

PII: S0957-4166(97)00166-3

Enantioselective Dreiding–Schmidt reactions: asymmetric synthesis and analysis of α-methylene-γ-butyrolactones[†]

René Csuk,^{a,*} Christina Schröder,^b Sonja Hutter^b and Kristina Mohr^a

^a Institut f. Organ. Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str 2, D-06120 Halle (Saale), Germany

^b Pharm.- Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany

Abstract: The zinc/silver-graphite mediated Dreiding-Schmidt reactions between aldehydes and the 2-bromomethyl-acrylate derived sultamamides (+)/(-)-28 or (+)/(-)-30 gave the corresponding substituted α -methylene- γ -butyrolactones with ee's up to 90%. Enantiomerically pure compounds were obtained by semipreparative HPLC using a chiral stationary phase. © 1997 Elsevier Science Ltd

Introduction

 α -Methylene- γ -butyrolactones possess a wide range of biological activities¹, particularly cytotoxic and antitumor activity², fungitoxicity³ as well as plant growth inhibition.⁴ Many different approaches for their efficient synthesis have been elaborated.^{1,5,6} Due to the strong dependance between absolute configuration and biological activities of many natural occuring α -methylene- γ -butyrolactones several methods have been developed for their stereoselective synthesis⁷ but most of these approaches use starting materials that already contain the stereogenic centers.⁸ To the best of our knowledge no non-racemic 2-bromomethyl-acrylates have been prepared and tested for their potential use as chiral reagents in Dreiding–Schmidt reactions.^{9–12}

Results and discussion

The racemic α -methylene- γ -butyrolactones 1–7 were easily obtained from the corresponding aldehydes 8–14 (cf. Table 1) by their zinc/silver-graphite mediated reaction with ethyl 2-bromomethyl-acrylate (15),¹³ whereas their reaction with ethyl (Z)-2-bromomethyl-2-butenoate 16¹⁴ afforded the products 17–23 possessing an additional methyl substituent at position C(3) of the butyrolactone moiety.

For the Dreiding-Schmidt reaction at least four reasonable transition states (transition states Figure 1) can be drawn. Whereas re-re and si-si-attacks lead to six-membered chair-like transition states **B** and **C** showing the residue R¹ in an unfavourable axial position (leading to a *trans*-orientation of R¹ and R² in the final products) for si-re and re-si attacks the transition states become more favourable: the products from transition states **A** and **D**, however, lead to *cis*-configurated products with respect to R¹ and R².

Following previous experiments with Reformatsky reactions several chiral alkyl 2-bromomethylacrylates were prepared and tested for their use in Dreiding–Schmidt reactions. Unfortunately, the ee's obtained were rather disappointing. A breakthrough was observed, however, on altering the alcohol part of the ester into an amide moiety¹⁵ by using Oppolzer's sultam as the amino part.

Thus, reaction of 2-bromomethyl-acrylic acid 24 with oxalyl dichloride gave a mixture of the corresponding chlorides 25^{16} and 26 which was allowed to react with the in situ prepared sodium

[†] Dedicated to Professor Dr. Dieter Seebach, ETH Zürich, on the occasion of his 60th birthday.

^{*} Corresponding author. Email: arqhc@mlucom.urz.uni-halle.de

R. CSUK et al.

Table 1. Synthesis of racemic α -methylene- γ -butyrolactones

	·			1	1		
aldehyde	R1	acrylate	product R ² = H	yield [%]	acrylate	product R ² = Me	yield [%] (cis/trans)
8	Ph	15	1	87	16	17	86 / 0
9	o-OMe-Ph	15	2	84	16	18	40 / 13
10	<i>m</i> OMePh	15	3	79	16	19	82/0
11	pOMe-Ph	15	4	80	16	20	76 / 13
12	1-naphthyl	15	5	87	16	21	88/0
13	2-naphthyl	15	6	90	16	22	84 / 6
14	isobutyl	15	7	79	16	23	86/7
Br R ¹	H BrZn F	0 R ² 15 R ² = H 16 R ² = Me		OF	2nBr	R ¹ H R ² 1-6, 1	
				Br Zn CO ₂ R ³ C En Zn Drew		£	

Figure 1. Transition states for the Dreiding-Schmidt reaction.

salt of (R) -or (S)-Oppolzer sultam (-)-27 or (+)-27 to yield yield (-)-28 and (+)-28, respectively. (Schemes 1 and 2).¹⁷ In addition, some 29 resulting from a double addition of the sultam with both the carboxylic chloride as well as with the bromosubstituent was obtained. Similarly, from 2-bromomethyl-3-methyl-acrylic acid and the sultams the methacrylamides (-)-30 and (+)-30 were obtained.¹⁸ Reaction of the sultamamide (-)-28 with 8 afforded the monosubstituted butyrolactone (4 R)-1 with an ee of 62% besides some 32 resulting from a Wurtz-type dimerization reaction. Upon reaction of 8 with the substituted sultamamide (-)-30 the disubstituted butyrolactone (3 S, 4 R)-17 was obtained in 95% yield with an ee of 69%. Yields and ee's of the products are summarized in Tables 2 and 3. It is worthwhile mentioning that the chiral auxiliary (+)- or (-)-27 can be recovered from these reactions in good yields.

From Diels-Alder reactions of sultam substituted starting materials it is well established that the two

oxygen substituents of the sultam moiety are pseudo-axially/pseudo-equatorially oriented.¹⁹ Whereas in the solid state an *anti*-orientation **E** is preferred²⁰ in the presence of Lewis acids a *syn*-orientation **F** seems more favourable (Figure 2).²¹ Hence, it can be assumed that in the presence of zinc a chelation takes place and a rational structure for the zinc organic reagents is depicted in Figure 2.²² The conformation of the organometallic species derived from **30** (R²=Me) is similar to its unsubstituted analogue derived from **28**. Due to the geometry of the double bond a *si*_{reagent}-*re*_{aldehyde} attack will bring the methyl group into a *cis*-orientation with the phenyl moiety and this relative configuration is also found in the final products. An attack of the *si*-face of the zinc organic reagent is preferred due to steric crowding of the campher skeleton. Assuming the existence of a six-membered chair-

Scheme 2.

aldehyde	R ¹	sultamamide	producta	yield [%]	ee [%]
8	Ph	(-)-28	(4 R)-1	85	62
8	Ph	(+)-28	(4 <i>S</i>)–1	86	54
9	o-OMe-Ph	(-)-28	(4 <i>R</i>)-2	89	39
9	oOMePh	(+)-28	(4 <i>S</i>)–2	87	42
10	mOMePh	(+)-28	(4 <i>S</i>)–3	89	71
11	p-OMe-Ph	(+)-28	(4 S)4	90	58
12	1-naphthyl	(+)-28	(4 S)–5	93	61
13	2-naphthyl	(-)-28	(4 <i>R</i>)–6	95	83
13	2-naphthyl	(+)-28	(4 S)–6	94	83
14	isobutyl	(+)-28	(4 <i>R</i>)–7	89	59

Table 2. Reaction of the aldehydes with sultamamides (+)-28 and (-)-28

^a stereochemical descriptor for the major product

like transition state for these reactions²³ the residue R¹ of the aldehyde is brought into the favorable equatorial position when the carbonyl group reacts with its *re*-face $(\rightarrow J)$ whereas for an attack with the *si*-face $(\rightarrow I)$ 1,3-diaxal interactions are expected. Hence, the most favorable transition state should result in the formation of a (3 S, 4 R)-configured product (from (-)-30) whereas the reaction of the aldehydes with (+)-30 should lead to the corresponding (3 R, 4 S) enantiomers.

In as much as the isobutyl moiety is less space demanding than the phenyl group one would expect a smaller ee of the resulting product whereas the highest ee should result from the reaction of 13. Simulation of the reaction (software CAChe 3.8; individual conformations optimized by AM1 calculations after having performed a systematic conformational search by application of a MM2 force

aldehyde	R1	sultamamide	producta	yield [%]	ee [%]
8	Ph	(-)-30	(3 <i>S</i> , 4 <i>R</i>)–17	95	69
8	Ph	(+)-30	(3 R, 4 S)-17	96	90
9	o-OMe-Ph	(-)-30	$(3 S, 4 R) - 18^{b}$	68	с
10	<i>m</i> –OMe–Ph	(+)-30	(3 R, 4 S)–19	86	62
11	<i>p</i> -OMe-Ph	(+)-30	(3 R, 4 S)-20	81	75
12	l-naphthyl	(+)-30	(3 R, 4 S)-21	81	61
13	2–naphthyl	(-)-30	(3 S, 4 R)-22	89	82
13	2-naphthyl	(+)-30	(3 R, 4 S)-22	88	82
14	isobutyl	(+)-30	(3 R, 4 R)-23	87	60

Table 3. Reaction of the aldehydes with sultamamides (+)-30 and (-)-30

^a stereochemical descriptor for the major product; ^b some uncylized 33 was recovered from this reaction; ^c mixture of *cis/trans* isomers that could not be separated by HPLC

Figure 2. Possible transition states.

field) make it reasonable that the influence of a substituent bridging the *ortho-* and *meta-*position onto the ee of the product is smaller than of the same substituent occupying the *meta-* and *para-* position: Upon consideration of the unfavourable si-si approaches (leading to the minor enantiomer) of 12 and 13 the transition state for the reaction of 13 shows both aromatic rings parallel to the carboxamide moiety whereas for 12 the aromatic residue is arranged orthogonal to the carboxamide hence resulting in less steric interactions. From these considerations it is conceivable that the products obtained from 12 should possess a lower ee than those analogs resulting from 13.

Figure 3. Dependence of the retention time (rt) from the temperature as exemplified for of the enantiomers of (\pm) -18: column (*R*, *R*)-Whelk O1[®], hexane/prop-2-OH 98:2.

Figure 4. Typical chromatogramm; (±)-22, (S, S)-Whelk O1[®], 1.0 ml/min, 34 bar, 20°C, hexane/prop-2-OH 98:2.

To determine the enantiomeric purity of the obtained compounds a suitable HPLC system had to be established and (S, S)- and (R, R)-Whelk O1[®] columns possessing the chiral selector (3 R, 4 R) or (3 S, 4 S)-4-(3,5-dinitro-benzamido)-1,2,3,4-tetrahydrophenanthrene using hexane/prop-2-OH mixtures as eluents were shown to give excellent results. The retention times were shown to depend as well on the polarity of the eluent as on the temperature of the column (*cf.* Figure 3).

A typical chromatogram is shown in Figure 4. Interestingly enough, compounds possessing a methyl group at C(3) in general show shorter retention times than their unsubstituted analogues; similary, the separation factor α is lower for the methylated compounds (Figure 5). It is of interest to note in this context that the enantiomers of (\pm) -31 (Scheme 3)^{24,25} possessing two methyl groups at C(3) under these chromatographic conditions are not separated at all.

To obtain several of these compunds not only in an enantiomerically enriched but in an enantiomerically pure form the conditions of the analytical HPLC were applied for semipreparative HPLC separations. Thus, the pure enantiomers of 1, 4, 6, 20 and 22 were obtained and their enantiomeric purity was rechecked by analytical HPLC.

Experimental

Melting points are uncorrected (Reichert hot stage microscope), optical rotations were obtained using a Perkin-Elmer 243B polarimeter (1 cm micro-cell), NMR spectra (internal Me₄Si) were recorded using either a Bruker AM250 or a Varian XL300 instrument (δ given in ppm, J in Hz, internal Me₄Si), IR spectra (film or KBr pellet) on a Perkin-Elmer 298 instrument or on a Perkin-Elmer 1605 FT-IR,

Figure 5. Dependence of the separation factor $[\alpha]$ vs substituent at C(3), column (S, S)-Whelk O1[®], 20°C, hex/prop-2-OH 90:10.

