloaded by Mahidol University on 20/02/2015 10:17:14.

Metal- and base-free syntheses of aryl / alkylthioindoles by the iodine-induced reductive coupling of aryl / alkyl sulfonyl chlorides with indoles

Gullapalli Kumaraswamy *^(a,b) Ragam Raju^(a) and Vykunthapu Narayanarao^(a)

Abstract An Iodine-catalysing process for an efficient and scalable sulfenylation protocol for indoles employing aryl-/ alkyl sulfonyl chlorides has been developed. A series of sterically and electronically divergent aryl-/ alkyl sulfonyl chlorides were participated in the sulfenylation of $C(sp^2)$ -H bonds, resulting in a high to excellent yield of indole 3-sulfenylether molecules. It is noteworthy that indole-3-thiomethyl ether is efficiently generated with methanesulfonyl chloride as an electrophile, indicating the potential of this methodology.

Introduction

Indole sulfenylether molecules are the basic motif of numerous pharmaceutically active molecules due to their inherent potential biological activity.¹ They are also important precursors of functional materials that enable the realisation of novel properties.² The critical importance of these scaffolds has resulted in the development of various synthetic methods. Thus far sulfenylating agents for the thiolation of $C(sp^2)$ -H bonds have included disulfides,³ sodium sulfinates,⁴ sulfenyl halides,⁵ *N*-thioarylphthalimides,⁶ and sulforyl hydrazides,⁷ catalyzed by metal-free salts such as iodine or metal salts (Scheme 1). In spite of the availability of various thiolating agents⁸ for the sulfenylation of indole C(sp²)-H bonds, a limitation remains with regard to accessing these precursors due to the multistep synthesis process required. The thiolation can be achieved in principle, by means of aryl-/ alkyl-/ heteroarylsulfonyl chlorides as a sulphur source. Aryl-/ alkyl-/ heteroarylsulfonyl chlorides are remarkably stable, inexpensive and mostly commercially available. Fairly recently, aryl-/ alkyl-/ heteroarylsulfonyl chlorides9a as a sulphur source were assessed by means of reductive coupling with indolizines, indoles, electron-rich benzenes^{9b} and H-phosphonates.^{9c} On the other hand, visible light-induced sulfenylation of indoles and Nmethylindoles with arylsulfonyl chlorides was also discovred.¹⁰

Scheme 1. Prior art in the sulfenylation of indole $C(sp^2)$ -H bonds.

Previous work:

Interestingly, in all cases an excess of one of the reactant is essential for transformation to be observed, resulting in the concomitant quantitative production of corresponding oxidizing substrate as a by-product.¹¹ Furthermore, sulfonyl chlorides Me

have been employed in excess to improve the yields of corresponding sulfenylether molecules.

Results and discussion

With our continued interest in developing a coppercatalysed sulfenylation process,¹² herein we describe our finding regarding the synthesis of aryl / alkylthioindoles by the iodine-induced reductive coupling of aryl / alkyl sulfonyl chlorides with indoles.

Table 1. Evaluation of optimized conditions for the synthesis of 3-(*p*-tolyl)thioindole.^a

Initially, we chose indole **1a** and *p*-toluenesulfonyl chloride **2a** as the test substrates. At the outset, in the presence of 10 mol% of CuI in dioxane **1a** (1.0 equiv.) and **2a** (1.1 equiv.) reacted smoothly at 80 °C for 4h to afford the expected 3-(*p*-tolyl)thioindole **3a** at a 64% yield (Table 1, entry 1). As we intended to develop a metal-free sulfenylation process, we replaced CuI with iodine. With 10 mol% of I₂, the same reaction under otherwise identical conditions resulted in **3a** at a 55% isolated yield (Table 1, entry 2). Under typical conditions, the molar ratios of reactants have shown considerable influence on the product yield (**3a**). Using 1.0 equiv. of **1a** and 1.1 equiv. of **2a** yielded the desired product at 55%, whereas, loading 2.0

equiv. of **1a** and 1.0 equiv. of **2a** improved the yield of the desired product (Table 1, entries 2 and 3, respectively). Loading 1.0 equiv. of **1a** and 2.0 equiv. of **2a**¹³ furnished a lower yield of **3a** (Table 1, entry 4). The screening of various solvents indicated that 1,4-dioxane is the only preferable medium for this transformation (Table 1, entries 3 and 6-9).

