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Metal-free benzannulation of 1,7-diynes toward unexpected 1-

aroyl-2-naphthaldehydes and their application in fused aza-

heterocyclic synthesis  

Ai-Fang Wang,
a
 Peng Zhou,

a
 Yi-Long Zhu,

a
 Wen-Juan Hao,*

,a
 Guigen Li,

b
 Shu-Jiang Tu,*

,a
 and Bo 

Jiang*
,a

A novel I2-mediated benzannulation of 1,7-diynes involved 1,4-

oxo-migration has been established, providing a range of 

unexpected 1-aroyl-2-naphthaldehydes with a 1,4-dicarbonyl unit. 

The resulting 1-aroyl-2-naphthaldehydes have been successfully 

applied in the synthesis of benzo[e]isoindol-3-ones and 

benzo[e]benzo[4,5]imidazo[2,1-a]isoindoles using aromatic 

amines and benzene-1,2-diamines as nucleophiles, respectively. 

The mechanisms for forming these compounds were proposed. 

1,4-Dicarbonyl compounds as key core components are 

prevalent in a multitude of biological molecules of 

pharmaceutical and material interest.
1
 Specifically, 1,4-

dicarbonyls are types of competent reactants endowed with 

two electrophilic sites, which could be served as versatile and 

synthetically useful feedstocks for the preparation of various 

carbocyclic and heterocyclic compounds.
2
 To date, significant 

efforts have been directed to develop efficient protocols 

toward 1,4-dicarbonyl synthesis. Generally, the vast majority 

of well-established synthetic strategies for the construction of 

1,4-dicarbonyls include conjugate addition of acyl anions to 

Michael acceptors,
3
 nucleophilic substitution of α-

haloketones,
4
 chain extension of 1,3-dicarbonyls,

5
 oxidative 

coupling of enolates
6
 or alkenes,

7
 the addition of homoenolate 

equivalents to acid derivatives,
8
 and enolate heterocoupling.

9
 

Despite these significant advances achieved in this field, 

current 1,4-dicarbonyl synthesis has mainly relied on the use 

of carbonyl precursor. To the best of our knowledge, the 

utilization of 1,7-diynes without any carbonyl unit as starting 

materials via domino benzannulation for the creation of 

conjugate 1,4-dicarbonyls has not yet been documented. 

This work
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Scheme 1. Profile application of 1,7-diynes  

Metal-catalyzed cycloisomerizations of 1,n-diynes have proven 

to be exceptionally efficient methods to construct synthetically 

significant poly-cyclic molecules in an atom-economical 

manner.
10

 For instance, Chan and co-workers reported Au(I)-

catalyzed cycloisomerization reactions of 1,7-diyne benzoates 

to selectively generate indeno[1,2-c]azepines (Scheme 1a).
10g

 

Recently, our group has established a series of domino 

cyclization reactions for multiple ring formations.
11

 For this 

purpose, we planned the preparation of diyne-anchored 

starting materials by taking advantage of a methodology in 

which tandem cycloisomerization across its C≡C π system 

results in functionalized polycyclic products.
10

 Surprisingly, we 

found I2-mediated reaction of the preformed 1,7-diynes 1 

underwent unexpected oxygen migration and benzannulation 

process in the presence of H2O, providing functionalized 1-

aroyl-2-naphthaldehydes 2 with conjugate 1,4-dicarbonyl unit 

(Scheme 1b). The resulting 1-aroyl-2-naphthaldehydes have 

been subjected with the reactions of aryl amines 3, enabling 
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microwave-assisted (MW) domino [4 + 1] cyclization to give 

tricyclic benzo[e]isoindol-3-ones 4 with good yields (Scheme 

1c). Using benzene-1,2-diamines 5 as replacement for aryl 

amines 3, the reaction afforded high yields of pentacyclic 

benzo[e]benzo [4,5]imidazo[2,1-a]isoindoles 6 via double [4 + 

1] cyclization cascades (Scheme 1d). Herein, we would like to 

report these interesting transformations. 