MS spectra were taken either on a MAT311A or a Varian-112S instrument; for elemental analysis a Foss-Heraeus Vario EL instrument was used. TLC was performed on silica gel (Merck 5554, detection by dipping in a solution containing 10% sulfuric acid (400 *ml*), ammonium molybdate (20 g) and cerium(IV) sulfate (20 mg) followed by heating to 150°C. For the HPLC either a Merck LaChrom L7100/L7250/L7450/D7000 system or a Merck-Hitachi L6200A/L4000/D-2500 system was used. The tetrahydrofuran used throughout for all reactions was freshly distilled from sodium/benzophenone; all reactions were performed under dry argon.

General procedure for the synthesis of racemic α -methylene- γ -butyrolactones

Graphite (Fluka AG, Buchs, 0.90 g, 75.0 mmol) is degassed at 150° C under argon for 1 h and then clean potassium (0.35 g, 8.82 mmol) is added in several portions under vigorous stirring. After cooling to 25° C the bronze-colored C₈K is suspended in dry THF (30 ml) and a mixture of anhydrous zinc chloride (0.60 g, 4.41 mmol) and silver(I) acetate (0.06 g, 0.36 mmol) is added causing the solvent to reflux. After heating under reflux for an additional 30 min the suspension is cooled to -5 °C and a solution of the corresponding aldehyde in abs. THF (5 ml) and of the corresponding bromoester in THF (5 ml) is added and stirring is continued at -5 °C $\rightarrow 0$ °C until the reaction has come to completion (as checked by TLC). The reaction mixture is filtered through a pad of Celite, the filter cake is washed with ethyl acetate (150 ml), the filtrates are combined and washed with aqueous hydrochloric acid (1 M, 10 ml) and brine (10 ml), the organic layer is dried (MgSO₄), filtered, the solvents are evaporated under diminished pressure and the residue is subjected to column chromatography (silica, hexane/ethyl acetate 10:1 \rightarrow 3:1).

General procedure for the synthesis of the enantiomerically enriched compounds

Following the procedure for the synthesis of the racemic compounds to a suspension of Zn/Ag-graphite (5.6 mmol) in dry THF (25 ml) at 0 °C the aldehyde is added and then at 0 °C a solution of **28** or **30** in dry THF (10 ml) is slowly added within 15 min. Work up as above and chromatography affords the products.

General conditions for the determination of the ee by analytical HPLC

20 µl of a filtered solution of the compound (c=0.03 mg/ml) in the respective eluent was used for the analysis; column: (S, S)- or (R, R)-Whelk O1[®] (Merck, Darmstadt), 250×4 mm.

General conditions for the separation of the enantiomers by semipreparative HPLC

Column (S, S)-Whelk O1[®] (Merck, Darmstadt, 250×10 mm), 3 ml/min, c=10 mg/ml).

(\pm) -2-Methylene-4-phenyl- γ -butyrolactone 1

From **8** (0.23 g, 2.21 mmol) and **15** (0.43 g, 2.21 mmol) **1** (0.35 g, 92%) was obtained as an oil; R_F 0.55 (hexane/ethyl acetate 3:1); IR (film): v 1756s, 1700w, 1685w, 1663w, 1653w, 1635w, 1560w, 1539w, 1521w, 1506w, 1496w, 1459w, 1437w, 1398w, 1376w, 1320m, 1277m, 1241m, 1200w, 1176m, 1130m, 1063w, 1021m, 991m; ¹H NMR (300 MHz, CDCl₃): δ 2.91 (*ddt*, *J*=17.1, 6.6, 2.9, 1 H, H_A-C(3)), 3.40 (*ddt*, *J*=17.1, 8.0, 2.5, 1 H, H_B-C(3)), 5.52 (*dd*, *J*=8.0, 6.6, 1 H, H-C(4)), 5.69 (*dd* (virt *t*), *J*=2.5, 1 H, H_A-C(2')), 6.30 (*dd* (virt *t*), *J*=2.9, 1 H, H_B-C(2')), 7.29-7.42 (*m*, 5 H, CH (phenyl)); ¹³C NMR (50 MHz, CDCl₃): δ 36.28 (*t*, C(3)), 77.94 (*d*, C(4)), 122.39 (*t*, C(2'), 125.38 and 128.84 (each *d*, CH (phenyl)), 128.84 (*d*, CH (*p*-phenyl)), 134.22 (*s*, C_q (phenyl)), 139.83 (*s*, C(2)), 170.05 (*s*, C(1)); MS (ei, 80 eV, 20 °C): 174(33.3), 129(10.5), 115(11.4), 114(18.8), 107(24.6), 105(16.9), 91(6.3), 79(23.8), 77(38.6), 68(100.0).

(4 R)-2-Methylene-4-phenyl- γ -butyrolactone (4 R)-1 and 1,6-bis-((5 R)-10,10-dimethyl,-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-2,5-dimethylene-hexane-1,6-dione (-)-32

Following the general procedure from 8 (0.3 g, 2.83 mmol) and (-)-28 (1.0 g, 2.76 mmol) after chromatography (hexane/ethyl acetate 10:1) (**R**)-1 (0.39 g, 85%) and (-)-32 (0.14 g, 13%) were obtained.

Data for (4R)-1: ee 62% (by HPLC (R, R)-Whelk O1[®], 1.0 ml/min, 34 bar, 20°C, hexane/prop-2-OH, 98:2, $t_R(S)$ 25 min, $t_R(R)$ 31 min).

Data for (-)-32: colorless crystals; mp 232–234 °C, $[\alpha]_D^{25}$ =-103.3 (*c*=1.0, CHCl₃), R_F 0.29 (hexane/ethyl acetate 3:1); IR (KBr): 2970m, 2938m, 1585s, 1671s, 1653w, 1646w, 1634m, 1616w, 1576w, 1569w, 1559w, 1540w, 1521w, 1506w, 1457w, 1448w, 1420w, 1407w, 1391w, 1373w, 1338w, 1327s, 1284w, 1259w, 1235w, 1211m, 1165w, 1146w, 1135m, 1111m, 1065m, 1037m, 1006w; ¹H NMR (300 MHz, CDCl₃): δ 0.99, 1.22 (each *s*, 6 H, H₃-C(10_{C1}'A, 10_{C2}'A, 10_{C1}'B, 10_{C2}'B)), 1.24–1.46 (*m*, 4 H), 1.85–2.09 (*m*, 10 H, (H–C(7_{C1}', 7_{C2}'), H₂-C(6_{C1}, 6_{C2}, 8_{C1}, 8_{C2}, 9_{C1}, 9_{C2})), 3.39 (*d*, *J*=13.7, 1 H, H_A-C(2_{C1}, 2_{C2})), 3.50 (*d*, *J*=13.7, 1 H, H_B-C(2_{C1}, 2_{C2})), 4.05 (*dd*, *J*=7.5, 5.0, 2 H, H–C(5_{C1}, 5_{C2})), 5.70 (*s*, 2 H, H_A-C(2', 5')), 5.79 (*s*, 2 H, H_B-C(2', 5')); ¹³C NMR (75.4 MHz, CDCl₃): δ 19.85, 21.28 (each *q*, C(10_{C1}'A, 10_{C2}'A, 10_{C1}'B, 10_{C2}'B)), 30.54 (*t*, C(3, 4)), 26.43, 33.16, 38.31 (each *t*, C(6_{C1}, 6_{C2}, 8_{C1}, 8_{C2}, 9_{C1}, 9_{C2})), 45.14 (*d*, C(4_{C1}, 4_{C2})), 47.62, 47.85 (each *s*, C(1_{C1}, 1_{C2}, 7_{C1}, 7_{C2})), 53.51 (*t*, C(2_{C1}, 2_{C2})), 65.43 (*d*, C(5_{C1}, 5_{C2})), 124.10 (*t*, C(2', 5')), 141.92 (*s*, C(2, 5)), 170.53 (*s*, C(1, 6)); MS (ei, 80 eV, 254 °C): 564(6.0), 500(3.0), 436(1.1), 350(56.3), 322(10.4), 218(10.6), 152(29.5), 135(100.0), 107(55.0), 93(42.3), 79(49.4), 67(18.9), 55(17.8), 43(19.1), 41(21.1); Anal. calcd. for C₂₈H₄₀N₂O₆S₂ (564.75): C, 59.55; H, 7.14; N, 4.96; found: C, 59.66; H, 7.09; N, 4.75.

(4 S)-2-Methylene-4-phenyl-y-butyrolactone (4 S)-1 and 1,6-bis-((5 S)-10,10-dimethyl,-3,3-dioxo- $3^{\lambda6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-2,5-dimethylene-hexane-1,6-dione (+)-32

Following the general procedure from 8 (0.3 g, 2.83 mmol) and (+)-28 (1.0 g, 2.76 mmol) after chromatography (hexane/ethyl acetate 10:1) (S)-1 (0.51 g, 86%) and (+)-32 (0.14 g, 13%) were obtained.

Data (4 S)-1: ee 54% (by HPLC (S, S)-Whelk O1[®], 1.0 *ml*/min, 38 bar, 20 °C, hexane/prop-2-OH, 90:10, $t_R(R)$ 16.2 min, $t_R(S)$ 18.9 min).

Data for (+)-32: mp 233-235 °C; $[\alpha]_D^{25}$ =+102.8 (*c*=1.0, CHCl₃); Anal. calcd. for C₂₈H₄₀N₂O₆S₂ (564.75): C, 59.55; H, 7.14; N, 4.96; found: C, 59.62; H, 7.12; N, 4.78.

(4 R)-2-Methylene-4-phenyl-y-butyrolactone (4 R)-1 and (4 S)-2-methylene-4-phenyl-y-butyrolactone (S)-1

From semipreparative HPLC of the racemate both compounds were obtained with $ee \ge 99\%$.

Data (4 *R*)-1: colorless crystals; mp 43–44 °C, $[\alpha]_D^{25} = -20.8$ (*c*=1.0, CHCl₃); Anal. calcd. for C₁₁H₁₀O₂ (174.07): C, 75.84; H, 5.79; found: C, 75.63; H, 5.89.

Data (S)-1: colorless crystals; mp 42-44 °C, $[\alpha]_D^{25}$ =+20.2 (c=1.0, CHCl₃); Anal. calcd. for C₁₁H₁₀O₂ (174.07): C, 75.84; H, 5.79; found: C, 75.92; H, 5.88.

(\pm) -4-(2-Methoxyphenyl)-2-methylene- γ -butyrolactone 2

From **9** (0.30 g, 2.21 mmol) and **15** (0.43 g, 2.21 mmol) **2** (0.38 g, 84%) was obtained as a solid; mp 29 °C; R_F 0.50 (hexane/ethyl acetate 3:1); IR (film): v 2941w, 1766s, 1664w, 1604m, 1590m, 1494m, 1465m, 1439m, 1322m, 1278m, 1249s, 1130m, 1029s, 756m; ¹H NMR (300 MHz, CDCl₃): δ 2.82 (dddd (virt ddt), J=17.4, 5.7, 2.9, 1 H, H_A–C(3)), 3.41 (dddd (virt ddt), J=17.4, 8.4, 2.7, 1 H, H_B–C(3)), 3.82 (s, 3H, OCH₃)), 5.61 (dd (virt t), J=2.6, 1 H, H_A–C(2')), 5.72 (dd, J=8.4, 5.7, 1 H, H–C(4)), 6.26 (dd (virt t), J=2.9, 1 H, H_B–C(2')), 6.88–6.98 (m, 2 H, H–C(3, 5) (phenyl)), 7.27–7.33 (m, 2 H, H–C(4, 6) (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 34.94 (t, C(3)), 55.21 (q, OCH₃)), 74.80 (d, C(4)), 110.43 (d, C(3) (phenyl)), 120.40 (d, C(5) (phenyl)), 121.50 (t, C(2')), 125.70 (d, C(4) (phenyl)), 128.18 (s, C(1) (phenyl)), 134.62 (s, C(2)), 155.96 (C(2) (phenyl))), 170.37 (s, C(1)); MS (ei, 80 eV, 60 °C): 204(39.4), 159(9.3), 129(5.3), 115(6.9), 91(7.8), 77(10.2), 68(100.0), 51(3.7), 41(5.6); Anal. calcd. for C₁₂H₁₂O₃ (204.23): C, 70.58; H, 5.92; found: C, 70.42; H, 6.00.

