Zur Reaktion von tert-Butyl-phosphaalkin mit Molybdänkomplexen

Manfred Scheer* und Joachim Krug

Karlsruhe, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 27. August 1997.

Professor Hartmut Bärnighausen zum 65. Geburtstag gewidmet

Inhaltsübersicht. Die Umsetzung von tBuC≡P mit $[(CH_3CN)_3Mo(CO)_3]$ führt zum Zweikernkomplex $[Mo(CO)_4 \langle Mo(CO)_2(\eta^4 - P_3CtBu) \{\eta^4 - P_2(CtBu)_2\} \rangle]$ **1** sowie den Carbinkomplexen $[Mo(CO)_4 (\{P_3(CtBu)_2\} \{Mo(CO)_2(CtBu)\})$ - $\{\eta^3 - P_2(CtBu)_2\}$ **2** und $[Mo(CtBu)\{\eta^4 - P_2(CtBu)_2(CO)\}$ - $\{\eta^5 - P_3(CtBu)_2\}$] **3** als isolierte Produkte. Alle Verbindungen wurden durch die Kristallstrukturanalyse, mittels NMR- und IR-Spektroskopie sowie massenspektrometrisch strukturell charakterisiert. Der Zweikernkomplex 1 hat einen 1,3-Diphosphacyclobutadienylring und einen 1,2,4-Triphosphacyclobutadienylligand. In **2** sind ein 1,3-Diphosphacyclobutadienylring und ein σ -gebundener 1,2,4-Triphospholylligand an zwei Mo-Komplexzentren gebunden. Das Charakteristikum von **3** ist neben einem π -gebundenen 1,2,4-Triphospholyl- ein 3,4-Diphosphacyclopentadienon-Ligand, der sich durch CO-Einschub während der Cyclodimerisierung zweier Phosphaalkine gebildet haben sollte.

Reaction of tert-Butyl-phosphaalkyne with Molybdenum Complexes

Abstract. The reaction of $tBuC\equiv P$ with $[(CH_3CN)_3Mo(CO)_3]$ leads to the complex $[Mo(CO)_4(Mo(CO)_2(\eta^4-P_3CtBu)\{\eta^4-P_2(CtBu)_2\})]$ **1** as well as to the alkyne complexes $[Mo(CO)_4(\{P_3(CtBu)_2\}\{Mo(CO)_2(CtBu)\}\{\eta^3-P_2(CtBu)_2\})]$ **2** and $[Mo(CtBu)\{\eta^4-P_2(CtBu)_2(CO)\}\{\eta^5-P_3(CtBu)_2\}]$ **3**. All compounds are characterized by X-ray structural analysis, by NMR- and IR spectroscopy and by mass spectrometry. In complex **1** a 1,3-diphosphacyclobutadiene and a 1,2,4-triphosphacyclobutadiene are connected by two molybdenum carbonyl centres. In **2** a 1,3-diphosphacyclobutadiene is π - and a

Einleitung

Die Chemie der Phosphaalkine wurde in den letzten 10 Jahren sehr intensiv untersucht, wobei Aspekte der Elementorganischen Chemie [1] und der Koordinationschemie [2] in gleicher Weise bearbeitet wurden. Das sich ergebende Gesamtbild ist in einigen ausge-

Prof. Dr. M. Scheer Institut für Anorganische Chemie Universität Karlsruhe Engesserstraße, Geb. 30.45 D-76128 Karlsruhe Fax (0721) 661921 E-mail: mascheer@achibm6.chemie.uni-karlsruhe.de novel 1,2,4-triphospholyl ligand is σ -bonded at two Mo centres. A characteristic feature of **3** besides a π co-ordinated 1,2,4-triphospholyl ligand is a 3,4-diphosphacyclopentadienone as ligand, formed via CO insertion during the cyclodimerisation of two phosphaalkynes.

Keywords: Phosphaalkyne; Molybdenum Complexes; X-ray Structure Determination; 1,3-Diphosphabutadienyl Ligands; 1,2,4-Triphosphacyclobutadienyl Ligand; 1,2,4-Triphospholyl Ligand; 3,4-Diphosphacyclopentadienone Ligand

zeichneten Übersichten dargelegt und wird durch die zahlreich neu erscheinenden Arbeiten ständig ergänzt.

Unsere Forschungen zielen sowohl auf das Studium des Transformationsweges des P₄-Tetraeders in der Koordinationssphäre von Übergangsmetallen [3] als auch auf die Erforschung einer neuen Klasse von Komplexen mit terminalen Pnicogenidoliganden des Typs [L_nM=E] (E = P, As, Sb, Bi) [4]. In beiden Gebieten sind Phosphaalkine nützliche Bezugspunkte wie auch Edukte, was sich einerseits in ihrer Analogie zu P₂-Spezies sowie andererseits in ihrer Fähigkeit in Metathesereaktionen als Quelle für Phosphidoliganden zu fungieren [4 a], widerspiegelt.

1987 berichteten *Barron* et al. [5] über eine Cyclotrimerisierung von *t*BuC≡P in der Koordinationssphäre von Molybdänkomplexen [Gl. (1)], während *Binger*

^{*} Korrespondenzadresse:

Ergebnisse und Diskussion

Darstellung

400

Die Reaktion von $tBuC\equiv P$ mit $[(CH_3CN)_3Mo(CO)_3]$ in Hexan bei Raumtemperatur nach Gl. (3) ergibt die Komplexe **1–3**. Nach etwa vier Stunden hat $tBuC\equiv P$ vollständig reagiert (³¹P{¹H}-NMR spektroskopische Verfolgung). Gemäß dem ³¹P-NMR-Spektrum der Reaktionslösung ist **1** das Hauptprodukt der Umsetzung gefolgt von **2** und **3**. Der Prozentsatz an nicht isolierten Produkten liegt unter 15%. Eine Änderung der Molverhältnisse der Umsetzung bzw. der Temperatur beim Erhitzen am Rückfluß führt zu keiner Veränderung in der Produktzusammensetzung. Die NMR-Signale für den in Gl. (1) beschriebenen Komplex konnten nicht detektiert werden.