Entry	R ₁	R ₂	R ₃	Time (h)	% yield ^b
1	Н	Н	Ph	4	3b , 85
2	Н	Н	2,5-Me-Ph	4	3c , 85
3	Н	Н	4-Cl-Ph	4	3d , 81
4	Н	Н	3,5-Cl-4-	3	3e , 78
			Me-Ph		,
5	Н	Н	4-Br-Ph	4	3f , 80
6	Н	Н	5-F-2-Me-	3	3 g, 77
			Ph		
7	Н	Н	3-CF ₃ -Ph	2	3h , 77
8	Н	Н	4-I-Ph	4	3i, 82
9	Н	Me	4-Me-Ph	4	3 j, 75
10	Н	Н	3-NO ₂ -Ph	1.5	3k , 76
11	Н	Н	4-NO ₂ -Ph	1	3I , 72
12	5-Bromo	Н	4-Me-Ph	3	3m, 84
13	5-Iodo	Н	4-Me-Ph	3	3n, 82
14	5-Methoxy	Н	4-Me-Ph	3	30, 87
15	Н	Н	Bn	4	3 p, 76
16	Н	Н	Me	3	3q, 72
17	Н	Н	<i>n</i> -Bu	3	3r, 71
18	5-CN	Н	4-Me-Ph	4	NR ^c
19	Н	Ts	4-Me-Ph	4	NR ^c

All reactions were carried out on the 2 mmol scale using 1a-1g (2.0 equiv.), 2a-n (1.0 equiv.), I₂ (10 mol%) in dioxane heated at 80 °C in open air.

b) Isolated yield, but not optimized.

c) NR = No reaction.

In a brief survey of an alternative source of iodine applied as a catalyst, the yield of 3a decreased (Table 1, entry 2). Further, when the reaction was conducted under strict anaerobic conditions, only a trace amount of 3a was isolated (Table 1, entry 10-13). The reaction carried out with 5 mol% of iodine resulted in 3a at an inferior yield (Table 1, entry 5).

With the optimal conditions in hand, the scope of the substrate was surveyed. These results are shown in Table 2.

Published on 20 February 2015. Downloaded by Mahidol University on 20/02/2015 10:17:14.

According to the results, the electron-donating and electronwithdrawing functional groups on the phenyl ring of sulfonyl chloride were compatible under the standard protocol and reacted with equal efficiency. On the other hand, the reaction efficiency was slightly sensitive to the electronic properties of the indole moiety. For instance, 5-cyanoindole failed to give the expected sulfenylation product, while 5-bromo- and 5iodoindole did react under these conditions providing the desired product **3m** and **3n**, respectively at a very good yield, (Table 2, entry 11, and 12). Further, the halo-containing coupled product of arylthioindoles facilitates potential applications of further functionalization by a cross-coupling reaction. Remarkably, 3-NO₂-, and 4-NO₂-substituted phenylsulfonyl chlorides remain viable in this protocol disregarding the electronic effects and furnishing the desired products of **3k** and **3l** at high yields (Table 2, entries 10 and 11). 2-nitrobenzenesulfonyl chloride was also reacted with indole, but the effort to isolate the product which formed failed due to rapid decomposition. Under set conditions, Nmethylindole was also an effective substrate for coupling with 2a to give the sulfenylation product 3j at a high yield (Table 2, entry 9), but the N-tosyl protected indole did not undergo a coupling reaction (Table 2, entry 19).

Next, we examined the alkyl sulfonyl chlorides, as these compounds are seldom employed due to their inherent reduced reactivity and rapid decomposition. To our delight, our method gave 3-alkylthioethers 3q and 3r at a good yield using methanesulfonyl chloride 2m and butanesulfonyl chloride 2n with 1a (Table 2, entries 16 and 17). 2-Methylindole 4a was also reacted with p-toluenesulfonyl chloride 2a under typical conditions and gave the corresponding 3-thioether 5a at a high yield (72%). It was gratifying to find a reaction between the 1,3-benzenedisulfonyl chloride 2aa with 1a (2 equiv), that provided an acceptable yield (64%) of mono-indolylsulfenyl ether 5b. on the other hand, when 2aa treated with 4 equiv of 1a, di-indolylsulfenyl ether 5c was formed at a high yield (78%) (Table 3). Significantly, a highly polar carboxylic acid substituted arylsulfonylchloride 2ab performed well with 1a and 1b under the standard protocol, affording carboxylic acid possessing thioindole 5d and 5e at an 81% and 84% yield, respectively (Table 3). Several control experiments were carried out to understand this transformation. Indole 1a and ptoluenesulfonyl chloride 2a was heated to 80 °C for 4h. No trace of the desired product 3a was observed and only the starting materials were recovered. In another experiment, with 10 mol% of iodine, one equiv. each of 1a and 2a were individually reacted under optimized conditions. In both cases, the recovery of the starting materials was realized, indicating the necessity of all reaction partners in order to forward the reaction. The reaction of 1a and 2a with one equivalent of TEMPO under standard protocol resulted in 3a as exclusive product and no trace of TEMPO-coupled products were observed suggesting ionic mechanism rather than radical mechanism.