(4 R)-4-(2-Methoxyphenyl)-2-methylene-y-butyrolactone (4 R)-2

From 9 (0.30 g, 2.21 mmol) and (-)-28 ((1.0 g, 2.76 mmol) 2 (0.39 g, 86%) was obtained; ee 39% (by HPLC: (S, S)-Whelk O1[®], 1 *ml*/min, 38 bar, 20 °C, hexane/prop-2-OH 90:10, $t_R(R)$ =16.5 min, $t_R(S)$ 19.8 min).

(4 S)-4-(2-Methoxyphenyl)-2-methylene-y-butyrolactone (4 S)-2

From 9 (0.30 g, 2.21 mmol) and (+)-28 (1.0 g, 2.76 mmol) 2 (0.41 g, 89%) was obtained; ee 42% (by HPLC: (S, S)-Whelk O1[®], 1 *ml*/min, 35 bar, 20 °C, hexane/prop-2-OH 95:5, $t_R(R)$ =27.4 min, $t_R(S)$ 32.1 min).

(\pm) -4-(3-Methoxyphenyl)-2-methylene- γ -butyrolactone 3

From **10** (0.30 g, 2.21 mmol) and **15** (0.43 g, 2.21 mmol) **3** (0.26 g, 58%) was obtained as an oil; R_F 0.40 (hexane/ethyl acetate 3:1); IR (film): 1766s, 1665w, 1603m, 1491m, 1458m, 1438m, 1321m, 1275s, 1157m, 1129s, 1025m; ¹H NMR (300 MHz, CDCl₃): δ 2.89 (dddd, (virt ddt), J=17.1, 6.4, 2.9, 1 H, H_A-C(3)), 3.39 (dddd, (virt ddt), J=17.1, 8.0, 2.5, 1 H, H_B-C(3)), 3.80 (s, 3 H, OCH₃), 5.49 (dd, J = 8.0, 6.4, 1 H, H–C(4)), 5.68 (dd (virt t), J=2.5, 1 H, H_A-C(2')), 6.29 (dd (virt t), J=2.9, 1 H, H_B-C(2')), 6.85–6.89 (m, 3 H, H–C(2, 4, 6) (phenyl)), 7.26–7.32 (m, 1 H, H–C(5) (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 36.28 (t, C(3)), 55.31 (q, OCH₃)), 77.75 (d, C(4)), 110.82 (d, C(4) (phenyl)), 113.87 (d, C(2) (phenyl)), 117.38 (d, C(6) (phenyl)), 122.33 (t, C(2')), 129.85 (d, C(5) (phenyl)), 134.04 (s, C(2)), 141.34 (s, C(1) (phenyl)), 159.81 (s, C(3) (phenyl)), 170.15 (s, C(1)); MS (ei, 80 eV, 99 °C): 204(42.3), 135(7.4), 115(6.3), 92(4.3), 91(4.2), 77(7.6), 68(100.0), 51(3.6), 41(6.9); Anal. calcd. for C₁₂H₁₂O₃ (204.23): C, 70.58; H, 5.92; found: C, 70.77; H, 5.97.

(4 S)-4-(3-Methoxyphenyl)-2-methylene-y-butyrolactone (4 S)-3

From 10 (0.30 g, 2.21 mmol) and (+)-28 (1.0 g, 2.76 mmol) (4 S)-3 (0.41 g, 89%) was obtained; ee 72% (by HPLC: (S, S)-Whelk O1[®], 1 *ml*/min, 38 bar, 20 °C, hexane/prop-2-OH, 90:10, $t_R(R)$ 25.0 min, $t_R(S)$ 31.2 min).

(\pm) -4-(4-Methoxyphenyl)-2-methylene-y-butyrolactone 4

From 11 (0.30 g, 2.21 mmol) and 15 (0.43 g, 2.21 mmol) 4 (0.36, 80%) was obtained as a solid; mp 47 °C; R_F 0.24 (hexane/ethyl acetate 3:1); IR (KBr): v 1750s, 1659m, 1612m, 1519m, 1438m, 1337m,

1286*m*, 1261*s*, 1178*m*, 1130*s*, 1020*m*, 978*m*, 952*m*, 834*s*; ¹H NMR (250 MHz, CDCl₃): δ 2.89 (*ddd*, (virt ddt), *J*=17.1, 6.5, 2.9, 1 H, H_A–C(2)), 3.34 (*dddd*, (virt *t*), *J*=17.1, 7.9, 2.4, 1 H, H_B–C(2)), 3.79 (*s*, 3 H, OCH₃), 5.45 (*dd*, *J*=7.9, 6.5, 1 H, H–C(4)), 5.67 (*dd* (virt *t*), *J*=2.4, H_A–C(2')), 6.27 (*dd* (virt *t*), *J*=2.9, 1 H, H_B–C(2')), 6.86–6.92 (*m*, 2 H, H–C(2, 6) (phenyl)), 7.21–7.25 (*m*, 2 H, H–C(3, 5) (phenyl)); ¹³C NMR (62.9 MHz, CDCl₃): δ 36.15 (*t*, C(3)), 55.32 (*q*, OCH₃), 78.06 (*d*, C(4)), 114.20 (*d*, C(3, 5) (phenyl)), 122.11 (*t*, C(2')), 127.10 (*d*, C(2, 6) (phenyl)), 131.67 (*s*, C(1) (phenyl)), 134.66 (*s*, C(2)), 159.87 (*s*, C(4) (phenyl)), 170.17 (*s*, C(1)); MS (ei, 80 eV, 75 °C): 204(51.4), 173(1.2), 159(8.0), 145(4.4), 135(17.5), 129(4.9), 115(7.2), 92(5.2), 77(10.4), 68(100.0), 51(4.3), 41(5.7); Anal. calcd. for C₁₂H₁₂O₃ (204.23): C, 70.58; H, 5.92; found: C, 70.53; H, 5.89.

(4 S)-4-(4-Methoxyphenyl)-2-methylene-y-butyrolactone (4 S)-4

From 11 (0.30 g, 2.21 mmol) and (+)-28 (0.8 g, 2.21 mmol) (4 S)-4 (0.39, 90%) was obtained; ee 58% (by HPLC: (S, S)-Whelk O1[®], 1.0 *ml*/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, $t_R(R)$ 31.5 min, $t_R(S)$ 39.5 min).

(4 R)-4-(4-Methoxyphenyl)-2-methylene-y-butyrolactone (4 R)-4 and (4 S)-4-(4-methoxy-phenyl)-2-methylene-y-butyrolactone (4 S)-4

By semipreparative HPLC from the racemate (eluent: hexane/prop-2-OH 95:5) (4 R)-4 and (4 S)-4 were obtained as colorless oils.

Data for (4 *R*)-4: $[\alpha]_D^{25}$ =-31.9 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₂H₁₂O₃ (204.23): C, 70.58; H, 5.92; found: C, 70.62; H, 5.81.

Data for (4 S)-4: $[\alpha]_D^{25}$ =+31.3 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₂H₁₂O₃ (204.23): C, 70.58; H, 5.92; found: C, 70.75; H, 5.79.

(\pm) -2-Methylene-4-naphthalen-1-yl- γ -butyrolactone 5

From 12 (0.35 g, 2.21 mmol) and 15 (0.43 g, 2.21 mmol) 5 (0.44 g, 87%) was obtained as a solid; mp 59 °C, R_F 0.47 (hexane/ethyl acetate 3:1); IR (KBr): 1752*s*, 1700*w*, 1695*w*, 1684*w*, 1653*w*, 1597*w*, 1559*w*, 1540*w*, 1534*w*, 1507*w*, 1457*w*, 1432*w*, 1398*w*, 1361*w*, 1334*w*, 1308*w*, 1284*m*, 1252*m*, 1233*m*, 1167*w*, 1121*s*, 1051*m*, 1028*m*, 1011*m*, 967*m*, 801*m*, 773*s*; ¹H NMR (300 MHz, CDCl₃): δ 2.95 (*dddd*, (virt ddt), *J*=17.1, 5.6, 2.8, 1 H, H_A–C(3)), 3.63 (*dddd*, (virt *ddt*, *J*=17.1, 8.3, 2.7, 1 H, H_B–C(3)), 5.67 (*dd* (virt *t*), *J*=2.7, 2.4, 1 H, H_A–C(2')), 6.25 (*dd*, *J*=8.3, 5.6, 1 H, H–C(4)), 6.35 (*dd* (virt *t*), *J*=2.9, 1 H, H_B–C(2')), 7.45–7.60 (*m*, 4H), 7.77–7.94 (*m*, 3 H) (CH (naphthalene)); ¹³C NMR (75.4 MHz, CDCl₃): δ 35.77 (*t*, C(3)), 75.32 (*d*, C(4)), 122.81 (*t*, C(2')), 121.51, 122.17, 125.20, 125.78, 126.42, 128.56, 128.97 (each *d*, CH (naphthalene)), 129.14, 133.59 (2×) (each *s*, C_{*q*} (naphthalene)), 135.41 (*s*, C(2)), 170.00 (*s*, C(1)); MS (ei, 80 eV, 86 °C): 224(46.7), 179(7.2), 178(7.5), 165(5.6), 155(6.4), 128(14.5), 127(15.8), 68(100.0); Anal. calcd. for C₁₅H₁₂O₂ (224.26): C, 80.35; H, 5.39; found: C, 80.46; H, 5.29.

(4 S)-2-Methylene-4-naphthalen-1-yl-y-butyrolactone (4 S)-5

From 12 (0.35 g, 2.21 mmol) and (+)-28 (0.80, 2.21 mmol) (4 S)-5 (0.40 g, 93%) was obtained; ee 61% (by HPLC: (S, S)-Whelk O1[®], 1 *ml*/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, $t_R(R)$ 22.6 min, $t_R(S)$ 33.1 min).

(\pm) -2-Methylene-4-naphthalen-2-yl-y-butyrolactone 6

From 13 (0.35 g, 2.21 mmol) and 15 (0.43 g, 2.21 mmol) 6 (0.45 g, 90%) was obtained as a solid; mp 83–85 °C, R_F 0.42 (hexane/ethyl acetate 3:1); IR (KBr): 1755s, 1700w, 1684w, 1653w, 1647w, 1635w, 1602w, 1560w, 1540w, 1521w, 1509w, 1472w, 1457w, 1438w, 1407w, 1279m, 1250m, 1183w, 1158w, 1127m, 1020w, 982m, 901w, 867w, 824m, 755m; ¹H NMR (300 MHz, CDCl₃): δ 2.95 (dddd,, J=17.1, 5.9, 3.1, 2.8, 1 H, H_A–C(3)), 3.43 (dddd,, J=17.1, 8.1, 2.6, 2.3, 1 H, H_B–C(3)), 5.63–5.69 (m, 2 H, H_A–C(2'), H–C(4)), 6.32 (dd, J=3.1, 2.6, 1 H, H_B–C(2')), 7.34–7.37 (m, 1H), 7.45–7.52 (m, 2 H), 7.70–7.86 (m, 4 H) (CH (naphthalene)); ¹³C NMR (62.9 MHz, CDCl₃): δ 36.25 (t, C(3)), 78.11 (*d*, C(4)), 122.65 (*t*, C(2')), 122.84, 124.61, 126.58, 126.70, 127.80, 128.13, 129.03 (each *d*, CH (naphthalene)), 133.11, 133.25, 134.21 (each *s*, C_q (naphthalene)), 137.16 (*s*, C(2)), 170.20 (*s*, C(1)); MS (ei, 80 eV, 86 °C): 224(51.2), 178(8.4), 165(5.0), 155(8.2), 127(15.5), 69(100.0); Anal. calcd. for $C_{15}H_{12}O_2$ (224.26): C, 80.34; H, 5.39; found: C, 80.06; H, 5.30.