Aus der Reaktionslösung können 1–3 durch fraktionierende Kristallisation gewonnen werden. Verbindung 1 ist auch durch säulenchromatographische Aufarbeitung des Reaktionsgemisches zugänglich, wogegen 2 und 3 sich am Säulenmaterial (Kieselgel oder Aluminiumoxid) zersetzen. 1 ist eine gelbe, 2 eine rote und 3 eine grüne, oxidationsempfindliche Verbindung. Sie sind in n-Hexan mäßig und in Toluol gut löslich.

Spektroskopische Untersuchungen

Die IR-Spektren von 1 und 2 zeigen für die CO-Valenzschwingungen der an die Molybdänatome gebundenen CO-Gruppen jeweils sechs Banden zwischen 1953 cm⁻¹ und 2078 cm⁻¹ (Tab. 1). Für 3 wird die Valenzschwingung der Carbonylgruppe im 3,4-Diphosphacyclopentadienon bei 1709 cm⁻¹ gefunden. In den Massenspektren von 1 und 3 (Tab. 1) wird jeweils der Molekülionenpeak beobachtet, wohingegen für 2 der Peak mit der höchsten Masse dem Fragmention mit der Zusammensetzung $[M-P_2(CtBu)_2(CO)_4]^+$ entspricht.

Das ${}^{31}P{}^{1}H$ -NMR-Spektrum von **1** (Tab. 1) zeigt das P(1)-Atom (für die Numerierung vgl. Abb. 1) des

Tabelle 1 NMR-, IR- und MS-Daten der Komplexe 1–3, δ in ppm, J in Hz, $\tilde{\nu}$ in cm⁻¹

Kern	1	2	3
¹ H ^[a]	0,86 (s, 18 H)	0,87 (s, 18 H)	0,88 (s, 18 H)
	1,19 (s, 9 H)	1,18 (s, 18 H)	1,13 (s, 18 H)
		1,23 (s, 9 H)	1,20 (s, 9 H)
³¹ P ^[a]	P(1): 49.2(s)	P(1), P(2): 2.7 (s)	$P(1): 136(t); {}^{1}J_{P1P2/3} = 48$
	$P(2): -35 (d); {}^{1}J_{P2 P3} = 78$	$P(3), P(4): 141 (d); {}^{1}J_{P3/4 P5} = 39$	$P(2), P(3): 165 (d); {}^{1}J_{P1 P2/3} = 48$
	P(3): -153(t, d)	$P(5): 15(t); {}^{1}J_{P3/4P5} = 39$	P(4), P(5): -11.4(s)
	$P(4), P(5): 86 (d); {}^{1}J_{P3 P4/5} = 301$	() () 15/1,15	
ν̃ (CO) ^[b]	2077 (m)	2078 (m)	1709 (br)
	2056 (m)	2056 (w)	
	2034 (m)	2035 (w)	
	2017 (sh)	2017 (s)	
	1984 (s)	1984 (sh)	
	1953 (s)	1954 (s)	
EI-MS ^[c] : <i>m</i> / <i>z</i> (%)	722(11) [M] ⁺	$553(1.6) [M-P_2(CtBu)_2(CO)_4]^+$	$626(5.2) [M]^+$
	610(14,2) [M-4 CO] ⁺	$497(2.0) [M-P_2(CtBu)_2(CO)_6]^+$	598(2) [M-CO] ⁺
	554(6,4) [M-6 CO] ⁺		(/L]
	458(11.9) [M-Mo(CO)] ⁺		

^[a] in C₆D₆, Kopplungen als Absolutwerte; ^[b] in Nujol; ^[c] bezogen auf ⁹⁶Mo, 70 eV, 270 °C

1,3-Diphosphacyclobutadienylringes als Singulett bei 49,2 ppm. Das P(2) Atom tritt als Dublett auf, wobei eine Kopplung über das Mo(1)-Atom zum Atom P(3) zu beobachten ist. Diese Kopplungskonstante $(^{2}J_{PP} = 78 \text{ Hz})$ ist ebenfalls im Aufspaltungsmuster des Atoms P(3) des 1,2,4-Triphosphacyclobutadienylrings enthalten, welches außerdem mit den benachbarten Atomen P(4) und P(5) koppelt. Die Phosphoratome des 1,3-Diphosphacyclobutadienylringes von 2 treten im ³¹P{¹H}-NMR-Spektrum als Singulett auf (Tab. 1). Der Vierring zeigt in Lösung eine Dynamik, die auch bei tiefen Temperaturen nicht eingefroren werden konnte. Die Phosphoratome des 1,2,4-Triphosphacyclopentadienylringes bilden ein A2X-Spinsystem $[\dot{P}_{A} = P(3), P(4); P_{X} = P(5); vgl. Abb. 2]$. Im ³¹ $\dot{P}\{^{1}H\}$ -NMR-Spektrum von 3 wird für die Phosphoratome des 1,2,4-Triphosphacyclopentadienylringes ein AX₂-Spinsystem $[P_A = P(1); P_X = P(2), P(3); vgl. Abb. 3]$ beobachtet; die beiden Phosphoratome des 3,4-Diphosphacyclopentadienon-Liganden [P(4) und P(5)]ergeben ein Singulett.