Considering the above results, a plausible reaction mechanism is delineated in Scheme 2, which will clearly require further experimentation. Initially, iodine induced substitution of chlorine atom of aryl- / alkyl sulfonyl chloride leads to putative intermediate [**A**] by eliminating ICl.¹⁴ Then, subsequent Friedel-Crafts reaction of indole with [**A**] followed by HI exclusion via aromatization afford sulfone [**D**], which can undergo deoxygenation in the presence of HI to afford the desired indolylsulfenyl ether. Eventually, HOI can be oxidized in the presence of air to give I₂ and H₂O₂ (Scheme 3).

Conclusions

Published on 20 February 2015. Downloaded by Mahidol University on 20/02/2015 10:17:14.

In conclusion, we have demonstrated an efficient crosscoupling reaction of indole with low-cost, and readily available, stable aryl- / alkyl sulfonyl chlorides through $C(sp^2)$ -H bond activation for the syntheses of various 3-alkyl-/ arylthioethers. The sulfenylation process is initiated by a catalytic amount of I₂ without any combination of radical initiator. This process is remarkable in that stoichiometric reducing trivalent phosphorous compounds are avoided. To the best of our knowledge, this is the first report on sulfenylation wherein catalytic iodine acts as a reducing agent in combination with air and avoids the creation of oxides of phosphorous. Further work is in progress to broaden the scope of this methodology.

Acknowledgements

Financial support was provided by the DST, New Delhi, India (Grant No: SR/S1/OC-08/2011), ORGIN (CSC-0108) programme CSIR (New Delhi) of XII Five year plan is gratefully acknowledged. Also, UGC & CSIR (New Delhi) is acknowledged for awarding the fellowships to R.R. and V.N.R.

Experimental section

General procedure:

spectra were recorded at 300, 400 & 500 MHz, and ¹³C NMR 75 & 125 MHz in CDCl₃. The *J* values were recorded in hertz and abbreviations used were as follows: *s*-singlet, *d*-doublet, *m*-multiplet, br-broad, *dd*-doublet of doublet. Chemical shifts (δ) are reported relative to TMS ($\delta = 0.0$) as an internal standard. The IR (FT-IR) spectra were measured using KBr pellet or as film. Mass spectral data were compiled using MS (ESI), HRMS mass spectrometers.

Column chromatography was carried out using Silica gel 100-200 mesh (commercial suppliers).

The typical procedure for synthesis of 3-(*p*-Tolylthio)-1H-indole (3a): To a stirred solution of indole 1a (2 mmol) in 1,4-dioxane (3 mL) was added sulfonylchloride, 2a (1.0 mmol) and I₂ (10 mol%) successively. The resulting reaction mixture was heated at 80 °C for 4 h in open air. Subsequently, the reaction mixture was cooled down to ambient temperature, and the solvent was evaporated under reduced pressure. The resulting residue was purified by silica gel chromatography, eluting with hexane / ethyl acetate (10:0.5 to 5:1) to give the thioindole, **3a** at an 86% yield. White solid, Yield – 206 mg (86%), m.p. 124-126 °C; ¹H-NMR (500 MHz, CDCl₃): δ 8.38 (s, br, 1H), 7.61 (d, *J* = 7.93 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.27 – 7.24 (m, 1H), 7.17 – 7.14 (m, 1H), 7.04 – 6.96 (m, 4H), 2.25 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 1364, 135.4, 134.6, 130.4, 129.4, 129.1, 126.2, 122.9, 120.8, 119.7, 111.5, 103.5, 20.8; **IR** (neat, cm⁻¹): 3405, 2922, 2853, 1892, 1490, 1453, 1088, 772, 744; **HRMS** (m/z): Calculated for C₁₅ H₁₃ N S (M-H) = 239.0768 found (M-H) = 239.0775.

All other 3-aryl and alkyl thioindole were prepared employing above typical procedure.

3-(Phenylthio)-1H-indole (3b): White solid, m.p. 150-152 °C; Yield - 191 mg (85%); ¹H-NMR (500 MHz, CDCl₃): δ 8.47 (s, br, 1H), 7.61 (d, J = 7.9 Hz,1H), 7.49 – 7.43 (m, 2H), 7.28 – 7.25 (m, 1H), 7.18 – 7.03 (m, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 139.2, 130.7, 128.6, 125.8, 124.7, 123.0, 120.9, 119.6, 111.5; **IR** (neat, cm⁻¹): 3401, 3057, 2922, 2852, 1580, 1476, 1234, 1083, 770, 739; **HRMS** (m/z): Calculated for: C₁₄ H₁₁ N S (M+K) = 264.0249, found (M+K) = 264.0238.