(4 R)-2-Methylene-4-naphthalen-2-yl-y-butyrolactone (4 R)-6)

From 13 (0.35 g, 2.21 mmol) and (-)-28 (0.8 g, 2.21 mmol) 15 (0.43 g, 2.21 mmol) (4 *R*)-6 (0.40 g, 95%) was obtained; ee 83% (by HPLC: (*S*, *S*)-Whelk O1[®], 1.0 *ml*/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, $t_R(R)$ 26.0 min, $t_R(S)$ 45.6 min).

(4 S)-2-Methylene-4-naphthalen-2-yl-y-butyrolactone (4 S)-6

From 13 (0.35 g, 2.21 mmol) and (+)-28 (0.80, 2.21 mmol) (4 S)-6 (0.39 g, 94%) was obtained; ee 82.7% (by HPLC: (R, R)-Whelk O1[®], 1.0 ml/min, 38 bar, 20°C, hexane/prop-2-OH 90:10, t_R(S) 29.1 min, t_R(R) 46.2 min).

(4 R)-2-Methylene-4-naphthalen-2-yl- γ -butyrolactone (4 R)-6 and (4 S)-2-methylene-4-naphthalen-2-yl- γ -butyrolactone (4 S)-6)

By semipreparative HPLC from the racemate (eluent: hexane/prop-2-OH 95:5) (4R)-6) and (4S)-6) were obtained as colorless crystals.

Data for (**4** *R*)-**6**: mp 72–73 °C; $[\alpha]_D^{25}$ =-54.5 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₅H₁₂O₂ (224.26): C, 80.34; H, 5.39; found: C, 80.23; H, 5.33.

Data for (4 *S*)-6: mp 72–73°C; $[\alpha]_D^{25}$ =+54.5 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₅H₁₂O₂ (224.26): C, 80.34; H, 5.39; found: C, 80.45; H, 5.49.

(\pm) -4-(2-Methyl-propyl)-2-methylene- γ -butyrolactone 7

From 14 (0.30 g, 3.49 mmol) and 15 (0.67 g, 3.49 mmol) 7 (0.48 g, 89%) was obtained as an oil; $R_F 0.27$ (hexane/ethyl acetate 5:1); IR (film): v 2959*m*, 2872*w*, 1764*s*, 1666*w*, 1469*w*, 1437*w*, 1399*w*, 1369*w*, 1353*w*, 1336*w*, 1275*m*, 1186*w*, 1158*w*, 1119*m*, 1067*w*, 1023*w*, 1004*w*; ¹H NMR (300 MHz, CDCl₃): δ 0.95, 0.97 (each *d*, *J*=6.6, 3 H, H₃–C(4'''A, 4'''B), 1.41 (*ddd*, *J*=14.0, 8.1, 5.1, 1 H, H_A–C(4')), 1.69 (*ddd*, *J*=14.0, 8.6, 6.0, 1 H, H_B–C(4')), 1.79–1.90 (*m*, 1 H, H–C(4'')), 2.55 (*dddd*, (virt *ddt*), *J*=17.0, 6.1, 3.0, 1 H, H_A–C(3)), 3.08 (*dddd*, (virt *ddt*), *J*=17.0, 7.6, 2.5, H_B–C(3)), 4.60 (*dddd*, *J*=8.6, 7.6, 6.1, 5.1, 1 H, H–C(4)), 5.63 (*dd* (virt *t*), *J*=2.6, 1 H, H_A–C(2')), 6.22 (*dd* (virt *t*), *J*=2.8, 1 H, H_B–C(2')); ¹³C NMR; MS (ei, 80 eV, 46 °C): 154(10.8), 139(3.1), 111(4.6), 97(100.0), 69(47.0), 68(35.6), 55(9.3), 43(20.5), 41(88.5).

(4 R)-4-(2-Methyl-propyl)-2-methylene-y-butyrolactone (4 S)-7

From 14 (0.30 g, 3.49 mmol) and (+)-28 (0.76 g, 2.1 mmol) (4 S)-7 (0.43 g, 79%) was obtained; ee 59% (by HPLC: (S, S)-Whelk O1[®], 0.1 *ml*/min, 35 bar, 20°C, hexane/prop-2-OH, 95:5, $t_R(R)$ 14.4 min, $t_R(S)$ 16.1 min).

cis-(±)-3-Methyl-2-methylene-4-phenyl-y-butyrolactone 17

From **8** (0.23 g, 2.21 mmol) and **16** (0.46 g, 2.21 mmol) **17** (0.35 g, 87%) was obtained as an oil; R_F 0.48 (hexane/ethyl acetate 3:1); IR (film): \vee 3064w, 3034w, 2968m, 2879w, 1763s, 1677m, 1604w, 1498w, 1457m, 1408m, 1331s, 1295w, 1265w, 1246s, 1212m, 1193w, 1119s, 1089m, 991s; ¹H NMR (300 MHz, CDCl₃): δ 0.79 (d, J=7.1, 3 H, H₃–C(3')), 3.42–3.47 (m, 1 H, H–C(3)), 5.58 (d, J=2.6, 1 H, H_A–C(2')), 5.62 (d, J=8.1, 1 H, H–C(4)), 6.33 (d, J=2.9, H_B–C(2')), 7.15–7.18 (m, 2 H), 7.32–7.39 (m, 3 H) (CH (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 15.32 (q, C(3')), 38.84 (d, C(3)), 82.00 (d, C(4)), 121.52 (t, C(2')), 125.79, 128.17, 128.25 (each d, CH (phenyl)), 136.09 (s, C_q (phenyl), 139.84 (s, C(2)), 170.32 (s, C(1)); MS (ei, 80 eV, 40 °C): 188(8.8), 173(0.5), 143(3.5), 128(6.1), 115(4.6), 105(9.3), 82(84.7), 77(20.1), 54(100.0); Anal. calcd. for C₁₂H₁₂O₂ (188.23): C, 76.57; H, 6.43; found: C, 76.69; H, 6.56.

cis-(3 S, 4 R)-3-Methyl-2-methylene-4-phenyl-y-butyrolactone (3 S, 4 R)-17

From 8 (0.9 g, 8.49 mmol) and (-)-30 (1.10 g, 2.83 mmol) after chromatography (hexane/ethyl acetate 10:1) (3 S, 4 R)-17 (0.50 g, 95%) was obtained; ee 69% (by HPLC, (S, S)-Whelk O1[®], 1.0 ml/min, 34 bar, 20°C, hexane/prop-2-OH, 98:2, $t_R(S)$ 27.4 min, $t_R(R)$ 30.6 min).

cis-(3 R, 4 S)-3-Methyl-2-methylene-4-phenyl-y-butyrolactone (3 R, 4 S)-17

From 8 (0.3 g, 2.83 mmol) and (+)-30 (1.10 g, 2.83 mmol) after chromatography (hexane/ethyl acetate 10:1) (3 R, 4 S)-17 (0.51 g, 96%) was obtained; ee 90% (by HPLC vide supra).

(\pm) -4-(2-Methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone 18

From 9 (0.30 g, 2.21 mmol) and 16 (0.46 g, 2.21 mmol) 18 (0.25 g, 53%) was obtained as an inseparable mixture of cis/trans isomers (3:1 by ¹H NMR and HPLC ((S,S)-Whelk O1[®], 1 ml/min, 33 bar, 17°C, hexane/prop-2-OH 99:1, $t_R(R^1)$ 51.0 min, $t_R(R^2)$ 54.9 min, $t_R(S^1)$ 60.6 min, $t_R(S^2)$ 71.0 min)); mp 54 °C, R_F 0.57 (hexane/ethyl acetate 3:1); IR (KBr): v 3048w, 1008w, 2979m, 2926w, 1897w, 1757s, 1684w, 1662m, 1636w, 1617w, 1602m, 1588w, 1560w, 1540w, 1492m, 1466w, 1442m, 1409w, 1388w, 1370w, 1355w, 1329m, 1298m, 1271w, 1252s, 1240w, 1198w, 1164s, 1116w, 1092m, 1066m, 1048m, 1036m, 1023m, 979s; ¹H NMR (300 MHz, CDCl₃): δ 0.77 (d, J=7.1, 2.1 H, H₃-C(3'), A), 1.34 (d, J=6.9, 0.9 H, H₃-C(3'), B), 3.02 (m, 0.3 H, H-C(3), B), 3.50 (m, 0.7 H, H-C(3), A), 3.82 (s, 2.1 H, OCH₃, A), 3.83 (s, 0.9 H, OCH₃, B), 5.30 (d, J=5.8, 0.3 H, H–C(4), B), 5.55 (d, J=2.0, 0.3 H, H_A-C(2'), B), 5.56 (d, J=2.4, 0.7 H, H_A-C(2'), A), 5.87 (d, J=7.8, 0.7 H, H-C(4), A), 6.27 $(d, J=2.7, 0.3 \text{ H}, \text{H}_{B}-\text{C}(2'), \text{B}), 6.28 (d, J=2.6, 0.7 \text{ H}, \text{H}_{B}-\text{C}(2'), \text{A}), 6.87-6.98 (m, 2\text{H}), 7.21 (m, 2\text{H}),$ 2H) (CH (phenyl)); 13 C NMR (75.4 MHz, CDCl₃): δ 15.67 (q, C(3'), A), 18.24 (q, C(3'), B), 37.81 (d, C(3), A), 42.02 (d, C(3), B), 55.16 (q, OCH₃, A), 55.32 (q, OCH₃, B), 78.47 (d, C(4), A), 82.03 (d, C(4), B), 109.98 (d, CH (phenyl), A), 110.63 (d, CH (phenyl), B), 120.42 (d, CH (phenyl), A), 120.55 (d, CH (phenyl), B), 120.79 (t, C(2'), B), 121.02 (t, C(2'), A), 124.67 (s, C(1) (phenyl), A), 126.40 (d, CH (phenyl), A), 126.44 (d, CH (phenyl), B), 127.25 (s, C(1) (phenyl), B), 129.05 (d, CH (phenyl), A), 129.49 (d, CH (phenyl), B), 140.87 (s, C(2), B), 140.94 (s, C(2), A), 155.93 (s, C(2), C (phenyl), A), 156.52 (s, C(2) (phenyl), B), 170.54 (s, C(1), A and B); MS (ei, 80 eV, 50 °C): 218(23.0), 203(6.2), 173(3.7), 135(6.7), 115(4.8), 91(6.1), 82(88.6), 77(10.4), 65(4.8), 54 (100.0); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.54; H, 6.47; found: C, 71.71; H, 6.37.

(3 S, 4 R)-4-(2-Methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone (3 S, 4 R)-18 and 1-N-((5R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.01.5]dec-4-yl)-2-[(1S, 2R)(2-hydroxy-1-methyl)-2-(2-methoxyphenyl)-ethyl)]-prop-2-en-1-one 33

From 9 (0.3 g, 2.21 mmol) and (-)-30 (1.10 g, 2.83 mmol) (3 S, 4 R)-18 (0.34 g, 68%) and 33 (0.08 g, 8.8%) were obtained.

Data for (3 S, 4 R)-18: HPLC: (S,S)-Whelk O1[®], 1 ml/min, 33 bar, 20°C, hexane/prop-2-OH, 99:1, $t_R(R^1)$ 45.3 min, $t_R(R^2)$ 48.0 min, $t_R(S^1)$ 51.9 min, $t_R(S^2)$ 62.6 min.