Molekülstrukturen von 1–3

1 (Abb. 1) kristallisiert monoklin in der Raumgruppe P2₁/c mit vier Formeleinheiten pro Elementarzelle. In 1 fungieren ein 1,3-Diphosphacyclobutadienylring und ein 1,2,4-Triphosphacyclobutadienylring als π -Liganden an einem Mo(CO)₂-Fragment; über eine σ -Koordination der freien Elektronenpaare der P-Atome P(2) bzw. P(3) erfolgt eine weitere Verknüpfung mit

Abb. 1 Die Molekülstruktur von $[Mo(CO)_4(Mo(CO)_2(\eta^4 - P_3CtBu)\{\eta^4 - P_2(CtBu)_2\})]$ **1** mit ausgewählten Bindungslängen [pm] und Winkeln [°]. Mo1–P1 249,6(2); Mo1–P2 256,8(2); Mo2–P2 244,8(2); Mo2–P3 247,4(2); P1–C1 179,2(6); P1–C2 179,7(6); P2–C1 177,1(6); P2–C2 178,7(6); P3–P4 216,5(2); P3–P5 216,2(2); P4–C3 180,2(6); P5–C3 178,8(6). P1–C2–P2 94,6(3); P1–C1–P2 95,4(3); P5–C3–P4 108,7(3); P4–P3–P5 84,76(8); C3–P4–P3 83,1(2); P3–Mo2–P2 66,22(5).

einer $Mo(CO)_4$ -Einheit. Die Struktur von 1 entspricht der von *Binger* für das Produkt der Reaktion (2) beschriebenen [6].

Die P-C-Abstände im 1,3-Diphosphacyclobutadienylring [177,1(6) pm-179,7(6) pm] liegen zwischen den Werten für eine P-C-Einfachbindung und eine P=C-Doppelbindung [d(P-C) = 184 pm [7];d(P=C) =169 pm in $R_2C=PR'$ [8]; d(P=C) = 154 pm in tBuC=P[9]]. Das π -Elektronensystem sollte somit delokalisiert sein. Allerdings ist der Ring im Gegensatz zum 1,2,4-Triphosphacyclobutadienylring nicht planar. Der Faltungswinkel beträgt 14°. Im letzteren sind die P-C-Bindungslängen [178,8(6) pm und 180,2(6) pm] und auch die P-P-Abstände [216,5(2) pm und 216,2(2) pm] gegenüber einer Einfachbindung verkürzt $\langle d(P-P) =$ 221 pm [10]). Generell sind die P-C-Bindungslängen in 1 (wie auch in 2) vergleichbar mit denen in den 1,3-Diphosphacyclobutadienylkomplexen des Cobalts $([CpCo{\eta^4-P_2(CtBu)_2}]: 179(1)-182(1) pm)$ [11 a, b] und $[Cp*Co{\eta^4-P_2(CtBu)_2}]: 179,7(3)-179,8(3) \text{ pm} [11 c]$ bzw. des Molybdäns ($[Mo{\eta^4-P_2(CtBu)_2}]$; 181,1(4)– 186,0(5) pm) [12].

2 (Abb. 2) kristallisiert monoklin in der Raumgruppe P2₁/n mit vier Formeleinheiten pro Elementarzelle. Ebenso wie in Verbindung **1** sind hier zwei $tBuC\equiv P$ -Moleküle zu einem 1,3-Diphosphacyclobutadienylliganden cyclodimerisiert, welcher als π -Ligand an

Abb. 2 Die Molekülstruktur von

 $\begin{bmatrix} Mo(CO)_{4} \langle P_3(CtBu)_2 \} \{ Mo(CO)_2(CtBu) \} \{ \eta^3 \cdot P_2(CtBu)_2 \} \} \end{bmatrix} 2 \\ mit ausgewählten Bindungslängen [pm] und Winkeln [°]. \\ Mo1-P1 241,8(4); Mo1-P2 266,7(4); Mo1-P3 261,0(4); \\ Mo1-C9 187,8(11); Mo1-C7 231,0(9); Mo1-C8 232(2); \\ Mo2-P2 239,6(3); Mo2-P4 254,0(4); P3-P4 209,4(4); P3-C11 173,4(14); P5-C11 173,1(12); P5-C10 172,8(12); P4-C10 173,9(14); P1-C7 182(2), P1-C8 182,3(9); P2-C8 178(2); \\ P2-C7 175,7(9); Mo1-C9-C20 159,3(9); C9-Mo1-P3 162,8(3); C7-P1-C8 83,5(6); C7-P2-C8 86,8(6); P5-C11-P3 116,4(6); P5-C10-P4 118,4(7); P4-Mo2-P2 84,70(12); P3-Mo1-P2 81,67(10). \\ \end{bmatrix}$

einen Mo-Carbinkomplex koordiniert. Das P(2)-Atom dieses Liganden bindet an ein Mo(CO)₄-Komplexfragment. Weiterhin ist ein planarer 1,2,4-Triphospholylring über das P(3)-Atom an die Mo-Carbineinheit und über das P(4)-Atom an das Mo(CO)₄-Fragment jeweils σ -gebunden. Alle Bindungslängen im 1,2,4-Triphospholylliganden sind gegenüber entsprechenden Einfachbindungen erheblich verkürzt. Eine formale negative Ladung ist somit über den gesamten Ring delokalisiert. Unseres Wissens nach sind bisher nur Koordinationsverbindungen mit η^{5} -koordinierenden 1,2,4-Triphospholen bekannt, so daß diese σ -gebundene Koordinationsform des 1,2,4-Triphosphacyclopentadienylliganden ein Novum darstellt. Nixon beschrieb die Darstellung und Struktur eines Platin-Phosphankomplexes mit einem σ -gebundenen 1,2,4-Triphosphol [13], der allerdings im Gegensatz zu dem in 2 über einen zusätzlichen organischen Substituenten am P-Atom des Ringes verfügt.

