ARTICLE IN PRESS

Chinese Chemical Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

38

39

journal homepage: www.elsevier.com/locate/cclet

Original article

2

3

4

5

6 7

8

9

10

Heterocyclization of thiocarbonohydrazides: Facile synthesis of 5-unsubstituted-1,3,4-thiadiazoles

QI Alaa A. Hassan^{a,*}, Fathy F. Abdel-Latif^a, Mohamed Abdel Aziz^b, Sara M. Mostafa^a, Stefan Bräse^c, Martin Nieger^d

^a Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt

^b Department of Medicinal Chemistry, Faculty of Pharmacy, El-Minia University, 61519 El-Minia, Egypt

^c Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany

^d Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland

ARTICLE INFO

Article history: Received 4 February 2015 Received in revised form 13 April 2015 Accepted 22 April 2015 Available online xxx

Keywords:

Thiocarbonohydrazides 5-Unsubstituted 1,3,4-thiadiazol-2-amines Tetrachloro-1,4-benzoquinone X-ray crystallography

ABSTRACT

2-(Hydrazinecarbothioyl)-*N*-substituted hydrazinecarbothioamides react with 2,3,5,6-tetra-chloro-1,4benzoquinone in high yields in a novel fast and facile method to give 5-unsubstituted-1,3,4-thiadiazole-2-amine derivatives. The synthesized compounds were characterized by spectroscopic methods and confirmed by using X-ray crystallography. A rationale for the formation of the products is presented. © 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Thiadiazole is a prevalent and important five-membered heterocyclic system. There are several isomers of thiadiazole. A glance at standard reference works shows that 1,3,4-thiadiazole has been investigated more than other isomers [1].

The most familiar thiadiazole containing compound could be acetazolamide, the famous carbonic anhydrase inhibitor currently used in treatment of glaucoma [2], high-altitude illness [3], cancer [4,5], HIV [4], seizures [6], diabetes [7], and hypertension [8]. Synthesis of 1,3,4-thiadiazoles usually involves multi-step procedures such as cyclization of thiosemicarbazide with di-(2pyridyl)thionocarbonate (DPT), dicyclohexylcarbodimide (DCC) [9]. Oxidative cyclization of thiosemicarbazides with FeCl₃ [10] or reaction of thiosemicarbazides and CS₂ under reflux [11] have been reported. Treatment of isothiocyanates with pure lithiated (trimethylsilyl)diazomethane (Me₃SiCN₂Li) in Et₂O afforded 2-amino substituted-1,3,4-thiadiazoles [12,13].

Although, there are many reports for the synthesis of 1,3,4-thiadiazoles [14,15], few reports are available for the synthesis of 5-unsubstituted 1,3,4-thiadiazoles. Diethyl chlorophosphate in

DMF was proposed as a cyclizing agent for the synthesis of 5-
unsubstituted 1,3,4-thiadiazoles [16]. The latter were formed in
moderate yields by cyclization of thiohydrazides. 5-Unsubstituted
1,3,4-thiadiazoles are of interest as biologically active compounds
[17,18]. Further, they are used in the synthesis of various
heterocyclic compounds [19,20].32

2. Experimental

2.1. General experimental procedure

Melting points were determined using open glass capillaries on 40 a Gallenkamp melting point apparatus and are uncorrected. The IR 41 spectra (KBr discs) were recorded on a Bruker FT-IR and Shimadzu 42 408 instruments. ¹H NMR and ¹³C NMR spectra were obtained 43 using a Bruker AM 400 spectrometer (400 MHz for ¹H NMR and 44 100 MHz for ¹³C NMR) with tetramethylsilane as the internal 45 standard; the chemical shifts are expressed in δ and coupling 46 constants in Hz. The ¹³C NMR assignments (q = quaternary carbon 47 atoms) were made with the aid of DEPT 135/90 spectra. Mass 48 spectra (70 eV, electron impact mode) were recorded on a Finnigan 49 MAT 312 instrument. Elemental analyses were carried out at the 50 Microanalytical Center, Cairo University, Egypt. Preparative layer 51 chromatography (plc) used air-dried 1.0 mm thick layer of slurry 52

http://dx.doi.org/10.1016/j.cclet.2015.05.034

1001-8417/© 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: A.A. Hassan, et al., Heterocyclization of thiocarbonohydrazides: Facile synthesis of 5-unsubstituted-1,3,4-thiadiazoles, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.05.034

26

27

28

29

30

31

11 12

Corresponding author.. E-mail address: alaahassan2001@yahoo.com (A.A. Hassan).