Data for 33: mp 138–140 °C, $[\alpha]_D^{25}$ =-100.6 (*c*=1.2, CHCl₃), R_F 0.48 (hexane/ethyl acetate 3:1); IR (KBr): v 3540s, 2967*m*, 1767*m*, 1683*s*, 1628*w*, 1602*w*, 1588*w*, 1491*m*, 1457*m*, 1408*m*, 1330*s*, 1275*s*, 1246*s*, 1183*m*, 1169*m*, 1129*s*, 1082*w*, 1063*w*, 1050*m*, 1027*m*, 756*m*; ¹H NMR (300 MHz, CDCl₃): δ 0.89 (*d*, *J*=7.1, 3 H, H₃-C(3')), 1.01, 1.26 (each *s*, 3 H, H₃-C(10_C' A, 10_C' B)), 1.33–1.49 (*m*, 2 H), 1.86–2.15 (*m*, 5 H) (H–C(7_C), H2–C(6_C, 8_C, 9_C)), 3.24 (*m*, 1 H, H–C(3)), 3.44 (*d*, *J*=13.7, 1 H, H_A-C(2_C)), 3.55 (*d*, *J*=13.7, 1 H, H_B-C(2_C)), 3.65 (*bs*, 1 H, OH), 3.85 (*s*, 3 H, OCH₃), 4.14 (*dd*, *J*=7.6, 4.9, 1 H, H–C(5_C)), 5.11 (*d*, *J*=2.2, 1 H, H–C(4)), 5.82 (*d*, *J*=1.4, 1 H, H_A-C(2')), 5.99 (*d*, *J*=0.7, 1 H, H_B-C(2')), 6.82–6.85, 6.93–6.99 (each *m*, 1 H, H–C(3, 5) (phenyl)), 7.19–7.25, 7.51–7.54 (each *m*, 1 H, H–C(4, 6) (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 9.83 (*q*, C(3')), 19.85, 21.46 (each *q*, C(10_C' A, 10_C' B)), 26.37, 33.21, 38.41 (each *t*, C(6_C, 8_C, 9_C)), 41.45 (*d*, C(3)), 45.27 (*d*, C(4_C)), 47.65, 47.79 (each *s*, C(1_C, 10_C)), 53.63 (*t*, C(2_C)), 55.15 (*q*, OCH₃)), 65.81 (*d*, C(5C)), 70.35 (*d*, C(4)), 109.69 (*d*, C(3) (phenyl)), 119.99 (*d*, C(5) (phenyl)), 126.40 (*t*, C(2')), 127.17 (*d*, C(4) (phenyl), 127.41 (*d*, C(6) (phenyl)), 130.76 (*s*, C(1) (phenyl)), 145.95 (*s*, C(2)), 155.45 (*s*, C(2) (phenyl)), 170.86 (*s*, C(1)); MS (ei, 80 eV, 135 °C): 433(2.0), 369(0.5), 344(0.5), 297(46.5), 218(23.2), 151(13.5), 137(33.8), 135(63.2), 119(20.8), 108(29.4), 107(30.5), 93(30.5), 83(100.0), 82(93.5), 77(26.3), 67(20.2), 55(30.6), 54(79.6), 43(85.1); Anal. calcd. for $C_{23}H_{31}NO_5S$ (433.56): C, 63.72; H, 7.21; N, 3.23; found: C, 63.42; H, 7.19; N, 2.99.

cis-(±)-4-(3-Methoxyphenyl)-3-methyl-2-methylene-y-butyrolactone 19

From **10** (0.30 g, 2.21 mmol) and **16** (0.46 g, 2.21 mmol) **19** (0.40 g, 82%) was obtained as an oil; R_F 0.42 (hexane/ethyl acetate 3:1); IR (film): v 2970w, 1767s, 1664w, 1603m, 1587w, 1491m, 1455m, 1438w, 1406w, 1406w, 1360w, 1195w, 1150m, 1121m, 1089w, 1049m, 994m; ¹H NMR (300 MHz, CDCl₃): δ 0.81 (*d*, *J*=7.1, 3 H, H₃–C(3')), 3.42 (*m*, 1 H, H–C(3)), 3.79 (*s*, 3 H, OCH₃)), 5.58 (*m*, 2 H, H–C(4), H_A–C(2')), 6.31 (*d*, *J*=2.8, 1 H, H_B–C(2')), 6.71 (*m*, 2 H), 6.83 (*m*, 1 H), 7.27 (*t*, *J*=7.9, 1 H) (CH (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): d 15.28 (*q*, C(3')), 38.80 (*d*, C(3)), 55.15 (*q*, OCH₃), 81.82 (*d*, C(4)), 111.57 (*d*, C(4) (phenyl)), 113.41 (*d*, C(2) (phenyl)), 118.06 (*d*, C(6) (phenyl)), 121.46 (*t*, C(2')), 129.36 (*d*, C(5) (phenyl)), 137.71 (*s*, C(1) (phenyl)), 139.89 (*s*, C(2)), 159.46 (*s*, C(3) (phenyl)), 170.23 (C(1)); MS (ei, 80 eV, 85 °C): 218(27.9), 136(7.6), 135(9.5), 128(5.3), 115(4.7), 107(4.8), 92(5.0), 86(24.8), 84(39.5), 82(100.0), 77(10.6), 65(5.9), 54(93.9), 47(12.9), 43(8.3); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.54; H, 6.47; found: C, 71.39; H, 6.52.

cis-(3 R, 4 S)-4-(3-Methoxyphenyl)-3-methyl-2-methylene-y-butyrolactone (3 R, 4 S)-19

From 10 (0.3 g, 2.21 mmol) and (+)-30 (0.89 g, 2.21 mmol) after chromatography (hexane/ethyl acetate 10:1) (3 R, 4 S)-19 (0.41 g, 86%) was obtained; ee 62% (by HPLC: (S, S)-Whelk O1[®], 1 ml/min, 33 bar, 20°C, hexane/prop-2-OH, 99:1, t_R(R) 59.7 min, t_R(S) 69.7 min).

trans- (\pm) -4-(4-Methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone 20a and cis- (\pm) -4-(4-methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone 20b

From 11 (0.30 g, 2.21 mmol) and 16 (0.46 g, 2.21 mmol) 20a (60 mg, 13%) and 20b (0.37 g, 77%) were obtained.

Data for **20a**: mp 73–75 °C, R_F 0.36 (hexane/ethyl acetate 3:1); IR (KBr): \vee 2969*m*, 2936*w*, 2838*w*, 1762*s*, 1662*w*, 1615*m*, 1584*w*, 1516*s*, 1493*m*, 1441*w*, 1411*w*, 1365*w*, 1295*m*, 1251*s*, 1181*m*, 1173*m*, 1142*s*, 1110*w*, 1029*s*, 1013*w*, 999*s*, 963*m*, 824*m*; ¹H NMR (300 MHz, CDCl₃): δ 1.28 (*d*, *J*=6.8, 3 H, H₃–C(3')), 2.91–2.97 (*m*, 1 H, H–C(3)), 3.81 (*s*, 3 H, OCH₃), 4.84 (*d*, *J*=7.9, 1 H, H–C(4)), 5.57 (*d*, *J*=2.9, 1 H, H_A–C(2')), 6.29 (*d*, *J*=3.2, 1 H, H_B–C(2')), 6.89–6.94 (*m*, 2 H, H–C(2, 6) (phenyl)), 7.26–7.30 (*m*, 2H, H–C(3, 5) (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 15.56 (*q*, C(3')), 43.22 (*d*, C(3)), 55.23 (*q*, OCH₃), 85.80 (*d*, C(4)), 113.99 (*d*, C(3, 5) (phenyl)), 120.47 (*t*, C(2')), 127.37 (*d*, C(2, 6) (phenyl)), 129.92 (*s*, C(1) (phenyl)), 140.57 (*s*, C(2)), 159.81 (*s*, C(4) (phenyl)), 169.82 (*s*, C(1)); MS (ei, 80 eV, 71 °C): 218(23.5), 159(2.4), 135(13.5), 115(5.1), 92(4.3), 82(87.8), 77(9.4), 54(100.0); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.54; H, 6.47; found: C, 71.84; H, 6.32.

Data for **20b**: mp 67–69 °C; R_F 0.31 (hexane/ethyl acetate 3:1); IR (KBr): \vee 2970*m*, 2935*w*, 2838*w*, 2057*w*, 1767*s*, 1684*w*, 1664*w*, 1653*w*, 1613*m*, 1586*w*, 1559*w*, 1516*s*, 1457*m*, 1400*w*, 1364*w*, 1329*w*, 1298*m*, 1253*s*, 1180*m*, 1148*m*, 1117*m*, 1088*w*, 1033*m*, 986*m*, 816*m*; ¹H NMR (300 MHz, CDCl₃): δ 0.81 (*d*, *J*=7.1, 3 H, H₃–C(3')), 3.35–3.44 (*m*, 1 H, H–C(3)), 3.80 (*s*, 3 H, OCH₃), 5.56 (*d*, *J*=2.6, 1 H, H_A–C(2')), 5.57 (*d*, *J*=8.7, 1 H, H–C(4)), 6.31 (*d*, *J*=2.9, 1 H, H_B–C(2')), 6.85–6.94 (*m*, 2 H, H–C(2, 6) (phenyl)), 7.05–7.10 (*m*, 2H, H–C(3, 5) (phenyl)); ¹³C NMR (75.4 MHz, CDCl₃): δ 15.18 (*q*, C(3')), 38.97 (*d*, C(3)), 55.19 (*q*, OCH₃), 85.02 (*d*, C(4)), 113.69 (*d*, C(3, 5) (phenyl)), 121.30 (*t*, C(2')), 127.16 (*d*, C(2, 6) (phenyl)), 128.18 (*s*, C(1) (phenyl)), 140.03 (*s*, C(2)), 159.40 (*s*, C(4) (phenyl)), 170.39 (*s*, C(1)); MS (ei, 80 eV, 60 °C): 218(18.7), 159(1.4), 135(13.3), 115(4.8), 92(4.6), 82(73.2), 77(9.9), 54(100.0); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.54; H, 6.47; found: C, 71.38; H, 6.33.

cis-(3 R, 4 S)-4-(4-Methoxyphenyl)-3-methyl-2-methylene-y-butyrolactone (3 R, 4 S)-20b

From 11 (0.30 g, 2.21 mmol) and (+)-30 (0.8 g, 2.21 mmol) [(3 R, 4 S)-20b] (0.39 g, 81%) was obtained; ee 75% (by HPLC: (S, S)-Whelk O1[®], 1 *ml*/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, $t_R(R)$ 21.0 min, $t_R(S)$ 26.2 min).

cis-(3 R, 4 S)-4-(4-Methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone (3 R, 4 S)-20b and cis-(3 S, 4 R)-4-(4-methoxyphenyl)-3-methyl-2-methylene- γ -butyrolactone (3 S, 4 R)-20b

By semipreparative HPLC from the racemate (eluent: hexane/prop-2-OH 95:5) (3 R, 4 S)-20b and (3 S, 4 R)-20b were obtained as colorless crystals.

Data for (**3** *R*, **4** *S*)-**20b**: mp 31–33 °C; $[\alpha]_D^{25}$ =-39.8 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.54; H, 6.47; found: C, 71.42; H, 6.52.