In der Mo-Carbin-Einheit von 2 ist der Abstand des Molybdäns Carbin-C(9)-Atom zum mit 187,8(11) pm nur unwesentlich länger als in den bekannter Mo-Carbin-Komplexe [*trans*-Br(dppe)₂MoCSiMe₃] (181,9(12) pm) [14] und [*trans*-(CO)₅Re(CO)₄MoCPh] (184(3) pm) [15]. Allerdings weicht der Winkel Mo(1)-C(9)-C(20) mit 159,3(9)° von denen in den angeführten Beispielen (174,2°) ab (zur Abwinkelung von Substituenten am Carbin-C-Atom vgl. [16]). Der Abstand der Atome $C(9) \cdots P(1)$ ist jedoch mit 201,1(11) pm zu lang, um noch als bindender Abstand betrachtet zu werden, obwohl eine Wechselwirkung der Carbingruppe mit dem 1,3-Diphosphacyclobutadienylliganden dennoch vorhanden sein sollte. Diese äußert sich sowohl in der Abwinkelung der tert-Butylgruppe am C(9)-Atom als auch in der Verkürzung des Mo(1)–P(1)-Abstandes [241,8(4) pm] gegenüber dem Abstand Mo(1)–P(2) [266,7(4) pm]. Weiterhin differieren die P-C-Bindungslängen in den gefalteten 1,3-Diphosphacyclobutadienylliganden von 1 und 2 [1: 177,1(6)-179,7(6) pm; 2: 175,7(9)-182,3(9) pm]. Insbesondere sind die Bindungen zum P(1)-Atom in 2 verlängert. Der im Vergleich zu 1 größere Faltungswinkel (1: 14°; 2: 19°) und die unterschiedlichen P-C-Bindungslängen im 1,3-Diphosphacyclobutadienylliganden von 2 legen den Schluß nahe, daß der Vierring hier nicht als 4-VE-Donator, sondern nur als 3-VE-Donator fungiert. Nach dieser Betrachtungsweise ist die positive Gegenladung zum negativen 1,2,4-Triphospholylring formal am P(1)-Atom lokalisiert. Die Verbindung 2 kann demzufolge als ein Zwitterion betrachtet werden.

Der Einkernkomplex **3** (Abb. 3) kristallisiert monoklin in der Raumgruppe P2₁/c mit vier Formeleinheiten in der Elementarzelle. In **3** ist ein 1,2,4-Triphospholylring als π -Aromat an ein Molybdänatom, das eine Carbingruppe trägt, gebunden. Als zusätzlicher Ligand fungiert ein 3,4-Diphosphacyclopentadienon.

Abb. 3 Die Molekülstruktur von $[Mo(CtBu){\eta^4} P_2(CtBu)_2(CO)]{\eta^5}P_3(CtBu)_2]$ 3 mit ausgewählten Bindungslängen [pm] und Winkeln [°]. Mo–C22 191,1(4); Mo–P5 241,44(14); Mo–P4 247,88(12); Mo–C17 225,9(4); Mo–C12 255,3(4); P5–C17 182,4(4); P4–C12 178,9(5); P4–P5 219,7(2); C12–C1 149,0(6); C17–C1 147,1(5); C1–O1 124,7(5); P2–P3 214,1(2); C2–P3 175,9(4); P1–C2 176,7(4); Mo–C22–C23 162,7(3); C17–C1–C12 112,8(4).

Der Abstand zwischen dem Mo-Atom und dem Carbinatom C(22) in **3** beträgt 191,1(4) pm; der Bindungswinkel Mo-C(22)-C(23) 162,7(3). Ein Vergleich der Bindungslängen der 1,2,4-Triphospholylringe von **2** und **3** zeigt, daß diese im π -gebundenen Fünfring von **3** durchschnittlich 3-4 pm länger sind als im σ -gebundenen Ring von **2**.

Der 3,4-Diphosphacyclopentadienon-Ligand in **3** ist offensichtlich durch eine "Kopf-Kopf"-Cyclodimerisierung zweier $tBuC\equiv P$ -Moleküle unter CO-Einschub entstanden. Er ist nicht planar; das CO-Fragment ist um 26° aus der Ebene des P₂C₂-Fragmentes ausgelenkt. Während "Kopf-Schwanz"-Cyclodimerisationen von Phosphaalkinen in der Koordinationssphäre von Übergangsmetallen sehr häufig sind [11, 12], berichteten erst vor kurzem *Binger* et al. über die erste "Kopf-Kopf"-Cyclodimerisierung zweier $tBuC\equiv P$ -Moleküle an einem (cot)Ti-Komplexfragment unter Bildung eines 1,2-Diphosphacyclobutadienylliganden [17].

Cowley et al. beschrieben die Bildung eines Diphosphatricyclo[2.1.0.0^{2,5}]pentans **4** durch Dimerisierung zweier $tBuC\equiv P$ -Moleküle unter CO-Einschub [18]. Die Struktur von **4** leitet sich im Unterschied zu dem Liganden in **3** von einem Tetrahedran ab. Die P–P-Bindungslänge in **4** ist mit 211,8(3) pm gegenüber der P(4)–P(5)-Einfachbindung in **3** [219,7(2) pm] verkürzt und die P–C-Bindungen [189,7(8) pm und 189,5(7) pm] sind gegenüber denen in **3** [178,9(5) pm und 182,4(4) pm] aufgeweitet. Somit sollte es sich bei **3** um einen 3,4-Diphosphacyclopentadienon-Liganden mit formalen P=C-Doppelbindungen handeln, der mit seinem π -Elektronen als 4 VE-Donator gegenüber dem Mo-Zentrum fungiert.

Nixon et al. gelang die Isolierung eines Rhodiumkomplexes **5**, dessen Ligand mit dem 3,4-Diphosphacyclopentadienon in **3** vergleichbar ist [19]; jedoch ist hier zusätzlich ein Rhodiumatom in die P–P-Bindung "eingeschoben".

Insgesamt ist es bemerkenswert, daß in den synthetisierten Komplexen **1–3** 1,2,4-Triphosphacyclobutadienyl-, 1,2,4-Triphospholyl- und Carbinliganden entstanden sind, deren Bildung eine Spaltung der P=C-Bindung im Phosphaalkin vorausgegangen sein muß. Während die Spaltung der P=C-Bindung und eine nachfolgende Cyclisierung durch Alkalimetalle seit längerem bekannt und verständlich sind [20], wurde kürzlich bei der Reaktion von Alkylidinkomplexen mit Phosphaalkinen gefunden, daß zunächst eine Spaltung der P=C-Bindung im Phosphaalkin erfolgt und erst danach eine Cyclisierung und Bildung eines 1-Phospha-3-metalla-cyclobut-2-ens stattfindet [21].