A.A. Hassan et al. / Chinese Chemical Letters xxx (2015) xxx-xxx

applied silica gel (Merck Pf₂₅₄) on 48 cm wide and 20 cm high glass 53 plates using the solvent listed. 54

2.2. Starting materials 55

56 2,3,5,6-Tetrachloro-1,4-benzoquinone (CHL-p, 2) was purchased from Fluka. 2-(Hydrazinecarbonothioyl)-N-aryl/alkyl 57 58 hydrazinecarbo-thioamides **1a-d** were prepared according to 59 published procedures for preparation compounds 1a [21] and 60 1b-d [22].

61 2.3. Reaction of **1a-d** with 2,3,5,6-tetrachloro-1,4-benzoquinone (**2**)

62 2-(Hydrazinecarbonothioyl)-N-substituted hydrazinecar-63 bothioamides **1a-d** (1 mmol) in 20 mL dry ethyl acetate was 64 added to 246 mg (1 mmol) (CHL-p, 2) in 20 mL dry ethyl acetate at 65 room temperature. The reaction mixture was stirred for 3 h. After 66 standing for 24 h, the precipitate was filtered, washed with cold 67 ethyl acetate and identified as 2,3,5,6-tetrachloro-p-benzohydro-68 quinone **4** [23]. The filtrate was pre-concentrated, then applied to 69 3 plc plates and developed using toluene/ethyl acetate ($\phi r = 10:2$ 70 for **1a**, **1b**, and $\phi r = 10:4$ for **1c**, **1d**) to give *N*-substituted-1,3,4-71 thiadiazol-2-amines **3a-d**, extracted by acetone and recrystallized 72 from listed solvents.

73 N-Phenyl-1,3,4-thiadiazol-2-amine (3a): red crystals (acetoni-74 trile), yield 87% (0.154 g), mp: 173 °C (Iit. 171–172 °C) [16,20].

75 N-Benzyl-1,3,4-thiazol-2-amine (3b): red crystals (acetoni-76 trile), yield 89% (0.170 g), mp: 109-110 °C (lit. 108 °C) [19]. IR 77 (KBr, cm⁻¹): υ 3421-3380 (NH str.), 1611 (C=N str.). ¹H NMR 78 (400 MHz, DMSO- d_6): δ 8.35 (br, 1H, NH–CH₂Ph), 8.20 (s, 1H, 79 CH=N), 7.36-7.31 (m, 3H, Ar-H), 7.29-7.28 (m, 2H, Ar-H), 4.51 80 (s, 2H, CH₂). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.5 (C=N), 142.3 81 (CH=N), 138.7 (Ar-C), 128.3, 127.5, 127.0 (Ar-CH), 48.3 (CH₂-Ph). 82 MS m/z (%) 191 (M⁺, 70), 163 (11), 86 (100), 91 (13), 76 (10).

83 N-Allyl-1,3,4-thiazol-2-amine (3c): red crystals (acetonitrile), 84 yield 85% (0.112 g), mp: 74–75 °C (lit. 73 °C) [19]. IR (KBr, cm⁻¹): 85 υ 3426-3384 (NH str.), 1600 (C=N str.). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.10 (br, 1H, NH-allyl), 7.90 (s, 1H, CH=N), 5.90–5.89 86 (m, 1H, allyl-CH=), 5.15-5.11 (m, 2H, allyl-CH₂=), 3.92-3.90 (m, 87 2H, allyl-CH₂N). ¹³C NMR (100 MHz, DMSO- d_6): δ 167.6 (C=N), 88 89 142.4 (CH=N), 135.00 (allyl-CH), 115.45 (allyl-CH₂=), 46.05 (allyl-CH₂N). MS *m/z* (%) 141 (M⁺, 30), 113(28), 86 (100), 55 (40), 90 91 41 (75).