Our initial investigation was started with the treatment of 

benzene-tethered 1,7-diyne 1a by water and 2.0 equivalents of 

I2
12

 under air conditions in acetonitrile at 50 
o
C, and the 

unexpected 2-naphthaldehyde 2a was generated in a low 27% 

yield (Table 1, entry S1, See Supporting Information). After 

careful screening of the reaction conditions, we found that the 

reaction in the presence of I2 (1.0 equiv) and H2O (2.0 equiv) in 

acetonitrile at 60 
o
C under O2 conditions afforded product 2a 

in 72% yield (entry S15). 

 

Scheme 2 Substrate scope for forming products 2. Yields of 

isolated products based on 1,7-diynes 1. 

Under the above optimal conditions, we explored the reaction 

scope by using a variety of the preformed benzene-tethered 

1,7-diynes 1 (Scheme 2). Chloro substituent at C4-positions of 

the internal arene rings of 1,7-diynes 1 was proven not to 

hamper this benzannulation reaction. Both electron-donating 

(methyl 1a, ethyl 1b and t-butyl 1c) and electron-neutral (H 1d) 

groups at para-positions of arylalkynyl motifs can all tolerate 

the reaction conditions well, delivering the corresponding 

substituted 1-aroyl-2-naphthaldehydes 2a-d in good yields 

(61%-72%). However, the presence of electron-withdrawing 

chloro group (1e) at this position failed to provide the desired 

product 2e, indicating electronic effect of substituents on the 

arylalkynyl moiety showed a critical influence on the success of 

this transformation. Afterward, 4-fluoro-substituted 

counterparts 1f-h with various functional groups attached with 

the arylalkynyl moiety were found to be adaptable to this 

reaction, giving access to the corresponding products 2f-h in 

44%-66% yields. Among them, a significant drop in the yields 

was obtained (2g, 44%) as the p-methoxyphenyl (PMP) 

counterpart (1g) was employed as a reaction partner. This 

similar inferior outcome was observed in the reaction of 1,7-

diynes 1l (product 2l, 42% yield). These results revealed that 

both electron-withdrawing and strong electron-donating 

groups at the arylalkynyl moiety are not beneficial to the 

reaction process. Alternatively, substrates 1i-1m without 

substituent on the internal arene ring were successfully 

converted to the corresponding products 2i-2m with yields 

ranging from 42% to 71%. Similarly, 1,7-diyne 1n bearing a 

methyl group resided at C5-position of the internal arene ring 

still showed high reactivity, furnishing product 2n in 65% yield. 

Unfortunately, 1,7-diyne 1o carrying an n-butyl group was an 

ineffective substrate. 

 

Scheme 3 Synthesis of polycyclic products 4 and 6. Yields of 

isolated products based on compounds 2. 

After our successful achievement with 1-aroyl-2-

naphthaldehydes 2 having conjugate 1,4-dicarbonyl moiety, 

we decided to employ them as starting materials to react with 

aryl amines 3 to investigate the feasibility of [4 + 1] cyclization 

toward the expected tricyclic benzo[e]isoindol-3-ones 4, due 
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to the isoindol-3-one framework extensively exists in natural 

products and shows a broad spectrum of biological activities.
13

 

As expected, the reaction of 2 with 3 was conducted in EtOH at 

120 
o
C under microwave heating using p-TsOH as a Brønsted 

acid promoter (1.0 equiv), leading to the corresponding 

benzo[e]isoindol-3-ones 4 (Scheme 3a). Next, the scope of this 

[4 + 1] cyclization was evaluated by treating the preformed 

substrates 2 with a variety of aryl amines 3 (Scheme 3). The 

results from Scheme 3 revealed that 1-aroyl-2-

naphthaldehydes 2 carrying electron-neutral and donating 

groups at the para-position of aroyl ring all readily participated 

in this transformation. The variety of substituents located on 

naphthalene ring of 2, including fluoro, chloro and methyl, 

would be compatible under the present reaction conditions. 

Similarly, the reaction proceeded smoothly with various 

functional groups (H 3a, chloro 3b, bromo 3c, and methyl 3d) 

on the phenyl ring of 3, delivering the collection of tricyclic 

benzo[e]isoindol-3-ones 4a-4k with yields ranging from 69% to 

83%. Heteroarylated amine 3e could also be accommodated, 

thus confirming the reaction efficiency, as pyrazol-5-yl product 

4l was obtained in 66% yield.  