Abschließend kann festgestellt werden, daß die Reaktion von $[(CH_3CN)_3Mo(CO)_3]$ mit tBuC=P zur Bildung von **1** als Hauptprodukt führt, was mit den Beobachtungen von *Binger* [Gl. (2)] korreliert. Um die Cyclotrimerisierung gemäß Gl. (1) nicht auszuschließen, wurde ebenfalls die Reaktion von $[(\eta^6 - C_7H_8)Mo(CO)_3]$ mit *t*BuC=P untersucht. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung ist identisch mit dem der Umsetzung von $[(CH_3CN)_3Mo(CO)_3]$ mit *t*BuC=P. Signale für den in Gl. (1) beschriebenen Komplex konnten nicht beobachtet werden.

Die Autoren danken der *Deutsche Forschungsgemeinschaft* und dem *Fonds der Chemischen Industrie* für die umfangreiche Unterstützung dieser Arbeit.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Schutzgas (Stickstoff) in wasserfreien Lösungsmitteln durchgeführt. – NMR: Bruker AC 250 (¹H: 250,13 MHz; ³¹P: 101,256 MHz). Standard Me₄Si (¹H), 85% wäßrige H₃PO₄ (³¹P). – MS: Finnigan MAT 711 bei 70 eV. – IR: FT-IR-Spektrometer IFS 28 der Firma Bruker.

Die Umsetzung von $[(CH_3CN)_3Mo(CO)_3]$ mit $tBuC \equiv P$ zur Darstellung der Komplexe **1–3**

730 mg (2,4 mmol) [(CH₃CN)₃Mo(CO)₃] werden mit 4,8 ml einer 0,5molaren Lösung von tBuC=P in n-Hexan [22] drei Stunden bei Raumtemperatur gerührt. Die Reaktionslösung wird filtriert und bei 2 °C im Kühlschrank aufbewahrt. Nach zwei Tagen ist Verbindung 1 in Form gelber, quaderförmiger Kristalle erhältlich. Die Kristalle von Verbindung 1 werden abfiltriert und die verbleibende Lösung wird im Vakuum auf die Hälfte reduziert und drei weitere Tage bei 2 °C aufbewahrt. Es kristallisieren rote Quader von 2, die abgetrennt werden und nach etwa einer weiteren Woche bei 2 °C bilden sich grüne Stäbchen von 3.

Die säulenchromatographische Aufarbeitung (Kieselgel, Merck 60; Aktivitätsstufe II) des Produktgemisches eines

 Tabelle 2
 Kristallographische Daten und Einzelheiten zur Strukturbestimmung von 1–3

	1	2	3
Summenformel	C ₂₁ H ₂₇ Mo ₂ O ₆ P ₅	$C_{31}H_{45}Mo_2O_6P_5$	C ₂₆ H ₄₅ MoOP ₅
Molmasse $[g \cdot mol^{-1}]$	722,16	860.40	624,41
Meßtemperatur [K]	190(1)	200(1)	200(1)
Kristallgröße [mm]	$0,15 \times 0,15 \times 0,10$	$0,23 \times 0,14 \times 0,07$	$0.07 \times 0.04 \times 0.04$
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_{1}/c$	$P2_1/n$	$P2_{1}/c$
Zellparameter	-	-	-
a [pm]	793,5(1)	1188,6(6)	1255,9(3)
b [pm]	3145,5(2)	2121(2)	966,2(2)
c [pm]	1195,2(2)	1494,1(11)	2526,6(5)
β[°]	108,388(10)	90,41(2)	96,06(3)
Zellvolumen [nm ³]	2,8308(6)	3,766(5)	3,0488(11)
Z	4	4	4
$d_{\text{ber.}} [g \cdot \text{cm}^{-3}]$	1,694	1,517	1,360
μ (Mo-K α) [cm ⁻¹]	12,02	9,17	7,10
Meßgerät	Stoe IPDS	Stoe Stadi IV	Stoe IPDS
Meßbereich [°]	$4,43 \le \theta \le 25,91$	$1,67 \le \theta \le 26,08$	$2,26 \le \theta \le 26,04$
Gemessene Reflexe	11447	4041	10790
Unabhängige Reflexe	4939	4041	5677
Beobachtete Reflexe mit	3357/0,0654	2070/0,000	3550/0,0757
$I > 2\sigma(I)/R(int)$			
Zahl der Parameter	316	312	313
R1 (beobachtete Reflexe)	0,0450	0,0484	0,0432
$wR(F^2), R(F)$	0,1085	0,1311	0,0918
Restelektronendichte [e · nm ⁻³]	-973/613	-435/570	-594/589

Tabelle 3 Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $[\mathring{A}^2]$ von 1