3-((2,5-Dimethylphenyl)thio)-1H-indole (3c): White solid, m.p. 125-127 °C; Yield - 215 mg (85%); ¹H-NMR (500 MHz, CDCl₃): δ 8.42 (s, br, 1H), 7.63 – 7.57 (m, 1H), 7.45 – 7.40 (m, 2H), 7.29 – 7.23 (m, 1H), 7.19 – 7.13 (m, 1H), 7.04 – 6.99 (m, 1H), 6.82 – 6.75 (m, 1H), 6.57 (s, 1H), 2.46 (s, 3H), 2.04 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 137.7, 136.5, 135.8, 131.4, 130.7, 129.7, 129.2, 125.9, 125.4, 122.9, 120.7, 119.7, 111.5, 102.4, 21.0, 19.4; **IR** (neat, cm⁻¹): 3412, 2926, 2857, 1896, 1520, 1456, 1075, 778, 734; **HRMS** (m/z): Calculated for C₁₆ H₁₅ N S (M-H) = 252.0842, found (M-H) = 252.0846.

3-(4-Chlorophenylthio)-1H-indole (3d): White solid, m.p. 129-131 $^{\circ}$ C; Yield - 210 mg (84%); ¹H-NMR (500 MHz, CDCl₃): δ 8.42 (s, br, 1H), 7.56 (dd, J = 7.93 Hz, J = 0.76 Hz, 1H), 7.46 (d, J = 2.59 Hz, 1H), 7.43 (d, J = 8.24 Hz, 1H), 7.29 - 7.24 (m, 1H), 7.18 - 7.15 (m, 1H), 7.12 - 7.09 (m, 2H), 7.02 - 6.99 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 137.8, 136.5, 130.7, 130.5, 128.7, 127.1, 123.2, 121.0, 119.5, 111.6, 102.4; **IR** (neat, cm⁻¹): 3405, 2921, 2851, 1472, 1090, 1008, 812, 746; **HRMS** (m/z): Calculated for: C₁₄ H₉ N S Cl (M-H) = 258.0144, found (M-H) = 258.0150.

3-((3,5-Dichloro-4-methylphenyl)thio)-1H-indole (3e): White solid, m.p. 142-145 °C; Yield - 239 mg (84%); ¹H-NMR (500 MHz, CDCl₃): δ 8.51 (s, br, 1H), 7.58 – 7.45 (m, 3H), 7.34 – 7.27 (m, 1H), 7.22 – 7.15 (m, 1H), 6.93 (d, *J* = 8.51 Hz, 1H), 6.41 (d, *J* = 8.71 Hz, 1H), 2.50 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 137.8, 136.6, 134.5, 131.3, 131.0, 130.7, 128.8, 127.3, 123.9, 123.3, 121.2, 119.5, 111.7, 101.3, 17.7; **IR** (neat, cm⁻¹): 3405, 2923, 2863, 1894, 1488, 1463, 1091, 774; **HRMS** (m/z): Calculated for C₁₅ H₁₀ N Cl₂ S (M-H) = 305.9906, found (M-H) = 305.9921.

3-(4-Bromophenylthio)-1H-indole (3f): White solid, m.p. 141-143 °C; Yield - 242 mg (80%); ¹H-NMR (500 MHz, CDCl₃): δ 8.47 (s, br, 1H), 7.56 (d, *J* = 7.93 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.30 – 7.15 (m, 4H), 6.97 – 6.93 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 138.5, 136.5, 131.6, 130.7, 128.7, 127.3, 123.2, 121.0, 119.4, 118.2, 111.7, 102.1; **IR** (neat, cm⁻¹): 3389, 3053, 2921, 2851, 1889, 1469, 1406, 1235, 1083, 1004, 808, 744; **HRMS** (m/z): Calculated for C₁₄ H₉ N S Br (M-H) = 301.9639, found (M-H) = 301.9645.

Published on 20 February 2015. Downloaded by Mahidol University on 20/02/2015 10:17:14.

Journal Name

3-((5-fluoro-2-methylphenyl)thio)-1H-indole (3g): White solid, m.p. 136-138 °C; Yield - 198 mg (77%); ¹H-NMR (500 MHz, CDCl₃): δ 8.44 (s, br, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 2.6Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.20 – 7.16 (m,1H), 6.85 – 6.79 (m, 1H), 6.64 – 6.59 (m, 1H), 2.06 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 157.6 (d, $J_{C-F} = 241.6$ Hz), 136.4, 133.8 (d, $J_{C-F} = 2.7$ Hz), 131.0, 129.2, 128.5, 127.0 (d, $J_{C-F} = 7.3$ Hz), 125.6 (d, $J_{C-F} = 16.4$ Hz), 123.1, 120.9, 119.5, 114.8 (d, $J_{C-F} = 21.8$ Hz), 111.6, 101.1, 20.7; **IR** (neat, cm⁻¹): 3412, 2934, 2863, 1882, 1492, 1453, 1168, 764; **HRMS** (m/z): Calculated for C₁₅ H₁₂ F N S (M-H) = 256.0590, found (M-H) = 256.0592.