Data for (**3** *S*, **4** *R*)-**20b**: mp 31–33 °C; $[\alpha]_D^{25}$ =+41.1 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₃H₁₄O₃ (218.25): C, 71.46; H, 6.47; found: C, 71.38; H, 6.67.

cis-(±)-3-Methyl-2-methylene-4-naphthalen-1-yl-y-butyrolactone 21

From 12 (0.35 g, 2.21 mmol) and 16 (0.46 g, 2.21 mmol) 21 (0.47 g, 88%) was obtained as a solid; mp 106–107 °C, R_F 0.53 (hexane/ethyl acetate 3:1); IR (KBr): \vee 3093w, 2974w, 2929w, 1753s, 1658w, 1598w, 1510w, 1446w, 1404w, 1329m, 1295w, 1272m, 1251w, 1166m, 1158m, 1100m, 1072w, 1051m, 784m, 733s; ¹H-NMR (300 MHz, CDCl₃): δ 0.64 (d, J=7.2, 3 H, H₃–C(3')), 3.65–3.73 (m, 1 H, H–C(3)), 5.65 (d, J=2.0, 1 H, H_A–C(2')), 6.30 (m, 2 H, H–C(4), H_B–C(2')), 7.45–7.57 (m, 4 H), 7.76–7.91 (m, 3 H), (CH (naphthalene)); ¹³C NMR (62.9 MHz, CDCl₃): d 16.46 (q, C(3')), 38.68 (d, C(3)), 79.09 (d, C(4)), 122.43 (t, C(2')), 122.00, 123.09, 125.34, 125.87, 126.57, 128.53, 129.19 (each d, CH (naphthalene)), 129.95, 131.89, 133.42 (each s, C_q (naphthalene)), 140.80 (s, C(2)), 170.22 (s, C(1)); MS (ei, 80 eV, 88 °C): 238(46.6), 178(3.9), 165(3.1), 155(7.6), 127(18.0), 82(100.0); Anal. calcd. for C₁₆H₁₄O₂ (238.29): C, 80.65; H, 5.92; found: C, 80.69; H, 5.82.

cis-(3 S, 4 R)-3-Methyl-2-methylene-4-naphthalen-1-yl-y-butyrolactone (3 S, 4 R)-21

From 12 (0.35 g, 2.21 mmol) and (-)-30 (0.90 g, 2.39 mmol) (3 S, 4 R)-21 (0.36 g, 81%) was obtained; ee 61% (by HPLC: (S, S)-Whelk O1[®], 1.0 *ml*/min, 33 bar, 20°C, hexane/prop-2-OH 99:1, $t_R(R)$ 52.0 min, $t_R(S)$ 57.7 min).

$cis-(\pm)-3$ -Methyl-2-methylene-4-naphthalen-2-yl- γ -butyrolactone 22

From **13** (0.35 g, 2.21 mmol) and **16** (0.46 g, 2.21 mmol) **22** (0.45 g, 84%) was obtained as a solid; mp 64–65 °C, R_F 0.47 (hexane/ethyl acetate 3:1); IR (KBr): 3058w, 2973w, 2934w, 2885w, 1754s, 1700w, 1696w, 1684w, 1675w, 1653w, 1647w, 1635m, 1617w, 1601w, 1576w, 1570w, 1560w, 1540w, 1521w, 1507w, 1457m, 1424w, 1404w, 1379w, 1345w, 1315w, 1183w, 1108m, 1089w, 991m, 958m, 817m; ¹H-NMR (300 MHz, CDCl₃): δ 0.78 (*d*, *J*=7.1, 3 H, H₃–C(3')), 3.42–3.50 (*m*, 1 H, H–C(3)), 5.57 (*d*, *J*=2.5, 1 H, H_A–C(2')), 5.74 (*d*, *J*=8.1, 1 H, H–C(4)), 6.35 (*d*, *J*=2.8, 1 H, H_B–C(2')), 7.20 (*dd*, *J*=8.6, 1.7, 1 H), 7.45–7.51 (*m*, 2 H), 7.60 (*d*, *J*=0.7, 1 H), 7.79–7.82 (*m*, 3 H), (CH (naphthalene)); ¹³C NMR (75.4 MHz, CDCl₃): d 15.44 (*q*, C(3')), 38.81 (*d*, C(3)), 82.08 (d. C(4)), 121.62 (*t*, C(2')), 123.35, 124.99, 126.18. 126.32. 127.50. 127.82. 128.07 (each *d*, CH (naphthalene)), 132.77, 132.91, 133.90 (each *s*, C_{*q*} (naphthalene)), 139.90 (*s*, C(2)), 170.32 (*s*, C(1)); MS (ei, 80 eV, 88 °C): 238(37.3), 202(4.4), 178(4.5), 155(7.7), 127(14.1), 82(100.0); Anal. calcd. for C₁₆H₁₄O₂ (238.29): C, 80.65; H, 5.92; found: C, 80.35; H, 5.78.

cis-(3 S, 4 R)-3-Methyl-2-methylene-4-naphthalen-2-yl-y-butyrolactone (3 R, 4 S)-22

From 13 (0.35 g, 2.24 mmol) and (-)-30 (0.8 g, 2.21 mmol) (3 R, 4 S)-22 (0.47 g, 89%) was obtained; ee 82% (by HPLC: (S, S)-Whelk $O1^{\textcircled{0}}$; 1.0 *ml*/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, $t_R(R)$ 20.4 min, $t_R(S)$ 28.4 min).

cis-(3 R, 4 S)-3-Methyl-2-methylene-4-naphthalen-2-yl-y-butyrolactone (3 S, 4 R)-22

From 13 (0.35 g, 2.24 mmol) and (+)-30 (0.8 g, 2.21 mmol) (3 S, 4 R)-22 (0.46 g, 88%) was obtained; ee 82% (by HPLC: (R, R)-Whelk O1[®]; 1.0 ml/min, 38 bar, 20°C, hexane/prop-2-OH, 90:10, t_R(S) 19.6 min, t_R(R) 25.8 min).

cis-(3 R, 4 S)-3-Methyl-2-methylene-4-naphthalen-2-yl-y-butyrolactone (3 R, 4 S)-22 and cis-(3 S, 4 R)-3-methyl-2-methylene-4-naphthalen-2-yl-y-butyrolactone (3 S, 4 R)-22

From the racemate by semipreparative HPLC (3 R, 4 S)-22 and (3 S, 4 R)-22 were obtained as colorless crystals.

Data for (**3** *R*, **4** *S*)-**22**: mp 86–88°C, $[\alpha]_D^{25}$ =-52.5 (*c*=1.0, CHCl₃); Anal. calcd. for C₁₆H₁₄O₂ (238.29): C, 80.65; H, 5.92; found: C, 80.46; H, 5.93.

Data for (3 S, 4 R)-22 mp 86–88 °C, $[\alpha]_D^{25}$ =+51.8 (c=1.0, CHCl₃); Anal. calcd. for C₁₆H₁₄O₂ (238.29): C, 80.65; H, 5.92; found: C, 80.39; H, 5.98.

$cis-(\pm)-3$ -Methyl-2-methylene-4-(2-methylpropyl)- γ -butyrolactone 23

From **14** (0.30 g, 3.49 mmol) and **16** (0.72 g, 3.49 mmol) **23** (0.50 g, 86%) was obtained as an oil; $R_F 0.37$ (hexane/ethyl acetate 5:1); IR (film): v 2959m, 2872m, 1762s, 1700w, 1664w, 1637w, 1560w, 1540w, 1507w, 1468m, 1387w, 1351w, 1322w, 1267m, 1248m, 1168m, 1120m, 966m; ¹H NMR (300 MHz, CDCl₃): δ 0.96 (d, J=6.7, 3 H, H₃–C(4^{''}A)), 0.96 (d, J=6.6, 3 H, H₃–C(4^{'''}B)), 1.15 (d, J=7.1, 3 H, H₃–C(3')), 1.26 (ddd, J=14.2, 9.2, 3.4, 1 H, H_A–C(4')), 1.47 (ddd, J=14.2, 10.9, 4.7, 1 H, H_B–C(4')), 1.82–1.92 (m, 1 H, H–C(4'')), 3.17 (m, 1 H, H–C(3)), 4.36 (ddd, J=10.9, 7.5, 3.4, 1 H, H–C(4)), 5.54 (d, J=2.5, 1 H, H_A–C(2')), 6.20 (d, J=2.7, 1 H, H_B–C(2')); ¹³C NMR (75.4 MHz, CDCl₃): δ 13.87 (q, C(3')), 21.42, 23.54, 24.42 (d resp. q, C(4'', 4'''A, 4'''B)), 37.62 (d, C(3)), 39.30 (t, C(5)), 79.16 (d, C(4)), 120.33 (t, C(2')), 140.86 (s, C(2)), 170.18 (s, C(1)); MS (ei, 80 eV, 20 °C): 168(3.7), 153(10.3), 139(0.4), 125(0.8), 111(23.5), 82(100.0), 69(3.1), 54(47.7), 41(12.1); Anal. calcd. for C₁₀H₁₆O₂ (168.24): C, 71.39; H, 9.58; found: C, 71.32; H, 9.32.

cis-(3 R, 4 R)-3-Methyl-2-methylene-4-(2-methylpropyl)-y-butyrolactone (3 S, 4 R)-23

From 14 (0.30 g, 3.49 mmol) and (+)-30 (1.31 g, 3.49 mmol) (3 R, 4 R)-23 (0.51 g, 87%) was obtained; ee 60% (by HPLC: (S, S)-Whelk O1[®], 1.0 *ml*/min, 35 bar, 20°C, hexane/prop-2-OH, 95/5, $t_R(R)$ 12.2 min, $t_R(S)$ 15.3 min).

2-Bromomethyl-1-N-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-prop-2-en-1-one (-)-28, 1-N-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-2-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]-dec-4-yl-methyl)-propen-1-one (-)-29 and 2-chloromethyl-1-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-prop-2-en-1-one (-)-34

A mixture of 2-bromomethyl-acrylic acid (15.0 g, 91.0 mmol) and oxalyl dichloride (8.7 ml, 100 mmol) is stirred at 25°C until the evolution of gases has ceased (ca 100 h). Distillation of the reaction mixture (1 mbar, 29-32°C) afforded an inseparable mixture (by ¹H NMR and MS) consisting of 25 (60%) and 26 (40%). Sodium hydride (0.52 g, 17.4 mmol, as 80% dispersion in mineral oil) is suspended in dry toluene (30 ml) and (-)-27 (Oxford Asymmetry, 2.50 g, 11.61 mmol, ee 99%, used as received) is slowly added at 25 °C. Stirring is continued for 1 h and a toluene solution of the mixture of the propenoyl chlorides (4.3 g) is slowly added. After warming to 25 °C stirring is continued for another 2 h and then the excess of the hydride is destroyed at 0 °C by the careful addition of ice water (20 ml). The aqueous layer is extraced twice with toluene (30 ml each) and the combined organic phases are washed with brine (2×20 ml), dried (MgSO₄), the solvent is removed under reduced pressure and the residue subjected to chromatography (hexane/ethyl acetate $5:1 \rightarrow 3:1$) to afford (-)-28 [1.2 g, 39%, containing 40% of (-)-34] and 29 (0.75 g, 36%).