To further expand the synthetic application of this 

methodology, upon treatment of benzene-1,2-diamine 5a with 

1-aroyl-2-naphthaldehydes 2 in the presence of trifluoroacetic 

acid (TFA, 2.0 equiv) and HOAc allowed microwave-assisted 

double [4 + 1] cyclization cascades to afford pentacyclic 

benzo[e]benzo[4,5] imidazo[2,1-a]isoindoles 6a-c in 87%-92% 

yields (Scheme 3b). Alternatively, 4,5-dimethylbenzene-1,2-

diamine 5b was proved to be a suitable diamine precursor (6d, 

72%). Notably, naphthalene-1,8-diamine 5c could be 

successfully engaged in the current bicyclization, providing the 

corresponding hexacyclic benzo[4,5]isoindolo[2,1-a]perimidine 

6e in 91% yield. The structures of products 2, 4 and 6 have 

been determined by NMR and HR-MS spectral analysis. In the 

cases of products 2a, 4h, and 4l, their structures have been 

further confirmed by X-ray diffractional analysis. 
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Scheme 4 Control experiments 

To gain mechanistic insight into this reaction, several control 

experiments were carried out. The reaction of O-unprotected 

1,7-diyne 7 was performed under the standard conditions, but 

no expected product 2a was observed with the starting 

material 7 remaining (Scheme 4a), indicating that the methyl 

protection of hydroxyl group is necessary for this 

transformation. Without H2O, the reaction of 1a did not 

proceed, confirming that H2O plays a key role in the success of 

this cyclization (Scheme 4b). The same reaction under Ar 

conditions only gave 15% yield of 2a with the starting material 

1a remaining (Scheme 4c), suggesting that oxygen atom of 

aroyl group may come from H2O rather than molecular O2 and 

molecular O2 may facilitate the regeneration of I2 from iodine 

anion during the reaction process.
14

 The reaction in D2O gave 

the desired product 2a without D-content (Scheme 4d). 

 

 
Scheme 5. Plausible mechanism for forming 2 

On the basis of the above analysis, a reasonable mechanism 

for forming products 2 was proposed in Scheme 5. In the first 

stage, in the presence of I2, intramolecular 5-endo-dig oxo-

cyclization occurs to give dihydrofuran cation, followed by ring 

opening of dihydrofuran ring (1,4-oxo-migration) to yield diene 

intermediates B detected by LC-MS (See Supporting 

Information). Subsequent [2+2] cycloaddition of dienes B
15

 

generates cyclobutene intermediates C, which undergo allylic 

nucleophilic substitution and ring opening of cyclobutenes to 

access products 2.
16

 I2 is believed to be regenerated by 

reaction with iodine anion and molecular O2.
14

 The formation 

of products 4 involved in situ formation of imines (2 to E), 5-

exo-trig cyclization (E to F), nucleophilic addition of H2O (F to 

G), dehydration and tautomerization (G to 4) sequence 

(Scheme S1, see Supporting Information). Similar to the above, 

the synthesis of products 6 is expected to consist of 

nucleophilic additions-dehydration (2 to I), intramolecular 

cyclization (I to K), second dehydration and tautomerization (K 

to 6) sequence (Scheme S1).   

In conclusion, we have discovered a new I2-mediated synthesis of 

unexpected 1-aroyl-2-naphthaldehydes through metal-free 

benzannulation of 1,7-diynes involved 1,4-oxo-migration process. 

The resulting 1-aroyl-2-naphthaldehydes as an alternative 1,4-

dielectrophilic reagent have been successfully applied in fused aza-

heterocyclic synthesis. The microwave-assisted [4 + 1] cyclization of 

1-aroyl-2-naphthaldehydes with aromatic amines gave tricyclic 

benzo[e]isoindol-3-ones with good yields whereas pentacyclic 

benzo[e]benzo[4,5]imidazo[2,1-a]isoindoles with high yields were 

obtained through double [4 + 1] cyclization cascades using benzene-

1,2-diamines as a reaction partner. A further investigation on 
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reaction mechanism and assessing biological activity of these 

resultant compounds is currently underway in our laboratory. 
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