3-((3-(Trifluoromethyl)phenyl)thio)-1H-indole (3h): White solid, m.p. 130-132 °C; Yield - 226 mg (77%); ¹H-NMR (500 MHz, CDCl₃): δ 8.47 (s, br, 1H), 7.57 (d, J = 7.93 Hz, 1H), 7.49 (d, J =2.59 Hz, 1H), 7.44 (d, J = 8.24 Hz, 1H), 7.39 (s, 1H), 7.30 – 7.26 (m, 2H), 7.24 – 7.15 (m, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 140.9, 136.5, 131.0 (q, $J_{C-F} = 31.8$ Hz), 130.9, 129.0, 128.7, 123.8 (q, $J_{C-F} =$ 272.5 Hz), 123.3, 122.3, (d, $J_{C-F} = 3.6$ Hz), 121.4 (d, $J_{C-F} = 3.6$ Hz), 121.1, 119.3, 111.7, 101.4; **IR** (neat, cm⁻¹); **HRMS** (m/z): Calculated for C₁₅ H₁₀ F₃ N S (M-H) = 292.0402, found (M-H) = 292.0411.

3-((4-iodophenyl)thio)-1H-indole (3i): White solid, m.p. 135-137 $^{\circ}$ C; Yield - 288 mg (82%); ¹H-NMR (500 MHz, CDCl₃): δ 8.44 (s, br, 1H), 7.58 – 7.54 (m, 1H), 7.48 – 7.41 (m, 4H), 7.30 – 7.25 (m, 1H), 7.20 – 7.14 (m, 1H), 6.84 – 6.80 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 139.5, 137.5, 136.4, 130.7, 128.9, 127.6, 123.2, 121.0, 119.4, 111.6, 102.0, 88.9; **IR** (neat, cm⁻¹): 3312, 2876, 2753, 1882, 1496, 1455, 1076, 994, 752; **HRMS** (m/z): Calculated for C₁₄ H₁₀ N I S (M-H) = 349.9495, found (M-H) = 349.9494.

1-Methyl-3-(*p***-tolylthio)-1H-indole (3j):** White solid, m.p. 86-88 °C; Yield - 190 mg (83%); ¹**H-NMR** (500 MHz, CDCl₃): δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.21 (m, 5H), 7.14 (d, *J* = 8.1 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 144.5, 142.0, 140.4, 136.5, 130.2, 129.3, 127.6, 124.6, 29.7, 21.5; **IR** (neat, cm⁻¹): 3412, 2946, 2845, 1894, 1490, 1463, 1088, 772;**HRMS** (m/z): Calculated for C₁₁ H₁₈ O₃ N S (M+H) = 253.0925, found (M+H) = 253.0931.

3-((3-Nitrophenyl)thio)-1H-indole (3k): White solid, m.p. 135-137 °C; Yield - 205 mg (84%); ¹H-NMR (500 MHz, CDCl₃): δ 8.57 (s, br, 1H), 7.93 – 7.86 (m, 2H), 7.57 – 7.54 (m, 2H), 7.48 (d, *J* = 8.24 Hz, 1H), 7.36 (d, *J* = 7.93 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.21 – 7.16 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ 136.4, 135.4, 134.6, 130.4, 129.4, 129.1, 126.2, 122.9, 120.8, 119.7, 111.5, 103.5, 20.8; IR (neat, cm⁻¹): 3506, 2923, 2873, 1867, 1556, 1490, 1454 1353, 1088, 782, 762; HRMS (m/z): Calculated for C₁₄ H₉ O₂ N₂ S (M-H) = 269.0379, found (M-H) = 269.0390.

3-((4-nitrophenyl)thio)-1H-indole (31): Yellow solid, m.p. 174-175 °C; Yield - 194 mg (84%); ¹H-NMR (500 MHz, CDCl₃): δ 8.92 (s, br, 1H), 7.95 (d, J = 9.0 Hz, 2H), 7.52 – 7.46 (m, 3H), 7.28 (t, J = 8.1 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 9.0 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 150.0, 144.6, 136.5, 131.3, 128.3, 124.9, 123.7, 123.3, 121.2, 118.9, 112.0, 99.6; IR (neat, cm⁻¹): 3605, 3422, 2753, 1892, 1553, 1464, 1346, 1078, 784; ESI-MS (m/z): Calculated for C₁₄ H₁₀ O₂ N₂ S = 270, found (M-H) = 269.