Data for (-)-28: R_F 0.56 (hexane/ethyl acetate); IR (KBr): v 2971m, 1684s, 1653w, 1627w, 1457w, 1437w, 1410w, 1392w, 1368w, 1324s, 1262w, 1233w, 1220w, 1198m, 1164m, 1136m, 1111m, 1062m,

1033w, 973m, 917w, 764m; ¹H NMR (300 MHz, d₆-acetone): δ 1.04, 1.23 (each s, 3 H, H₃–C(10c'A, 10c'B), 1.36–1.43 (m, 1 H), 1.54–1.62 (m, 1 H), 1.87–2.00 (m, 5 H), (H–C(7c), H₂–C(6c, 8c, 9c)), 3.58 (d, J=13.9, 1 H, H_A–C(2c)), 3.72 (d, J=13.9, 1 H, H_B–C(2c)), 4.07 (dd (virt t), J=6.2, H–C(5c)), 4.18 (d, J=11.1, 0.6 H, H_A–C(2'), A), 4.30 (d, J=12.8, 0.4 H, H_A–C(2'), B), 4.44 (d, J=11.1, 0.6 H, H_B–C(2'), A), 4.48 (d, J=12.8, 0.4 H, H_B–C(2'), B), 5.99 (m, 1 H, H_A–C(3)), 6.05 (m, 1 H, H_B–C(3)); ¹³C NMR (75.4 MHz, d₆–acetone): δ 20.04, 20.06, 21.45, 21.49 (each q, C(10c'A, 10c'B)), 30.94 (t, C(2'), A), 26.97, 33.34, 38.98 (each t, C(6c, 8c, 9c)), 43.86 (t, C(2'), B), 45.85, 45.91 (d, C(7c)), 48.27, 48.30, 48.91, 48.92 (each s, C(1c, 10c)), 53.65 (t, C(2c)), 65.96 (d, C(5c), B), 66.01 (d, C(5c), A), 126.83 (t, C(3), B), 127.76 (t, C(3), A), 140.37 (s, C(2), B), 140.63 (s, C(2), A), 168.05 (s, C(1), A), 168.07 (s, C(1), B); MS (ei, 80 eV, 105 °C): 363(0.1), 361(0.1), 348(0.2), 346(0.1), 319(0.9), 317(2.3), 282(100.0), 256(1.5), 254(2.7), 218(68.6), 190(5.5), 162(2.5), 149(46.5), 147(46.8), 135(50.8), 134(41.7), 121(17.6), 119(19.9), 108(36.3), 103(69.5), 93(28.3), 75(25.2), 68(23.5), 55(18.6), 43(23.6), 41(45.7); Anal. calcd. for C1₄H₂₀Cl_{0.4}Br_{0.6}NO₃S (344.51): C, 48.91; H, 5.85; N, 4.07; S, 9.31; found: C, 48.93; H, 5.99; N, 3.97; S, 9.56.

Data for (-)-29: colorless crystals; mp 187-188 °C, $[\alpha]_D^{25}$ =-90.9 (c=1.3, CHCl₃), R_F 0.19 (hexane/ethyl acetate 3:1); IR (KBr): v 3108w, 3008w, 2987w, 2955m, 2876m, 1695s, 1682s, 1653w, 1647w, 1624w, 1576w, 1559w, 1539w, 1521w, 1472w, 1457m, 1436w, 1407w, 1390w, 1374w, 1340s, 1324s, 1310w, 1285s, 1258m, 1244w, 1227w, 1196w, 1174w, 1156m, 1131s, 1103m, 1079w, 1058w, 1002w; ¹H NMR (300 MHz, CDCl₃): δ 0.92, 0.99, 1.15, 1.22 (each s, 3 H, H₃–C(10_{C1}'A, 10_{C2}'A, 10_{C1}'B, 10_{C2}'B)), 1.35–1.47 (*m*, 5 H), 1.60–1.67 (*m*, 1 H), 1.84–2.12 (*m*, 8 H) (H–C(7_{C1}', 7_{C2}'), $H_2-C(6_{C1}, 6_{C2}, 8_{C1}, 8_{C2}, 9_{C1}, 9_{C2})), 3.17 (s, 2 H, H_2-C(10_{C1/2})), 3.22 (dd, J=8.1, 4.6, 1 H, 1.6)$ H-C(5_{C1/2})), 3.41 (d, J=13.7, H_A-C(2_{C2/1})), 3.52 (d, J=13.7, 1 H, H_B-C(2_{C2/1})), 3.69 (d, J=16.6, 1 H, $H_A-C(2')$, 4.03 (dd, J=6.2, 5.9, 1 H, $H-C(5_{C2/1})$), 4.05 (d, J=16.6, 1 H, $H_B-C(2')$), 6.01 (s, 1 H, H_A-C(3)), 6.05 (s, 1 H, H_B-C(3)); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.84, 20.02, 20.47, 21.13 (each q, C(10C1'A, 10C2'A, 10C1'B, 10C2'B)), 26.42, 26.86, 32.10, 33.04, 34.87, 38.16 (each $t, C(6_{C1}, 6_{C2}, 8_{C1}, 8_{C2}, 9_{C1}, 9_{C2})), 43.38 (t, C(2')), 44.52, 45.05 (each d, C(4_{C1}, 4_{C2})), 47.55, 47.67, 47.67)$ 48.04, 49.75 (each s, $C(1_{C1}, 1_{C2}, 7_{C1}, 7_{C2})$), 49.45, 53.39 (each t, $C(2_{C1}, 2_{C2})$), 65.43, 67.55 (each d, C(5_{C1}, 5_{C2})), 127.72 (d, C(3)), 138.03 (s, C(2)), 168.90 (s, C(1)); MS (ei, 80 eV, 193 °C): 496(0.1), 480(0.3), 432(31.0), 368(14.4), 282(17.3), 219(61.3), 190(36.7), 159(42.1), 135(100.0); Anal. calcd. for C24H36N2O5S2 (496.68): C, 58.04; H, 7.31; N, 5.64; S, 12.91; found: C, 57.76; H, 7.08; N, 5.48; S, 12.59.

Data for (-)-34: colorless crystals; mp 157–159 °C, $[\alpha]_D^{25}=-109.1$ (*c*=1.3 CHCl₃), R_F 0.56 (hexane/ethyl acetate); IR (KBr): \vee 2977*m*, 2908*w*, 2892*w*, 1687*s*, 1631*w*, 1458*w*, 1437*w*, 1409*w*, 1392*w*, 1376*w*, 1368*w*, 1324*s*, 1267*m*, 1233*w*, 1199*s*, 1165*m*, 1134*s*, 1113*m*, 1063*m*, 1033*w*, 974*m*, 950*w*, 917*w*, 798*w*, 766*m*; ¹H NMR (250 MHz, d₆-acetone): δ 1.05, 1.23 (each *s*, 3 H, H₃–C(10_C'A, 10_C'B), 1.35–1.43 (*m*, 1 H), 1.54–1.63 (*m*, 1 H), 1.88–2.01 (*m*, 5 H), (H–C(7_C), H₂–C(6_C, 8_C, 9_C)), 3.57 (*d*, *J*=13.9, 1 H, H_A–C(2_C)), 3.73 (*d*, *J*=13.9, 1 H, H_B–C(2_C)), 4.06 (*dd* (virt *t*), *J*=6.2, H–C(5_C)), 4.30 (*ddd*, *J*=12.8, 1.1, 0.4, 1 H, H_A–C(2')), 4.48 (*ddd*, *J*=12.8, 1.5, 0.8, 1 H, H_B–C(2')), 5.99 (*ddd*, *J*=13.6, 0.8, 0.4, 1 H, H_A–C(3)), 6.04 (*ddd*, *J*=13.6, 1.5, 1.1, 1 H, H_B–C(3)); ¹³C NMR (62.9 MHz, d₆-acetone): δ 20.07, 21.53 (each *q*, C(10_C'A, 10_C'B)), 26.97, 33.34, 38.98 (each *t*, (6_C, 8_C, 9_C)), 43.94 (*t*, C(2')), 46.00 (*d*, C(7_C)), 48.37, 49.01 (each *s*, C(1_C, 10_C)), 53.78 (*t*, C(2_C)), 66.10 (*d*, C(5_C)), 127.06 (*t*, C(3)), 140.65 (*s*, C(2)), 168.57 (*s*, C(1)); MS (ei, 80 eV, 92 °C): 319(1.5), 317(3.9), 282(9.9), 219(10.5), 218(62.4), 210(4.9), 190(3.8), 135(36.6), 134(33.6), 119(10.3), 108(30.7), 105(41.2), 103(100.0), 93(18.5), 79(11.6), 77(17.0), 75(38.5), 67(11.9), 55(10.4), 43(10.4), 41(22.0); Anal. calcd. for C1₄H₂₀ClNO₃S (317.92): C, 59.42; H, 6.34; N, 4.41; S, 10.09; found: C, 59.28; H, 6.30; N, 4.58; S, 10.28.

2-Bromomethyl-1-N-((5 S)-10, 10-dimethyl-3, 3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-prop-2-en-1-one (+)-28, 1-N-((5 S)-10, 10-dimethyl-3, 3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-2-((5 S)-10, 10-dimethyl-3, 3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl-methyl)-propen-1-one (+)-29 and 2-chloromethyl-1-((5 S) 10, 10-dimethyl-3, 3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]dec-4-yl)-prop-2-en-1-one (+)-34

Obtained as above starting from 2-bromo-methyl-acrylic acid (15.0 g, 91.0 mmol), oxalyl dichloride (8.7 ml, 100 mmol) and (+)-27 (Oxford Asymmetry, 2.50 g, 11.61 mmol, ee 99%, used as received).

Data for (+)-(29): mp 187–188 °C, $[\alpha]_D^{25}$ =+89.5 (*c*=1.1, CHCl₃); Anal. calcd. for C₂₄H₃₆N₂O₅S₂ (496.68): C, 58.04; H, 7.31; N, 5.64; S, 12.91; found: C, 57.84; H, 7.11; N, 5.63; S, 12.71.

Data for (+)-**34**: colorless crystals; mp 156–158 °C, $[\alpha]_D^{25}$ =+108.3 (*c*=1.2, CHCl₃); Anal. calcd. for C₁₄H₂₀ClNO₃S (317.92): C, 59.42; H, 6.34; N, 4.41; S, 10.09; found: C, 59.39; H, 6.44; N, 4.63; S, 10.17.

(Z) 2-Bromomethyl-1-N-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]-dec-4-yl)-but-2-en-1-one (-)-30

A mixture of 2-bromomethyl-3-methyl-acrylic acid (20.0 g, 110.0 mmol) and oxalyl dichloride (10.7 ml, 120.0 mmol) is stirred at 25 °C for 100 h. Distillation of the reaction mixture (1 mbar, 32-35 °C) affords 2-bromomethyl-3-methyl-2-propenoyl chloride (19.1 g, 87%). To a suspension of sodium hydride (1.4 g, 46.5 mmol) in dry toluene (100 ml) (-)-(R)-27 (5.0 g, 23.3 mmol) is slowly added. Stirring is continued for 1 h, the reaction mixture is cooled to 0 °C and a toluene solution (30 ml) of the 2-bromomethyl-3-methyl-2-propenoyl chloride (9.2 g, 46.5 mmol) is slowly added. After warming to 25 °C stirring is continued for an additional 3 h and then the excess of the hydride is destroyed by the careful addition of ice water (20 ml). The aqueous layer is extracted twice with toluene (30 ml) and the combined organic layers are washed with brine $(2 \times 20 \text{ ml})$, dried (MgSO₄), the solvent is removed under reduced pressure; the residue is subjected to chromatography (hexane/ethyl acetate 5:1 \rightarrow 3:1) to afford (-)-30 (6.5 g, 74.3%); mp 135-137 °C, $[\alpha]_{D}^{25} = -99.0$ (c=1.3 CHCl₃), R_F 0.55 (hexane/ethyl acetate); IR (KBr): v 2958s, 2876m, 1784w, 1666s, 1639m, 1559w, 1540w, 1507w, 1486w, 1469w, 1458m, 1402m, 1377m, 1352w, 1329s, 1299s, 1258w, 1220m, 1189s, 1135s, 1051m, 853m, 755s; ¹H-NMR (300 MHz, CDCl₃): δ 0.99, 1.22 (each s, 3 H, H₃-C(10_C'A, 10_C'B), $1.33-1.49 (m, 2 H), 1.86-2.09 (m, 5 H), (H-C(7_C), H_2-C(6_C, 8_C, 9_C)), 1.96 (d, J=7.1, 3 H, H_3-C(4)),$ $3.42 (d, J=13.7, 1 H, H_A-C(2_C)), 3.51 (d, J=13.7, 1 H, H_B-C(2_C)), 4.09 (dd, J=7.8, 4.5, H-C(5_C)),$ 4.10 (d, J=10.5, 1 H, $H_A-C(2')$), 4.30 (d, J=10.5, 1 H, $H_B-C(2')$), 6.75 (q, J=7.1, 1 H, H-C(3)); ¹³C-NMR (75.4 MHz, CDCl₃): δ 14.59 (q, C(4)), 19.84, 21.07 (each q, C(10_C'A, 10_C'B)), 24.28 (t, C(2')), 26.48, 32.95, 38.06 (each t, $(6_{C}, 8_{C}, 9_{C})), 44.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 44.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 44.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 44.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 44.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 48.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 48.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 48.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 48.92$ (d, $C(7_{C})), 47.66, 47.84$ (each s, $C(1_{C}, 8_{C}, 9_{C})), 48.92$ (d, $C(7_{C})), 48.92$ (d, $C(7_{C$ 10_C)), 53.42 (*t*, C(2_C)), 65.39 (*d*, C(5_C)), 132.43 (*s*, C(2)), 143.89 (*t*, C(3)), 169.05 (*s*, C(1)); MS (ei, 80 eV, 100 °C): 377(0.2), 375(0.2), 333(0.6), 331(1.7), 296(100.0), 232(26.5), 163(86.2), 161(90.3), 135(40.0), 117(31.9), 107(16.8), 93(23.1), 82(31.6), 81(28.4), 54(69.3)), 53(96.8), 41(27.2); Anal. calcd. for C14H20BrNO3S (376.31): C, 47.88; H, 5.89; N, 3.72; found: C, 48.10; H, 5.83; N, 3.42.