Atom	Х	у	Z	Ueq
Mo(1)	0,2977(1)	0,6191(1)	0,5951(1)	0,01806(13)
Mo(2)	0,7051(1)	0,6522(1)	0,9141(1)	0,02672(15)
O(1)	0,0291(6)	0,6667(2)	0,3773(4)	0,0446(13)
O(2)	0,0989(8)	0,5351(2)	0,4828(5)	0,058(2)
O(3)	1,1184(6)	0,6600(2)	0,9933(4)	0,0431(12)
O(4)	0,6724(8)	0,6838(2)	1,1548(5)	0,064(2)
O(5)	0,7923(8)	0,5611(2)	1,0285(6)	0,075(2)
O(6)	0,7162(8)	0,7500(2)	0,8541(5)	0,060(2)
P(1)	0,0552(2)	0,6282(1)	0,6847(1)	0,0239(3)
P(2)	0,3880(2)	0,6412(1)	0,8128(1)	0,0199(3)
P(3)	0,6364(2)	0,6299(1)	0,7060(1)	0,0231(3)
P(4)	0,5624(2)	0,5723(1)	0,6029(1)	0,0252(3)
P(5)	0,5303(2)	0,6621(1)	0,5386(1)	0,0244(3)
C(1)	0,2166(7)	0,6699(2)	0,7094(5)	0,0205(12)
C(2)	0,2424(7)	0,5967(2)	0,7669(5)	0,0199(12)
C(3)	0,4884(7)	0,6092(2)	0,4820(5)	0,0259(13)
C(4)	0,4645(8)	0,5971(2)	0,3533(5)	0,0313(14)
C(5)	0,3586(10)	0,5563(3)	0,3170(7)	0,048(2)
C(6)	0,3754(11)	0,6339(3)	0,2706(6)	0,051(2)
C(7)	0,6502(10)	0,5905(3)	0,3434(7)	0,051(2)
C(8)	0,1818(8)	0,7181(2)	0,6943(6)	0,0270(13)
C(9)	0,2985(9)	0,7403(2)	0,6332(6)	0,0343(15)
C(10)	0,2179(10)	0,7374(2)	0,8179(6)	0,039(2)
C(11)	-0,0131(9)	0,7261(2)	0,6250(7)	0,047(2)
C(12)	0,2410(7)	0,5536(2)	0,8238(5)	0,0233(12)
C(13)	0,2768(9)	0,5606(2)	0,9568(6)	0,036(2)
C(14)	0,3825(9)	0,5232(2)	0,8075(6)	0,034(2)
C(15)	0,0596(9)	0,5330(2)	0,7723(7)	0,041(2)
C(16)	0,1274(8)	0,6497(2)	0,4546(6)	0,0307(15)
C(17)	0,1696(9)	0,5655(2)	0,5227(6)	0,0334(15)
C(18)	0,9654(9)	0,6573(2)	0,9642(5)	0,0304(14)
C(19)	0,6881(9)	0,6715(2)	1,0685(7)	0,039(2)
C(20)	0,7510(9)	0,5930(2)	0,9812(7)	0,043(2)
C(21)	0,7026(8)	0,7145(2)	0,8700(6)	0,034(2)

Tabelle 4Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $[\mathring{A}^2]$ von 2

Atom	х	у	Z	U _{eq}
Mo(1)	0,5376(1)	0,1736(1)	0,1429(1)	0,0223(4)
Mo(2)	0,7339(3)	0,2032(1)	0,1438(2)	0,0253(4)
P(1)	0,5898(3)	0,2956(1)	0,1315(2)	0,0268(12)
P(2)	0,4664(15)	0,1287(5)	0,2491(9)	0,0227(11)
P(3)	0,4362(13)	0,1028(4)	0,3103(8)	0,0302(14)
P(4)	0,4914(11)	0,1136(6)	0,0433(10)	0,0258(13)
P(5)	0,4747(10)	0,0814(5)	-0,0147(7)	0,0336(13)
O(1)	0,6434(12)	0,2482(5)	0,2183(8)	0,065(6)
O(2)	0,6482(12)	0,2397(5)	0,0564(9)	0,066(5)
O(3)	0,6601(10)	0,1183(5)	0,1548(8)	0,055(5)
O(4)	0,6556(11)	0,2602(5)	0,3191(8)	0,059(5)
O(5)	0,7264(12)	0,3215(5)	0,3326(10)	0,049(5)
O(6)	0,5428(11)	0,2662(5)	0,3622(9)	0,046(6)
C(1)	0,7225(12)	0,2043(5)	0,3593(10)	0,035(6)
C(2)	0,6708(12)	0,2414(5)	-0,0430(9)	0,041(5)
C(3)	0,7401(13)	0,1842(6)	-0,0734(11)	0,035(5)
C(4)	0,7342(14)	0,3014(6)	-0,0651(12)	0,034(6)
C(5)	0,5568(11)	0,2421(5)	-0,0954(9)	0,028(5)
C(6)	0,7232(11)	0,0581(5)	0,1615(9)	0,036(5)
C(7)	0,8164(11)	0,0633(5)	0,2332(9)	0,027(5)
C(8)	0,6391(15)	0,0064(6)	0,1923(12)	0,032(5)
C(9)	0,7738(15)	0,0407(6)	0,0740(11)	0,024(4)
C(10)	0,4802(1)	0,3902(1)	0,1210(1)	0,028(5)
C(11)	0,3340(3)	0,2187(1)	0,1286(3)	0,034(5)
C(12)	0,3125(3)	0,3167(1)	0,1338(2)	0,026(2)
C(13)	0,0923(3)	0,2496(1)	0,1310(3)	0,040(3)
C(14)	0,6240(13)	0,4384(5)	0,1049(10)	0,038(3)
C(15)	0,7078(9)	0,4628(4)	0,0961(9)	0,036(3)
C(16)	0,4776(13)	0,4084(5)	0,2539(9)	0,033(3)
C(17)	0,4718(11)	0,4250(4)	0,3276(7)	0,053(3)
C(18)	0,4630(13)	0,3880(5)	-0,0141(9)	0,051(3)

Tabelle 4	(Fortsetzung)
Tabene 4	(I OI toetzung

Atom	х	У	Z	U_{eq}
C(19)	0,4456(10)	0,3917(4)	-0,0884(6)	0,035(3)
C(20)	0,3954(12)	0,4725(5)	0,1094(9)	0,033(2)
C(21)	0,3485(9)	0,5188(3)	0,1019(7)	0,038(3)
C(22)	0,1662(11)	0,3198(5)	0,1333(8)	0,056(4)
C(23)	0,1959(11)	0,1922(5)	0,1299(9)	0,058(4)
C(24)	0,1039(13)	0,3838(5)	0,1329(10)	0,040(3)
C(25)	0,1253(13)	0,4173(5)	0,0436(9)	0,041(3)
C(26)	0,1397(15)	0,4246(6)	0,2123(11)	0,060(4)
C(27)	-0,0231(15)	0,3733(7)	0,1423(13)	0,067(4)
C(28)	0,1517(11)	0,1226(5)	0,1351(9)	0,029(2)
C(29)	0,1224(17)	0,1075(7)	0,2223(12)	0,069(4)
C(30)	0,2481(15)	0,0760(7)	0,1027(13)	0,068(4)
C(31)	0.0586(13)	0.1121(6)	0.0693(10)	0.050(3)

Tabelle 5Atomkoordinaten und äquivalente isotrope Auslenkungsparameter $[\mathring{A}^2]$ von 3