5-Bromo-3-(p-tolylthio)-1H-indole (3m): White solid, m.p. 126-128 °C; Yield - 266 mg (84%); ¹H-NMR (300 MHz, CDCl₃+DMSO): δ 8.70 (s, br, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 2.6 Hz, 1H), 7.32 - 7.29 (m, 1H), 7.26 - 7.24 (m, 1H), 7.01 -6.96 (m, 4H), 2.25 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 135.0, 134.8, 133.9, 132.1, 130.3, 128.8, 125.4, 124.4, 120.8, 113.1, 112.8, 100.5, 20.2; **IR** (neat, cm⁻¹): 3744, 3611, 2922, 2852, 1696, 1509, 1454, 1219, 772, 657; **HRMS** (m/z): Calculated for C₁₅ H₁₁ N S Br (M-H) = 315.9795, found (M-H) = 315.9782.

5-iodo-3-(p-tolylthio)-1H-indole (3n): White solid, m.p. 132-134 $^\circ$ C; Yield - 299 mg (82%); ¹H-NMR (500 MHz, CDCl₃): δ 8.46 (s,

5-methoxy-3-(p-tolylthio)-1H-indole (30): Brown oil; Yield - 234 mg (87%); ¹H-NMR (500 MHz, CDCl₃): δ 8.31 (s, br, 1H), 7.35 (d, J = 2.7 Hz, 1H), 7.24 (d, J = 8.9 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 7.03 – 6.99 (m, 2H), 6.98 – 6.95 (m, 2H), 3.76 (s, 3H), 2.23 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 155.0, 135.6, 134.5, 131.3, 131.1, 129.9, 129.4,125.9, 113.5, 112.3, 102.7, 100.8, 55.7, 20.8; IR (neat, cm⁻¹): 3455, 2923, 2893, 1887, 1495, 1463, 1296, 1098, 772, 744; HRMS (m/z): Calculated for C₁₅ H₁₃ N S (M-H) = 253.0556, found (M-H) = 253.0561.

3-(Benzylthio)-1H-indole (3p): Yellow solid, m.p. 81-82 °C; Yield - 182 mg (76%); ¹H-NMR (500 MHz, CDCl₃): δ 8.39 (s, br, 1H), 7.72-7.67 (m, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.25 – 7.14 (m, 5H), 7.10 – 7.04 (m, 2H), 6.95 (s, 1H), 3.85 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ 139.0, 136.2, 129.9, 129.2, 128.1, 126.7, 122.4, 120.3, 119.1, 111.5, 105.0,40.9; **IR** (neat, cm⁻¹): 3406, 2872, 1902, 1560, 1463, 1078, 736; **ESI-MS** (m/z): Calculated for C₁₅ H₁₃ N S = 239, found (M-H) = 238.

3-(Methylthio)-1H-indole (3q): Colorless oil; Yield - 117 mg (72%); ¹H-NMR (500 MHz, CDCl₃): δ 8.21 (s, br, 1H), 7.77 (d, J = 7.63 Hz, 1H), 7.36 (d, J = 8.10 Hz, 1H), 7.28 (d, J = 2.3 Hz, 1H), 7.26 - 7.18 (m, 2H), 2.37 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ 134.2, 129.2, 127.8, 122.9, 121.0, 1118.9, 110.7, 105.1, 19.0; **IR** (neat, cm⁻¹): 3386, 2853, 1876, 1490, 1451, 1058, 776, 754; **ESI-MS** (m/z): Calculated for C₉ H₉ N S = 163, found (M-H) = 162.

3-(Butylthio)-1H-indole (3r): Yellow oil; Yield - 145 mg (71%); **¹H-NMR** (500 MHz, CDCl₃): δ 8.26 (s, br, 1H), 7.77 (d, J = 7.93Hz, 1H), 7.47 – 7.42 (m, 2H), 7.27 – 7.24 (m, 1H), 7.17 – 7.14 (m, 1H), 7.04 – 6.96 (m, 4H), 2.25 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): δ IR (neat, cm⁻¹): 3345, 2934, 2835, 1876, 1478, 1433, 1068, 762, 745; HRMS (m/z): Calculated for C₁₂ H₁₄ N S (M-H) = 204.0842, found (M-H) = 204.0844.

2-methyl-3-(p-tolylthio)-1H-indole (5a): White solid, m.p. 93-96 °C; Yield - 192 mg (76%); ¹H-NMR (500 MHz, CDCl₃): δ 8.21 (s, br, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.13 – 7.09 (m, 1H), 6.95 (m, 4H), 2.49 (s, 3H), 2.23 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 140.9, 135.6, 135.3, 134.2, 130.2, 129.4, 125.7, 122.0, 120.5, 118.9, 110.6, 99.6, 20.8, 12.0; IR (neat, cm⁻¹): 3415, 2892, 2763, 1952, 1560, 1463, 1078, 784, 753; HRMS (m/z): Calculated for C₁₅ H₁₃ N S = 239.0768, found = 239.0775.