(Z) 2-Bromomethyl-1-N-((5 R)-10,10-dimethyl-3,3-dioxo- $3^{\lambda 6}$ -thia-4-aza-tricyclo[5.2.1.0^{1.5}]-dec-4-yl)-but-2-en-1-one (+)-30

Following the procedure given for the preparation of (-)-30 from (Z)-2-bromomethyl-but-2-enoic acid (20.0 g, 110.0 mmol) and (+)-(S)-27 (+)-30 (6.6 g, 75%) was obtained; mp 135–137 °C, $[\alpha]_D^{25}$ =+99.3 (*c*=1.1, CHCl₃); Anal. calcd. for C₁₄H₂₀BrNO₃S (376.31): C, 47.88; H, 5.89; N, 3.72; found: C, 48.08; H, 5.92; N, 3.56

(\pm) -3,3-Dimethyl-2-methylene-5-phenyl- γ -butyrolactone 31

Methyl 3-hydroxy-3-methyl-2-methylene-but-2-enoate (prepared according to refs^{24,25}) (0.5 g, 5.9 mmol) was brominated with PBr₃ (0.86 g, 3.2 mmol) for 15 min at 25 °C to afford methyl 2-(bromomethyl)-3-methyl-but-2-enoate [(0.98 g, 80%); R_F 0.53 (hexane/ethyl acetate 5:1); IR (film): ν

2996m, 2951m, 1719s, 1627m, 1435s, 1372m, 1318s, 1292s, 1232s, 1159s, 1135s, 1067s, 988m, 846m, 791m; ¹H NMR (300 MHz, CDCl₃); δ 1.99, 2.17 (each s, 3 H, H₃-C(3', 4)), 3.79 (s, 3 H, OCH₃), 4.31 (s, 2 H, H₂-C(2')); ¹³C NMR (75.4 MHz, CDCl₃): d 22.95, 23.86 (each q, C(3', 4)), 29.32 (t, C(2')), 51.61 (q, OCH₃), 124.47 (s, C(3')), 153.66 (s, C(2)), 166.77 (s, C(1)); MS (ei, 80 eV, 30 °C): 208(0.1), 206(0.1), 177(3.3), 175(3.5), 149(0.4), 147(0.4), 127(65.1), 95(43.9), 73(31.6), 67(100.0), 53(21.8), 41(49.3); Anal. calcd. for C₇H₁₁BrO₂ (207.07): C, 40.60; H, 5.35; found: C, 40.37; H, 5.40]. From 8 (0.30 g, 2.83 mmol) and methyl 2-(bromomethyl)-3-methyl-but-2-enoate (0.55 g, 2.66 mmol) 31 (0.36 g, 63%) was obtained as a solid; mp 39 °C, RF 0.38 (hexane/ethyl acetate 3:1); IR (KBr): v 1770s, 1662s, 1605m, 1499m, 1463m, 1407m, 1368m, 1313s, 1296s, 1243m, 1194s, 1120s, 1080s, 1019s, 1001s; ¹H-NMR (300 MHz, CDCl₃): d 0.73, 1.38 (each s, 3 H, H₃-C(3'A, 3'B)), 5.14 $(s, 1 \text{ H}, \text{H-C}(4)), 5.54 (s, 1 \text{ H}, \text{H}_{A}-\text{C}(2')), 6.26 (s, 1 \text{ H}, \text{H}_{B}-\text{C}(2')), 7.23-7.41 (m, 5\text{H}, \text{CH (phenyl)});$ ¹³C NMR (75.4 MHz, CDCl₃): d 24.30, 25.87 (each q, C(4'A, 4'B)), 43.57 (s, C(4)), 87.91 (d, C(5)), 119.96 (t, C(3')), 125.66, 128.15, 128.20 (each d, CH (phenyl)), 135.49 (s, C_a (phenyl)), 145.28 (s, C(3)), 170.06 (s, C(2)); MS (ei, 80 eV, 49 °C): 202(18.6), 165(2.0), 141(1.2), 128(2.3), 115(3.0), 105(7.0), 96(97.6), 77(11.7), 68(100.0); Anal. calcd. for C₁₃H₁₄O₂ (202.26): C, 77.20; H, 6.98; C, 77.20; H. 7.00.

Acknowledgements

Financial support by the European Communities (SC1*-CT92-0780) and the Fonds der Chemischen Industrie is gratefully acknowledged; we are indebted to *Prof. Dr. R. Neidlein*, Pharmazeutisch-Chemisches Institut, Universität Heidelberg, for his encouragement, to *Dr. P. Rosyk*, Weinheim, for his help with the manuscript and to *Perkin-Elmer Ltd.* for support.

References

- Hoffmann, H. M. R.; Rabe, J., Angew. Chem., Int. Ed. Engl. 1985, 24, 94-116; Hausen, B. M., Deutsch. Apoth. Ztg. 1991, 131, 987-995.
- 2. Kupchan, S. M.; Eakin, M. A.; Thomas, A. M., J. Med. Chem. 1971, 14, 1147-1152.
- 3. Hutchinson, C. R., J. Org. Chem. 1974, 39, 1854-1858.
- 4. Iino, Y.; Tanako, A.; Yamashita, K., Agric. Biol. Chem. 1972, 36, 2505-2509.
- 5. Petragnani, N.; Ferraz, M. C.; Silva, G. V. J., Synthesis 1986, 157-183.
- 6. Grieco, P. A., Synthesis 1975, 67-82.
- 7. For an excellent review: Petragnani, N.; Ferraz, H. M.-C.; Silva, G. V. J., Synthesis 1986, 157-183.
- 8. Enantioselectivity by intermediary diastereoselection using optical pure sulfoxides has been reported to furnish α -methylene- γ -butyrolactones with high ee's, *cf* Bravo, P.; Resnati, G.; Viani, F., *Tetrahedron Lett.* 1985, 26, 2913–2916.
- However, inductions have been observed upon using chiral carbonyl compounds, cf. Csuk, R.; Hugener, M.; Vasella, A., Helv. Chim. Acta 1988, 71, 609-618; Csuk, R.; Glänzer, B. I.; Hu, Z.; Boese, R., Tetrahedron 1994, 50, 1111-1124; Csuk, R.; Fürstner A.; Weidmann, H., J. Carbohydr. Chem. 1987, 6, 459-467.
- Reaction of N-mono substituted 2-[(tributylstannyl)methyl]-propenamides with aldehydes in the presence of 4 equiv. of TiCl₄ gave, after hydrolysis, α-methylene-γ-butyrolactones with ee's between 3.3-79%, cf. Tanaka, K.; Yoda, H.; Isobe, Y.; Kaji, A., J. Org. Chem. 1986, 51, 1856-1866.
- Similary to the Gilman-Speeter reaction (Gilman, H.; Speeter, M., J. Am. Chem. Soc. 1943, 65, 2255-2256) enantioselectivities between 95-100% have been obtained for the reaction of amino acid derived imines with organozinc reagents, cf. Dembele, Y. A.; Belaud, C.; Hitchock, P.; Villieras, J., Tetrahedron: Asymmetry 1992, 3, 351-354.
- For Dreiding-Schmidt reactions: Öhler, E.; Reininger, K.; Schmidt, U., Angew. Chem., Int. Ed. Engl. 1970, 9, 457–458; Löffler, A.; Pratt, R. J.; Rüesch, H. P.; Dreiding, A. S., Helv. Chim. Acta 1970, 53, 383–403.

- For a samarium iodide based approach: Csuk, R.; Höring, U.; Schaade, M., Tetrahedron 1996, 52, 9759–9776.
- 14. Ameer, F.; Drewes, S. E.; Emslie, N. D.; Kaye, P. T.; Mann, R. L., J. Chem. Soc., Perkin Trans 1 1983, 2293-2295.
- 15. For the previous use of acrylic amides: Fitt, J. F.; Gschwend, H. W., J. Org. Chem. 1980, 45, 4259-4260.
- 16. MS spectra and elemental analysis revealed 25 to consist as a 60:40 mixture of 25 and 26 that could not be separated either by distillation or chromatography. The formation of 26 results from a bromine \rightarrow chlorine substitution during the formation of the acid chloride. To avoid this side reaction attempts were undertaken to synthesize the correponding 2-bromometacrylic bromide by the reaction of 24 with oxalyl dibromide. These reactions, however, did not result in the formation of significant amounts of the desired product but huge deterioration took place.
- 17. Under these conditions the product contains approx. 40% of 34 (cf. 16). In the following reactions only 28 gave the desired reactions very quickly but 34 was partially recovered.
- 18. Interestingly enough, neither a halogen exchange reaction occurs nor products resulting from a double addition reaction have been observed.
- 19. Reiser, O., Nachr. Chem. Tech. Lab. 1996, 44, 612-618 and refs. cited therein.
- This seems to be due to a minimization of the dipole moments, cf. Oppolzer, W.; Chapuis, C.; Bernadinelli, G., Helv. Chim. Acta 1984, 67, 1397–1401 and Oppolzer, W.; Poli, G.; Kingma, A. J.; Starkemann, C.; Bernardinelli, G., Helv. Chim. Acta 1987, 70, 2201–2214.
- 21. Oppolzer, W.; Rodriguez, I.; Blagg, J.; Bernardinelli, G., Helv. Chim. Acta 1989, 72, 123-130.
- 22. In comparison to the crystal structure of N-[(E)-but-2-enoyl)sultamamide]titanium tetrachloride in the presence of TiCl₄ an additional unfavorable interaction between the CH₂ZnBr and the H₂C-C(3)sultam is observed in the zincorganic species but analogous to the results from Grignard reagents these interactions seem to be neglectable, *cf.* Oppolzer, W.; Kingma, A.; Poli, G., *Tetrahedron* **1989**, 45, 479-488 and ref. ²⁰.
- 23. Löffler, A.; Pratt, R. D.; Pucknat, J.; Gelbart, G.; Dreiding, A. S., Chimia 1969, 23, 413-416.
- 24. Xu, L.-H.; Kündig, E. P., Helv. Chim. Acta 1994, 77, 1480-1484.
- 25. Villieras, J.; Rambaud, U., Synthesis 1982, 924-926.

(Received in UK 29 January 1997; accepted 10 April 1997)