N-Ethyl-1,3,4-thiazol-2-amine (3d): red crystals (acetonitrile), 92 yield 84% (0.108 g), mp: 71–72 °C (lit. 70 °C) [24]. IR (KBr, cm⁻¹): υ 93 94 3424-3372 (NH str.), 1601 (C=N str.). ¹H NMR (400 MHz, DMSO-95 d₆): δ 8.20 (br, 1H, NH-C₂H₅), 7.96 (s, 1H, CH=N), 3.49 (q, 2H, CH₂, 96 J = 7.50 Hz), 1.19 (t, 3H, J = 7.50 Hz). ¹³C NMR (100 MHz, DMSO-97 d₆): δ 166.8 (C=N), 143.1 (CH=N), 40.1 (CH₂), 14.3 (CH₃). MS m/z 98 (%) 129 (M⁺, 55), 101 (40), 86 (100), 43 (50), 29 (80).

99 2,3,5,6-Tetrachlorobenzene-1,4-diol (4) [23]: mp: 230–232 °C 100 (lit. 232 °C).

101 2.4. Single crystal X-ray structure determination of **3a**

102 Single crystals were obtained by recrystallization from aceto-103 nitrile. The single crystal X-ray diffraction study was carried out on 104 an Agilent SuperNova diffractometer with EOS detector at 173 K 105 using Mo k α radiation (λ = 0.71073 Å). Direct methods (SHELXS-106 98) [25] were used for structure solution and refinement was 107 carried out using SHELXL-2013 [25] (full-matrix least-squares on 108 F^2). Hydrogen atoms were localized by different Fourier synthesis 109 map and refined using a riding model [H(N) free]. A semi-empirical 110 absorption correction was applied.

 $C_8H_7N_3S$, $M = 177.23 \text{ g mol}^{-1}$, red 111 3a: crystal, size 112 0.40 mm \times 0.06 mm \times 0.06 mm, monoclinic space group P2₁/n (no. 14), a = 11.3811(5) Å, b = 5.3161(2) Å, c = 14.3650(6) Å, $\beta =$ 113 112.249(5) Å, V = 798.82(6) Å³, Z = 4, $D_{calcd} = 1.474 \text{ mg m}^{-3}$, 114 F(000) = 368, $\mu = 0.344$ mm⁻¹, T = 173 K, 3093 measured reflection 115 $(2\theta_{\text{max}} = 58.8^{\circ})$, 1978 independent [$R_{int} = 0.015$], 112 parameters, 1 116 restraint, R_1 [for 1604 $I > 2\sigma(1)$] = 0.043, wR^2 (for all data) = 0.097, 117 *S* = 1.07, largest diff. peak and hole = 0.232 $e^{A^{-3}}/-0.218 e^{A^{-3}}$. 118

Crystallographic data (excluding structure factors) for the 119 structure reported in this work has been deposited with Cam-120 bridge crystallographic Data Center on supplementary publica-121 tion no. CCDC-1046364. Copies of the data can be obtained free 122 of charge on application to the director, CCDC, 12 Union Road, 123 Cambridge CB2 IEZ, UK (Fax: +44 1223 3360333; e-mail: deposit@ 124 ccdc.cam.ac.uk). 125

3. Results and discussion

For the synthesis of 5-unsubstituted 1,3,4-thiadiazoles as will be outlined in detail below, we report the heterocyclization of thiocarbonohydrazides 1a-d using 2,3,5,6-tetrachloro-1,4-benzoquinones (CHL-p, 2) as a reaction mediator.