3-((1H-indol-3-yl)thio)benzene-1-sulfonyl chloride (5b): White solid, m.p. 156-159 °C; Yield - 207 mg (64%); ¹H-NMR (500 MHz, CDCl₃): δ 8.62 (s, br, 1H), 7.75 – 7.72 (m, 1H), 7.70 – 7.66 (m, 1H), 7.56 – 7.53 (m, 2H), 7.48 (d, *J* = 8.21 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.21 – 7.17 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ 144.7, 143.3, 136.5, 131.7, 131.2, 129.7, 128.3, 123.5, 123.2, 122.7, 121.4, 119.1, 111.9, 100.3; IR (neat, cm⁻¹): 3505, 3312, 2921, 2845, 1553, 1370, 1290, 1092, 776.

1,3-bis((1H-indol-3-yl)thio)benzene (5c): White solid, m.p. 210-212 °C; Yield - 290 mg (78%); ¹H-NMR (300 MHz, CDCl₃+DMSO): δ 10.84 (s, br, 2H), 7.56 (s, 2H), 7.50 – 7.43 (m, 2H), 7.36 (d, J = 2.5 Hz, 2H), 7.24 – 7.16 (m, 2H), 7.11 – 7.03 (m, 2H), 6.89 (t, J = 7.7 Hz, 1H), 6.83 – 6.79 (m, 1H), 6.72 – 6.66 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃+DMSO): δ 139.7, 136.1, 130.9, 128.2, 128.0, 121.7, 121.6, 121.3, 119.5, 118.2, 111.4, 99.5; **IR** (neat, cm⁻¹): 3412, 2932, 2863, 1967, 1872, 1530, 1462, 1098, 792, 767; **HRMS** (m/z): Calculated for C₂₂ H₁₆ N₂ S₂ (M+H) = 373.0828, found (M+H) = 373.0826. **3-((1H-indol-3-yl)thio)benzoic acid (5d):** White solid, m.p. 183-186 $^{\circ}$ C; Yield - 218 mg (81%); ¹H-NMR (300 MHz, CDCl₃+DMSO): δ 10.94 (s, br, 1H), 7.81 (s, 1H), 7.73 – 7.61 (m, 1H), 7.55 – 7.45 (m, 3H), 7.24 – 7.04 (m, 4H); ¹³C-NMR (75 MHz, CDCl₃+DMSO): δ 167.3, 139.7, 136.3, 131.2, 130.8, 129.1, 128.2, 127.9, 126.2, 125.4, 121.7, 119.6, 118.2, 111.6, 99.4; **IR** (neat, cm): 3402, 2978, 2876, 1887, 1753, 1492, 1443, 1068, 768, 744; **HRMS** (m/z): Calculated for C_{15} H₁₁ O₂ N S (M-H) = 268.0426, found $(\dot{M}-H) = 268.0427$.

3-((1-methyl-1H-indol-3-yl)thio)benzoic acid (5e): White solid, m.p. 142-146 °C; Yield - 238 mg (84%); ¹H-NMR (300 MHz, CDCl₃+DMSO): δ 7.84 - 7.59 (m, 2H), 7.56 - 7.38 (m, 3H), 7.33 - 7.08 (m, 4H), 3.88 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃+DMSO): δ 7.67 - 7.68 (m, 2H), 7.67 - 7.68 (m, 2H), 7.68 7.68 (m, 2H) 167.2, 139.5, 136.9, 134.7, 130.8, 129.1, 128.8, 127.9, 126.2, 125.4. 121.9,119.8, 118.5, 109.3, 98.8, 32.5; **IR** (neat, cm⁻¹): 3305, 2972 2845, 1892, 1745, 1490, 1453, 1413, 1294, 1076, 773; ESI-MS (m/z): Calculated for C₁₆ H₁₃ O₂ N S = 283, found (M-H) = 282.

Notes and references:

Published on 20 February 2015. Downloaded by Mahidol University on 20/02/2015 10:17:14.

^a Organic & Biomolecular Chemistry Division,

CSIR-Indian Institute of Chemical Technology, Hyderabad-500 607, India +

91-40-27193275; Tel: + 91-40-27191614; [†]E-mail: 'Fax: gkswamy_iict@yahoo.co.in ^bAcademy of Scientific and Innovative Research.