Atom	Х	у	Z	U_{eq}
Мо	0,2610(1)	0,2358(1)	0,1242(1)	0,01537(11)
P(1)	0,1005(1)	0,1750(1)	0,0544(1)	0,0213(3)
P(2)	0,1759(1)	0,4703(1)	0,0858(1)	0,0234(3)
P(3)	0,2811(1)	0,3751(1)	0,0352(1)	0,0235(3)
P(4)	0,4460(1)	0,1430(1)	0,1313(1)	0,0245(3)
P(5)	0,3551(1)	0,1235(1)	0,2007(1)	0,0217(3)
O(1)	0,4356(2)	0,5080(3)	0,2040(1)	0,0327(8)
C(1)	0,4082(3)	0,3906(5)	0,1871(2)	0,0206(10)
C(2)	0,2207(3)	0,2116(4)	0,0265(2)	0,0204(10)
C(3)	0,2597(3)	0,1056(5)	-0,0138(2)	0,0266(11)
C(4)	0,2366(4)	-0,0434(5)	0,0019(2)	0,053(2)
C(5)	0,1942(4)	0,1391(7)	-0,0666(2)	0,054(2)
C(6)	0,3771(3)	0,1201(6)	-0,0200(2)	0,0381(13)
C(7)	0,0841(3)	0,3346(4)	0,0869(2)	0,0194(10)
C(8)	-0,0243(3)	0,3589(5)	0,1102(2)	0,0237(10)
C(9)	-0,1026(3)	0,4026(6)	0,0627(2)	0,049(2)
C(10)	-0,0667(3)	0,2267(5)	0,1347(2)	0,0406(13)
C(11)	-0,0182(4)	0,4740(6)	0,1521(2)	0,0440(14)
C(12)	0,4525(3)	0,3263(5)	0,1403(2)	0,0207(10)
C(13)	0,5371(3)	0,4116(5)	0,1134(2)	0,0284(11)
C(14)	0,6352(3)	0,4183(6)	0,1553(2)	0,0422(14)
C(15)	0,5695(4)	0,3362(6)	0,0637(2)	0,0420(14)
C(16)	0,5012(4)	0,5579(5)	0,0979(2)	0,0402(14)
C(17)	0,3231(3)	0,3070(4)	0,2068(2)	0,0176(10)
C(18)	0,2757(3)	0,3537(5)	0,2581(2)	0,0247(10)
C(19)	0,3661(4)	0,3464(6)	0,3045(2)	0,0387(13)
C(20)	0,2349(4)	0,5033(5)	0,2529(2)	0,0361(13)
C(21)	0,1855(3)	0,2570(5)	0,2713(2)	0,0351(12)
C(22)	0,2251(3)	0,0667(4)	0,1578(2)	0,0205(10)
C(23)	0,1889(3)	-0,0800(4)	0,1672(2)	0,0256(11)
C(24)	0,2826(4)	-0,1812(5)	0,1608(2)	0,0426(14)
C(25)	0,1545(4)	-0,0975(5)	0,2239(2)	0,0388(13)
C(26)	0,0935(4)	-0,1212(5)	0,1278(2)	0,0396(13)

analogen Reaktionsansatzes ergibt als erste, gelbe Fraktion (Eluierungsmittel: n-Hexan) 170 mg von **1** in 10%iger Ausbeute nach dem Umkristallisieren aus n-Hexan. Die zweite, rote Fraktion und die dritte, grüne Fraktion, die vermutlich **2** bzw. **3** enthalten, sind gegenüber dem Säulenmaterial (Kieselgel bzw. Aluminiumoxid) instabil und zersetzen sich während der Chromatographie.

Elementaranalysen: 1: (ber. für $C_{21}H_{27}O_6P_5Mo_2$, 725,86 g mol⁻¹): C 34,42 (ber. 34,72), H 3,61 (3,75)%; 2: (ber. für $C_{31}H_{45}O_6P_5Mo_2$, 864,00 g mol⁻¹): C 42,87 (ber. 43,06), H 5,01 (5,25)%; 3: (ber. für $C_{26}H_{45}OP_5Mo$ 626,12 g mol⁻¹): C 49,70 (ber. 49,83), H 7,10 (7,24)%.

Kristallstrukturuntersuchungen der Verbindungen 1-3

Die Kristallographischen Daten von **1–3**¹⁾ sind in Tab. 2, die Ortsparameter und isotropen Auslenkungsparameter in Tab. 3–5 angegeben. Auf Grund der nur mäßigen Kristallqualität der Einkristalle von **2** und im Sinne eines besseren Daten/Parameter-Verhältnisses wurden die C-Atome der t-Butylgruppen lediglich isotrop verfeinert. Lösung und Verfeinerung mit direkten Methoden, SHELXS-86 [23], Methode der kleinsten Fehlerquadrate, SHELXL-93 [23] und Schakal-92 [24].