126

127

128

129

130

131

132

133

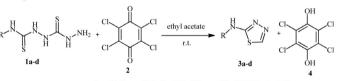
134

135

136

137

138


139

140

141

After adding ethyl acetate solutions of **1a–d** to an equimolar quantity of 2,3,5,6-tetrachloro-1,4-bezoquinone (CHL-p, 2), in ethyl acetate and letting it stand for 24 h at room temperature, the initial green colored turned to violet, which gradually changed to reddish brown. The isolated compounds **3a-d** (Scheme 1) were characterized by their IR, ¹H NMR, ¹³C NMR, mass spectral data and single X-ray crystallography.

The IR spectrum of **3c** as an example was characterized by the presence of broad NH at 3426-3384, the band at 1600 was assigned to C=N stretching. The bands attributed to C=S stretching vibrations were not observed in the IR spectra of 3a-d.

1 and 3: R, $\mathbf{a} = C_6H_5$; $\mathbf{b} = C_6H_4$ -CH₂; $\mathbf{c} = CH_2$ =CH-CH₂; $\mathbf{d} = C_2H_5$

Scheme 1. Reaction of 1a-d with CHL-p (2).

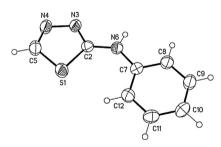


Fig. 1. Molecular structure of 3a in the crystal (one crystallographic independent molecule is shown; displacement parameters are drawn at 50% probability level).

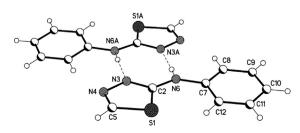
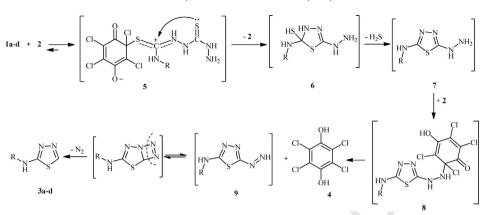



Fig. 2. Asymmetric unit of 3a with intermolecular hydrogen bonds shown as dotted lines.

Please cite this article in press as: A.A. Hassan, et al., Heterocyclization of thiocarbonohydrazides: Facile synthesis of 5-unsubstituted-1,3,4-thiadiazoles, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.05.034

ARTICLE IN PRESS

A.A. Hassan et al. / Chinese Chemical Letters xxx (2015) xxx-xxx

Scheme 2. The mechanism of formation 5-unsubstituted-1,3,4-thiadiazoles.

142The chemical shifts obtained from ¹H NMR spectrum of **3c**143supported the proposed structure. Resonance assigned to allyl144group was detected at 3.92-3.90 (allyl-CH₂N), 5.15-5.11(allyl-145CH₂=) and 5.90-5.89 (allyl-CH=). The ¹H NMR clearly showed146singlet signal at 7.90 due to CH=N, whereas a broad band with D₂O147exchangeable observed at 8.10 for NH-allyl.

148 13 C NMR data of representative compounds **3a-d** which were149obtained using DEPT technique at 100 MHz, also support the150carbon framework by discrimination of CH₂, CH and quaternary151carbons. The 13 C NMR of **3c** showed downfield signals at 167.60,152142.40, 135.00 and 115.45 attributed to C=N, CH=N, allyl-CH=153and allyl-CH₂= respectively. The upfield signal resonated at 46.05154due to (allyl-CH₂N).

N-Phenyl-1,3,4-thiadiazol-2-amine (**3a**) was confirmed unambiguously by single crystal X-ray structure analysis (Fig. 1 and
Tables S1–S7 in Supporting information) (note that the crystallographic numbering does not correspond to systematic IUPAC
numbering rules).

The S(1)-C(5) bond length of 1.726(2) Å and S(1)-C(2)160 161 1.7323(19) has single bond character, whereas bond lengths 162 C(2)-N(3) 1.318(2)Å, C(5)-N(4) 1.285(3)Å suggest that these 163 bonds have double bond character, as they comparable to C=N bond. The 2-phenyl amino-1,3,4-thiadiazole molecule (3a) is 164 planar (mean deviation from the L.S. plane through all non 165 hydrogen atoms 0.042 Å, angle between the L.S: planes of the 1,3,4-166 167 thiadiazole ring and the phenyl ring 3.0°). Intermolecular hydrogen 168 bonding between N6A, N3A from one molecule to N3 and N6 of 169 another forms a dimer with C_i-symmetry (Fig. 2).