Electronic Supplementary Information (ESI) available: [Copies of ¹H and ¹³C NMR spectras available free of charge via Internet]. See DOI: 10.1039/b00000x/

- (a) G. La Regina, M. C. Edler, A. Brancale, S. Kandil, A. 1. Coluccia, F. Piscitelli, E. Prosperi, A. Lavecchia, E. Novellino, M. Artico, R. Silvestri, J. Med. Chem. 2007, 50, 2865; (b) P. C. Unangst, D. T. Connor, S. R. Stabler, R. J. Weikert, M. E. Carethers, J. A. Kennedy, D. Thueson, J. C. Chestnut, R. L. Adolphson, M. C. Conroy, J. Med. Chem. 1989, 32, 1360.
- I. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596; 2. (b) A. Y. Sizov, A. N. Kovergin, A. F. Ermolov, Russ. Chem. Rev. 2003, 72, 357.
- 3. (a) X. -L. Fang, R. -Y. Tang, P. Zhong, J. -H. Li, Synthesis 2009, 4183; (b) S. Zhang, P. Qian, M. Zhang, M. Hu, J. Cheng, J. Org. Chem. 2010, 75, 6732; (c) W. Ge, Y. Wei, Synthesis 2012, 934; (d) W. Ge, Y. Wei, Green Chem. 2012, 14, 2066; (e) C. C. Browder, M. O. Mitchell, R. L. Smith, G. el-Stdayman Tetrahedron. Lett. 1993, 34, 6245; (f) P. Sang, Z. Chen, J. Zou, Y. Zhang, Green Chem. 2013, 15, 2096; (g) D. Huang, J. Chen, W. Dan, J. Ding, M. Liu, H. Wu, Adv. Synth. Catal. 2012, 354, 2123
- 4. P. Katrun, S. Hongthong, S. Hlekhlai, M. Pohmakotr, V. Reutrakul, D. Soorukram, T. Jaipetch, C. Kuhakar, RSC. Adv. 2014, 4, 18933.
- (a) P. Hamel, J. Org. Chem. 2002, 67, 2854; (b) H. M. Gilow, 5. C. S. Brown, J. N. Copeland, K. E. Kelly, J. Heterocycl. Chem. 1991, 28, 1025; (c) M. Raban, L. -J. Chern, J. Org. Chem. 1980, 45, 1688.
- (a) M. Tudge, M. Tamiya, C. Savarin, G. R. Humphrey, Org. 6. Lett. 2006, 8, 565; (b) E. Marcantoni, R. Cipolletti, L. Marsili, S. Menichetti, R. Properzi, C. Viglianisi, Eur. J. Org. Chem. 2013, 132; (c) C. C. Silveira, S. R. Mendes, L. Wolf, G. M. Martins, Tetrahedron. Lett. 2010, 51, 2014.

- (a) F. -L. Yang, S. -K. Tian, Angew. Chem. Int. Ed. 2013, 52, 4929; (b) X. Kang, R. Yan, G. Yu, X. Pang, X. Liu, L. Xiang, G. Huang, J. Org. Chem. 2014, 79, 10605; (c) F. Xiao, H. Xie, S. Liu, G.-J. Deng, Adv. Synth. Catal. 2014, 356, 364.
- Y. Liu, Y. Zhang, C. Hu, J.-P. Wan, C. Wen, RSC Adv. 8. 2014, 4, 35528.
- 9 (a) Z. Wu, H. Song, X. Cui, C. Pi, W. Du, Y. Wu, Org. Lett. 2013, 15, 1270; (b) Q. Wu, D. Zhao, X. Qin, J. Lan, J. You, Chem. Commun. 2011, 47, 9188; (c) J. Bai, X. Cui, H. Wang, Y. Wu, Chem. Commun. 2014, 50, 8860.
- 10. M. Chen, Z.-T. Huang, Q.-Y. Zheng, Chem. Commun. 2012, 48, 11686
- 11. The trivalent phosphorous compound as oxidizing agent leads to triphenylphosphine oxide or the corresponding phosphinic acid as a by-product (see ref.4, 9a and 9c).
- 12. G. Kumaraswamy, R. Raju, Adv. Synth. Catal. 2014, 356, 2591.
- 13. In this case, we have isolated 4-MePh-SO₂-S-Ph-4Me as by product (~ 20%).
- 14. At this juncture, we cannot exclude the formation of putative intermediate [A] via thermal decomposition of iodine in the presence of indole to form iodine radicals which then abstracts chlorine atom to give iodochlorine and sulfonyl radical which then couples to give putative intermediate [A] as shown below. See ref. (a) J. Gromada, K. Matyjaszewski, Macromolecules 2001, 34, 7664; (b) X. Gao, X. Pan, J. Gao, H. Huang, G. Yuan, Y. Li, Chem. Commun. 2015, 51, 210.

