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Various aryl-substituted anthraquinones were prepared by palladium(0)-catalyzed Suzuki-Miyaura
cross-coupling reactions of the bis(triflate) of 1,3-dihydroxyanthraquinone. A very good site-selectivity
in favor of position 1 was observed which can be explained by the electronic influence of the neighboring
carbonyl group.

� 2011 Published by Elsevier Ltd.
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Anthraquinones are of considerable pharmacological relevance
and occur in various natural products.1 Anthracyclines are polycy-
clic hydroxylated anthraquinones, which represent important
antitumor agents and antibiotics.2 More simple hydroxylated
anthraquinones include, for example, chrysophanic acid, vismi-
aquinone, anthragallol, or mumbaistatin.3 Aryl-substituted anthra-
quinones possess many applications because of their redox, UV, and
fluorescence properties.4

Because of the multifold applications of anthraquinones in
medicinal or materials chemistry, the development of synthetic
methods for their synthesis is of considerable current interest. In
recent years, site-selective palladium(0) catalyzed reactions of
polyhalogenated substrates have gained increasing importance.5

In this context, Suzuki-Miyaura reactions of bis(triflates) have also
been developed.6 Recently, we have reported site-selective Suzuki-
Miyaura reactions of the bis(triflate) of alizarin.7 Interestingly, the
selectivity is controlled by electronic parameters and the first at-
tack occurred at the sterically more hindered position next to the
carbonyl group. Because of the pharmacological importance of
anthraquinones, we were interested in the question of whether
this selectivity is general and thus started a program to study Su-
zuki-Miyaura reactions of the bis(triflate) of 1,3-dihydroxyanthra-
quinone and related derivatives.

1,3-Dihydroxyanthraquinone (3) was prepared in 57% yield by
[4+2] cycloaddition of 1,3-bis(silyloxy)-1,3-butadiene 2 with 1
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nger).
(Scheme 1).8 The product was transformed into its bis(triflate) 4
in good yield.9

The Suzuki-Miyaura reaction of 4 with arylboronic acids 5a–h
(2.2 equiv) afforded the 1,3-diaryl-anthraquinones 6a–h (Scheme
2 and Table 1). The employment of Pd(PPh3)4 as the catalyst and
K3PO4 as the base gave the best yields.10,11 Equally good yields
were obtained for the reactions of arylboronic acids containing
electron donating or electron withdrawing substituents.

The Suzuki-Miyaura reaction of 4 with arylboronic acids 5a and
5f–j (1.0 equiv) afforded the 1-aryl-3-trifluorosulfonyloxy-anthra-
quinones 7a–f in good yields (Scheme 3 and Table 2).12,13 The best
yields were obtained when the reaction was carried out at 60 in-
Scheme 1. Synthesis of 3 and 4. Reagents and conditions: (i) (1) 1 (1.5 equiv), 2
(1.0 equiv), neat, 20 �C, 12 h; (2) H2O; (ii) 3 (1.0 equiv), Tf2O (2.4 equiv), pyridine
(4.0 equiv), CH2Cl2, 20 �C, 8 h.
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Scheme 2. Synthesis of 6a–h. Reagents and conditions: (i) 4 (1.0 equiv), ArB(OH)2

(2.2 equiv), Pd(PPh3)4 (5 mol %), K3PO4 (3.0 equiv), dioxane, 100 �C, 7 h.

Table 1
Synthesis of 1,3-diaryanthraquinones 6a–h

5,6 Ar % (6)a

a 4-(MeO)C6H4 76
b 4-EtC6H4 88
c 4-MeC6H4 70
d 4-tBuC6H4 75
e 3-MeC6H4 71
f 3,5-Me2C6H3 82
g 4-ClC6H4 84
h 4-FC6H4 78

a Yields of isolated compounds.
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Scheme 3. Synthesis of 7. Reagents and conditions: (i) 4 (1.0 equiv), ArB(OH)2

(1.0 equiv), Pd(PPh3)4 (3 mol %), K3PO4 (1.5 equiv), dioxane, 60 �C, 30 h.

Table 2
Synthesis of 7a–f

5 7 Ar % (7)a

a a 4-(MeO)C6H4 70
f b 3,5-Me2C6H3 77
g c 4-ClC6H4 74
h d 4-FC6H4 73
i e 3,4-(MeO)2C6H3 81
j f 3-ClC6H4 68

a Yields of isolated compounds.
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Scheme 4. Synthesis of 8a,b. Reagents and conditions: (i) 4 (1.0 equiv), Ar1B(OH)2

(1.0 equiv), Pd(PPh3)4 (3 mol %), K3PO4 (3.0 equiv), dioxane, 60 �C, 30 h; (ii)
Ar2B(OH)2 (1.2 equiv), Pd(PPh3)4 (3 mol %), 100 �C, 5 h.

Table 3
Synthesis of 8a,b

5 8 Ar1 Ar2 % (8)a

a,d a 4-(MeO)C6H4 4-tBuC6H4 65
j,c b 3-ClC6H4 4-MeC6H4 74

a Yields of isolated compounds.
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stead of 100 �C. Good yields were obtained for the reactions of both
electron rich and poor arylboronic acids. The regioselectivity was
established by 2D NMR experiments (HMBC, NOESY).

The one-pot reaction of 4 with two different arylboronic acids
(sequential addition) afforded the 1,2-diaryl-anthraquinones 8a,b
that contain two different aryl groups (Scheme 4 and Table
3).14,15 Following the conditions developed for the synthesis of
7a–f, the first step of the one-pot reaction had to be carried out
at 60 �C and the second step at 100 �C.
The oxidative addition of the palladium(0) catalyst generally
occurs first at the electronically more deficient and sterically less
hindered position.5,16 On the one hand, position 1 of bis(triflate)
4 is sterically more hindered than position 3. On the other hand,
position 1 (located in b-position to the carbonyl group) is more
electron-deficient than position 3. Besides, the regioselectivity
might be explained by chelation of the approaching palladium
catalyst by the carbonyl group (neighboring effect).

In conclusion, we have reported an efficient synthesis of arylat-
ed anthraquinones by site-selective Suzuki-Miyaura reactions of
the bis(triflate) of 1,3-dihydroxy-anthraquinone.
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