Since the aforementioned reactions do not take place when no 2 170 is added to the solution of **1a-d** in ethyl acetate, the presence of 171 172 (CHL-p, 2), is definitely required for the transformation observed. 173 Charge-transfer complexes may (but not necessarily have to) play 174 an intermediate role. Since the cyclization involves intramolecular 175 attacks on the thiocarbonyl group, it is conceivable that (CHL-p, 2)176 accelerates the process as a proton or a Lewis acid, possibly 177 through intermediate 5 (Scheme 2), activating the respective C=S bond toward nucleophilic addition. This behavior may well be 178 179 supported by the polar nature of the solvent stabilizing Zwitter-180 ionic adducts.

181 **4. Conclusion**

An efficient and fast reaction between thiocarbonohydrazides
1a-d and CHL-*p*, 2 was observed to give 1,3,4-thiadiazoles. These
oxidative cyclization reactions of 1a-d using CHL-*p*, which react as
a mediator, provide the products in higher yields with lower costs.
This environmentally benign procedure will be explored for other
substrates.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in 189 the online version, at http://dx.doi.org/10.1016/j.cclet.2015.05.034. 190

References

- [1] Y. Hu, C.Y. Li, X.M. Wang, Y.H. Yang, H.L. Zhu, 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry, Chem. Rev. 114 (2014) 5572–5610.
- [2] I.P. Kuar, R. Smitha, D. Aggarwal, M. Kapil, Acetazolamide: future perspective in topical glaucoma therapeutics, Int. J. Pharm. 248 (2002) 1–14.
- [3] A.M. Luks, S.E. McIntosh, C.K. Grissom, et al., Wilderness Medical Society practice guidelines for the prevention and treatment of acute altitude illness: 2014 update, Wilderness Environ. Med. 25 (2014) S4.
- 4] D.E. Abdel Rahman, K.O. Mohamed, Synthesis of novel 1,3,4-thiadiazole analogues with expected anticancer activity, Der Pharma Chem. 6 (2014) 323–335.
- [5] D. Kumar, G. Patel, A.K. Chavers, K.H. Chang, K. Shah, Synthesis of novel 1,2,4oxadiazoles and analogues as potential anticancer agents, Eur. J. Med. 46 (2011) 3085–3092.
- [6] H.N. Hafez, M.I. Hegad, I.S. Ahmed-Farag, A.B.A. El-Gazzar, A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9',2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents, Bioorg. Med. Chem. Lett. 18 (2008) 4538–4543.
- [7] P.A. Datar, T.A. Deokule, Design and synthesis of thiadiazole derivatives as antidiabetic agents, Med. Chem. 4 (2014) 390–399.
- [8] M. Yusuf, R.A. Khan, B. Ahmed, Syntheses and anti-depressant activity of 5-amino-1,3,4-thiadiazole-2-thiol imines and thiobenzyl derivatives, Bioorg. Med. Chem. 16 (2008) 8029–8034.
- [9] P. Puthiyapurayil, B. Poojary, C. Chikkanna, S.K. Buridipad, Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing *N*-methyl-4-(trifluoromethyl)phenyl pyrazole moiety as cytotoxic agents, Eur. J. Med. Chem. 53 (2012) 203–210.
- [10] X.M. Zhang, M. Qui, J. Sun, et al., Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents, Bioorg. Med. Chem. 19 (2011) 6518–6524.
- [11] H. Rajak, R. Deshmukh, R. Veerasamy, et al., Novel semicarbazones based 2,5disubstituted-1,3,4-oxadiazoles: one more step towards establishing four binding site pharmacophoric model hypothesis for anticonvulsant activity, Bioorg. Med. Chem. Lett. 20 (2010) 4168–4172.
- [12] T. Aoyama, M. Kabeya, A. Fukushima, T. Shioiri, New method and reagents in organic synthesis. 53. Lithium trimethylsilyldiazomethane: a new synthon for the preparation of 2-amino-1,3,4-thiadiazoles from isothiocyanates, Heterocycles 23 (1985) 2367–2369.
- [13] D.R. Armstrong, R.P. Davies, R. Haigh, et al., A solid-state, solution, and theoretical structural study of kinetic and thermodynamic lithiated derivatives of a simple diazomethane and their reactivities towards aryl isothiocyanates, Eur. J. Inorg. Chem. 2003 (2003) 3363–3375.
- [14] C.Z. Zhao, J.L. Yu, X.L. Gu, H. Liu, Simultaneous determination of dihydroxybenzene isomers utilizing a thiadiazole film electrode, Chin. Chem. Lett. 25 (2014) 370–374.
- [15] L.H. Shen, H.Y. Li, H.X. Shang, et al., Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties, Chin. Chem. Lett. 24 (2013) 299–302.
- [16] V.N. Yarovenko, A.V. Shirokov, I.V. Zavarzin, et al., New cyclizing reagent for the synthesis of 1,3,4-thiadiazoles, Synthesis (2004) 17–19.
- [17] Y. Takatori, T. Yamaguchi, M. Nagakura, 2-β-Thenoylamido-1,3,4-thiadiazole, Jpn KoKai Tohkyo Koko 8028,946 (1980), Chem. Abstr. 93 (1980) 114536e.
- [18] R.C. Gadwood, M.R. Barbachyn, D.S. Toops, H.W. Smith, V.A. Vaillancourt, Preparation of azolylpiperaziylphenyloxazolidinones as antimicrobials, US pat. 5,736,545 (1998), Chem. Abstr. 128 (1998) 270612y.

