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Abstract: Manzamine C congeners with modified azacyclic rings were synthesized using a 
DPPA-promoted conjunction of the 13-carboline-l-acetate salt with various amines as a key 
reaction. A preliminaly biological evaluation revealed that these analogues retained similar 
activities as Manzamine C. Copyright © 1996 Elsevier Science Ltd 

Manzamines are a unique family of novel oncolytic marine alkaloids that were first isolated from several 

Okinawan marine sponges in 1986.1 Due to their intriguing structural features and their significant biological 

activities, these alkaloids have attracted considerable interest from both synthetic 2a and biosynthetic 

perspectives.2b, c The simplest congener, manzamine C (1), is a novel ]]---carboline alkaloid which bears an 

unprecedented azacycloundecene ring. lb This simplest manzamine has an antitumor activity equal to that of the 

more complex congener manzamine B (2). lb The most complex congener, manzamine A (3), has been shown to 

have the highest biological activity, la 
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We have successfully developed an efficient synthetic route to 1. 3 We also prepared its geometrical isomer (4) 

and the saturated congener (5) to determine the structure-activity relationship. 

In this report, we describe the preparation and biological evaluation of other congeners with modified azacycles. 

Our intention is to reveal the role of the azacycloundecene ring in I in the observed cytotoxic activity. 

2565 



2566 Y. TORISAWA et al. 

Synthesis of the Manzamine C Congeners 

The synthesis and biological evaluation of two closely related analogues, i.e. the trans geometrical isomer (4) 3 

and the dihydro (saturated) analog (5) 3, could help us to understand the role of the cis double-bond in 1. As 

novel isomers, we prepared saturated ring analogs with 5-, 6-, 7- and 8-membered rings to clarify the relationship 

between ring size and activity. 

Following the general synthetic scheme shown below (Scheme 1), four congeners with a smaller azacyclic 

ring were successfully synthesized. A key step was the diphenyl phosphoroazidate (DPPA)-promoted coupling 

of the potassium salt of the fl--carboline acetate (6) with the corresponding cyclic amines (7). 3-5 Since the free 

acid (fl--carboline- 1-acetic acid) was easily decarboxylated to harman, the potassium salt had to be treated directly 

with amines. Thus, the 5-membered amide (9) was obtained in 81% yield from 6, while the 6-membered amide 

(10) was obtained in 78% yield. The same reaction sequence gave the 7-membered ring amide (11) in 

quantitative yield and the 8-membered ring amide (12) in 89% yield. Reduction of these amides with LiAIH4 in 

THF gave four novel manzamine C congeners (14-17) 5 with smaller saturated azacycles in moderate yields 

(39-84%). 6 

Scheme 1 
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Biological Evaluation 

Cytotoxic activity assay 

Cells were incubated with each sample for 72 h in RPMI-1640 medium supplemented wi th  10% fetal calf 

serum at 37°C under 5% CO2 in air. The viable cell fraction was measured by a modified MTT assay7, 8 and the 

50% inhibitory concentration (IC50) value was caluculated by Probit's method. 

Cell lines: P388 (mouse leukemia), P388/ADR (multidrug-resistant P388), MKN28, MKN1 (human stomach 

carcinoma), PC10, PC14 (human lung carcinoma) 

Effect of the cis double-bond in the azacycles. 

The results of the in vitro cytotoxic assay are summarized in Figure 1. The most interesting result involved 

two closely related analogs (4, 5), which were equally or slightly more potent than the natural manzamine C, 

indicating that the cis double-bond in 1 plays no particular role in its cytotoxic activity. We are now performing a 

conformationai analysis of 1 based on MM2 as well as an NOE study to obtain a more clear view of this 

conformationally unrestricted 1 l-membered ring system. 9 
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Figure 1 Comparison of E and Z-Azacycloundecenes and Azacycloundecane Against Various Tumor Cell Lines 

Effect of the ring size of the azacycles. 

We next focused our attention on the effect of ring size against various tumor cell lines. While the analogs 

described above (14-17) were equally potent towards both P338 and P338/ADR, a slight decline in activity was 

observed with different cell types. Thus, the 11-membered azacyclic ring is essential for a broad and effective 

activity against various kinds of tumor cells. (Figure 2) 
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Figure 2 Effect of Ring Size of Azacycles Against Various Tumor Cell Lines 

Conclusion 

The efficient synthesis and precise biological evaluation of six manzamine C congeners revealed useful 

information about the structure-activity relationships of the marine alkaloid manzamine C. The results obtained 

here clearly indicated that the fl-carboline moiety plays a primary role in the cytotoxic activity of this alkaloid and 

the attached azacyclic moiety may facilitate these primary interactions to some extent. As has been reported 

previously, fl-carboline can interact with DNA through GC-selective intercalation. 10 Manzamine C (1) may act 

through intercalation by thefl--carboline ring, assisted by the attached azacyclic ring system. To clarify these 

speculations and to identifiy a more potent and easily accessible analog, we are now focusing on the 

conformational analysis of this system, especially in comparison with the more complex congeners manzamine A 

and B. Efforts to synthesize a more water-soluble derivative are now in progress in our laboratory. 
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