Literatur

- M. Regitz, P. Binger, Angew. Chem. 1988, 100, 1541– 1565; M. Regitz in M. Regitz und O. J. Scherer, "Multiple Bonds and Low Coordination in Phosphorus Chemistry", G. Thieme Verlag, Stuttgart, 1990, S. 58 ff; M. Regitz, Chem. Rev. 1990, 90, 191; M. Regitz, J. Heterocycl. Chem. 1994, 31, 663; A. Mack, M. Regitz, Chem. Ber. 1997, 130, 823–834.
- [2] (a) J. F. Nixon, *Chem. Rev.* 1988, 88, 1327; (b) P. Binger in M. Regitz und O. J. Scherer, "Multiple Bonds and Low Coordination in Phosphorus Chemistry", G. Thieme Verlag, Stuttgart, 1990, S. 90 ff; (c) J. F. Nixon, *Chem. Ind.* 1993, 7, 404; (d) J. F. Nixon, *Chem. Soc. Rev.* 1995, 319; (e) J. F. Nixon, *Coord. Chem. Rev.* 1995, 145, 201–258; (f) *ibid.* S. 223.
- [3] (a) M. Scheer, Ch. Troitzsch, P. G. Jones, Angew. Chem. 1992, 104, 1395–1397; Angew. Chem. Int. Ed. Engl. 1992, 31, 1377; (b) M. Scheer, C. Troitzsch, L. Hilfert, M. Dargatz, E. Kleinpeter, P. G. Jones, J. Sieler, Chem. Ber. 1995, 128, 251; (c) M. Scheer, U. Becker, M. H. Chisholm, J. C. Huffman, J. Organomet. Chem. 1993, 461, C1; (d) M. Scheer, U. Becker, Chem. Ber. 1996, 129, 1307; (e) M. Scheer, K. Schuster, U. Becker, Phosphorus, Sulfur, and Silicon 1996, 109–110, 141; (f) M. Scheer, K. Schuster, A. Krug, H. Hartung, Chem. Ber. 1996, 129, 973.
- [4] (a) M. Scheer, K. Schuster, T. A. Budzichowski, M. H. Chisholm, W. E. Streib, J. Chem. Soc., Chem. Commun. 1995, 1671; (b) C. E. Laplaza, W. M. Davis, C. C. Cummins, Angew. Chem. 1995, 107, 2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2042; (c) R. R. Schrock, N. C. Zanetti, W. N. Davis, Angew. Chem. 1995, 107, 2184; Angew. Chem. Int. Ed. Engl. 1995, 34, 2044; (d) M. Scheer, J. Müller, M. Häser, Angew. Chem. 1996, 108, 2637–2641; Angew. Chem. Int. Ed. Engl. 1996, 35, 2492–2496.

Übersichten: M. Scheer, *Coord. Chem. Rev.* **1997**, *163*, 271; M. Scheer, *Angew. Chem.* **1995**, *107*, 2151–2153; *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 1997–1999.

- [5] A. R. Barron, A. H. Cowley, Angew. Chem. 1987, 99, 956; Angew. Chem. Int. Ed. Engl. 1987, 26, 907.
- [6] P. Binger in M. Regitz und O. J. Scherer, "Multiple Bonds and Low Coordination in Phosphorus Chemistry", G. Thieme Verlag, Stuttgart, 1990, S. 96.
- [7] J. E. Huheey, E. A. Keiter, R. L. Keiter, Anorganische Chemie: Prinzipien von Struktur und Reaktivität, 2. Auflage, Walter de Gruyter, Berlin 1995.
- [8] R. Appel in M. Regitz and O. J. Scherer, "Multiple Bonds and Low Coordination in Phosphorus Chemistry", G. Thieme Verlag, Stuttgart, **1990**, S. 157 ff.
- [9] M. Y. Antipin, A. N. Chernega, K. A. Lysenko, Y. T. Struchkov, J. F. Nixon, J. Chem. Soc., Chem. Commun. 1995, 505.
- [10] L. R. Maxwell, S. B. Hendrichs, Y. M. Mosley, J. Chem. Physics 1935, 3, 699; A. Simon, H. Borrmann, H. Craubner, Phosphorus and Sulfur 1987, 30, 507.
- [11] (a) P. Binger, R. Milczarek, R. Mynott, M. Regitz, W. Rösch, *Angew. Chem.* **1986**, *98*, 645; (b) P. Binger, R. Milczarek, R. Mynott, C. Krüger, Y.-H. Tsay, E. Raabe, M. Regitz, *Chem. Ber.* **1988**, *121*, 637–645; (c) P. B. Hitchcock, M. J. Maah, J. F. Nixon, *J. Chem. Soc., Chem. Commun.* **1986**, 737.
- [12] F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, J. F. Nixon, J. Chem. Soc., Chem. Commun. 1994, 489.
- [13] V. Caliman, P. B. Hitchcock, J. F. Nixon, J. Chem. Soc., Chem. Commun. 1995, 1661.
- [14] K. J. Ahmed, M. H. Chisholm, J. C. Huffman, Organometallics 1985, 4, 1168.
- [15] E. O. Fischer, G. Huttner, T. L. Lindner, A. Frank,
 F. R. Kreißl, Angew. Chem. 1976, 88, 163; Angew. Chem.
 Int. Ed. Engl. 1976, 15, 157.
- [16] K. A. Jørgensen, J. Organomet. Chem. 1994, 478, 9-12.
- [17] P. Binger, G. Glaser, S. Albus, C. Krüger, *Chem. Ber.* 1995, 128, 1261–1265.
- [18] A. R. Barron, A. H. Cowley, S. W. Hall, C. M. Nunn, Angew. Chem. 1988, 100, 873; Angew. Chem. Int. Ed. Engl. 1988, 27, 837.
- [19] P. B. Hitchcock, M. J. Maah, J. F. Nixon, J. Chem. Soc., Chem. Commun. **1987**, 658; P. B. Hitchcock, M. J. Maah, J. F. Nixon, Heteroatom Chem. **1991**, 2, 243.
- [20] R. Bartsch, J. F. Nixon, *Polyhedron* 1989, 8, 2407;
 G. Becker, W. Becker, R. Knebl, H. Schmidt, U. Weber, M. Westerhausen, *Nova Acta Leopoldina* 1985, 59, 55.
- [21] G. M. Jamison, R. S. Saunders, D. R. Wheeler, T. M. Alam, M. D. McClain, D. A. Loy, J. W. Ziller, *Organometallics* 1996, 15, 3244–3246.
- [22] W. Rösch, T. Alspach, U. Bergsträßer, M. Regitz, in Synthetic Methods of Organometallic and Inorganic Chemistry, edited by W. A. Herrmann; G. Thieme Verlag Stuttgart 1996, S. 13 ff.
- [23] G. M. Sheldrick, SHELXS-86, Universität Göttingen, 1986. – SHELXL-93, Universität Göttingen, 1993.
- [24] E. Keller, SCHAKAL-92 Fortran Program for Graphical Representation of Molecular and Crystallographical Models, Freiburg (1992).

¹⁾ Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Informationen mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-407529 (1), CSD-407530 (2), CSD-407531 (3), der Autoren und des Zeitschriftenzitats angefordert werden.