188

191

3

Please cite this article in press as: A.A. Hassan, et al., Heterocyclization of thiocarbonohydrazides: Facile synthesis of 5-unsubstituted-1,3,4-thiadiazoles, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.05.034 4

ARTICLE IN PRESS

A.A. Hassan et al./Chinese Chemical Letters xxx (2015) xxx-xxx

- 245 246 247 248 249 250 251 252 253 254
- [19] D.H. Reid, F. Kurzer, Thiadiazoles and selenadiazoles, in: D.H. Reid (Ed.), Organic Compound of Sulphur, Selenium and Tellurium, Specialist Periodical Reports, vol. 3, The Chemical Society, London, 1975, pp. 670–707.
- [20] C.W. Bird, G.W.H. Cheeseman, P.A. Lowe, Condensation, in: C.W. Bird, G.W.H. Cheeseman (Eds.), Aromatic and Heteroaromatic, Specialist Periodical Reports, vol. 2, The Chemical Society, London, 1974, pp. 106–134.
- [21] M.K. Burghata, S.V. Gandhe, M.G. Ajmire, B.N. Berad, Synthesis of 2'-(substituted)benzylidene hydrazine-5-arylamino-1,3,4-thiadiazoles and their antimicrobial activity, J. Indian Chem. Soc. 84 (2007) 103–108.
- [22] A.A. Hassan, F.F. Abdel-Latif, M. Abdel-Aziz, et al., Efficient and facile synthesis of substituted aminothiadiazolylhydr-azonoindolin-2-ones, J. Heterocycl. Chem. (2015) (in press).
- [23] R. Pummerer, G. Schmidutz, H. Seifert, Institute of energy problems of chemical physics, RAS, Chem. Ber. 85 (1952) 535–555.
- [24] R.A. Coburn, B. Bhooshan, R.A. Glennon, The preparation of 2-alkylamino-1,3,4thiadiazoles, J. Org. Chem. 38 (1973) 3947–3949.
- [25] (a) G.M. Sheldrick, A story history of Shelx, Acta Cryst. A 64 (2008) 112–122;
 (b) G.M. Sheldrick, Crystal structure refinement with Shelx, Acta Cryst. C 71 (2015) 3–8.

255

Please cite this article in press as: A.A. Hassan, et al., Heterocyclization of thiocarbonohydrazides: Facile synthesis of 5-unsubstituted-1,3,4-thiadiazoles, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.05.034