

Published on Web 05/20/2006

Palladium-Catalyzed Ring Enlargement of Aryl-Substituted Methylenecyclopropanes to Cyclobutenes

Min Shi,*,† Le-Ping Liu,‡ and Jie Tang‡

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China, and Department of Chemistry, East China Normal University, 3663 Zhongshanbei Lu, Shanghai 200062, China

Received March 14, 2006; E-mail: mshi@pub.sioc.ac.cn

Methylenecyclopropanes (MCPs) 1 are highly strained but readily accessible molecules that have served as useful building blocks in organic synthesis.^{1,2} MCPs undergo a variety of ring-opening reactions in the presence of transition metal and Lewis acid catalysts because the relief of ring strain provides a potent thermodynamic driving force.^{3,4} Several pathways for the cleavage of both proximal and distal bonds of MCPs catalyzed by transition metals have been reported.^{2a,5} Herein, we report a new such reaction in which palladium-catalyzed ring enlargement of aryl-substituted MCPs 1 to the corresponding cyclobutenes 2 occurs in the presence of metal bromides in 1,2-dichloroethane (DCE) under mild conditions.

Cyclobutenes are mainly used in cycloaddition and photochemical reactions,6 and a few strategies have been reported for their synthesis. One of the most common routes to cyclobutenes is the photochemical or thermal [2 + 2] cycloaddition reaction of an alkyne and an alkene.7 In our ongoing investigation of the transformation of MCPs, we envisioned that, if a metal carbene intermediate was generated at the C1 position of MCPs, a ring enlargement would take place to give the corresponding cyclobutene product.8 In this paper, we disclose a new Pd-catalyzed method for the synthesis of 1-aryl cyclobutenes.

Using (2-benzyloxy)phenylmethylenecyclopropane (1a) as the substrate, we investigated the feasibility of the proposed reaction and found the optimal reaction conditions for the formation of the corresponding cyclobutene, 2a. The results are summarized in Table 1. Palladium chloride and palladium bromide catalyzed the reaction to afford 2a in 62 and 84% yields, respectively, within 24 h at room temperature in DCE (entries 1 and 2). Palladium acetate and bis(triphenylphosphine)palladium chloride did not catalyze this reaction under the same conditions (entries 3 and 4). Bis(nitrile)palladium halides, the more soluble Pd(II) catalysts, did not give better results than palladium halides (entries 5-7). However, in the presence of metal bromides such as copper bromide, ⁹ zinc bromide, and magnesium bromide, 2a was produced in excellent conversions and high yields under Pd(OAc)2 catalysis (entries 8-12). Chloride and iodide salts are less effective than the bromide salts (entries 13-15). Next, we examined the effect of solvent choice on this reaction (entries 16-22). The reaction proceeded smoothly in THF, toluene, dichloromethane, chloroform, and dioxane, but the yields of 2a were not as high as those within DCE (entries 16-20). In both acetonitrile and diethyl ether, only a trace of 2a was formed (entries 21 and 22). Other metal catalysts, such as RhCl(PPh₃)₃, RuCl₃, PtCl₂, and Au(PPh₃)Cl, did not catalyze this reaction under identical conditions.

Using the optimal reaction conditions, we carried out the palladium-catalyzed ring enlargement of a variety of MCPs 1 and found that the corresponding cyclobutenes 2 were obtained in moderate to high yields (Table 2). The product structures were determined by ¹H and ¹³C NMR spectroscopic data, HRMS, and microanalysis. Furthermore, the X-ray crystal structure of 21¹⁰ was determined and is presented in the Supporting Information. 11

An electron-donating group on the aromatic ring of 1 significantly promoted the reaction, and these reactions were complete within 3 Table 1 Ontimization of Reaction Conditions

Catalyst, solvent, time	Ιċ	able 1. Optimization of Reaction Conditions ^a							
OBn		2 Υ							
Part	ı	ĺ	TTH	nt, time →	4				
entry catalyst solvent time/h 2a yield/[%] ^b (conv./[%]) ^b 1 PdCl ₂ DCE 24 62 (85) 2 PdBr ₂ DCE 24 84 (92) 3 Pd(OAc) ₂ DCE 24 N. R. 4 Pd(PPh ₃) ₂ Cl ₂ DCE 24 N. R. 5 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 trace 6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 69 (83) 8 Pd(OAc) ₂ , CuBr ₂ DCE 3 93 (>>9) 9 Pd(OAc) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAc) ₂ , NiBr ₂ DCE 3 91 (>>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAc) ₂ , MgBr ₂ DCE 12 81 (>>99) 13 Pd(OAc) ₂ , LiCl DCE 24 trace 14 Pd(OAc) ₂ , CuCl ₂ DCE	ı	OBn		r. t.		OBn			
1 PdCl2 DCE 24 62 (85) 2 PdBr2 DCE 24 84 (92) 3 Pd(OAc)2 DCE 24 N. R. 4 Pd(PPh3)2Cl2 DCE 24 N. R. 5 Pd(CH3CN)2Br2 DCE 24 trace 6 Pd(CH3CN)2Br2 DCE 24 64 (74) 7 Pd(PhCN)2Br2 DCE 24 73 (87) 8 Pd(OAc)2, CuBr2 DCE 24 73 (87) 8 Pd(OAc)2, LiBr DCE 24 69 (83) 9 Pd(OAc)2, LiBr DCE 24 69 (83) 10 Pd(OAc)2, NiBr2 DCE 3 91 (>99) 11 Pd(OAc)2, NiBr2 DCE 24 trace 12 Pd(OAc)2, MgBr2 DCE 12 81 (>>99) 13 Pd(OAc)2, CuCl2 DCE 24 trace 14 Pd(OAc)2, CuBr2 DCE 24 trace 15	ı		1a						
2 PdBr ₂ DCE 24 84 (92) 3 Pd(OAC) ₂ DCE 24 N. R. 4 Pd(PPh ₃) ₂ Cl ₂ DCE 24 N. R. 5 Pd(CH ₃ CN) ₂ Cl ₂ DCE 24 trace 6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAC) ₂ , CuBr ₂ DCE 3 93 (-99) 9 Pd(OAC) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAC) ₂ , LiBr DCE 3 91 (-99) 11 Pd(OAC) ₂ , NiBr ₂ DCE 3 91 (-99) 11 Pd(OAC) ₂ , NiBr ₂ DCE 12 81 (-99) 13 Pd(OAC) ₂ , MgBr ₂ DCE 12 81 (-99) 13 Pd(OAC) ₂ , LiCl DCE 24 trace 14 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAC) ₂ , Nal DCE 24 trace 16 Pd(OAC) ₂ , Nal DCE 24 Trace 17 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 18 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 19 Pd(OAC) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (-99) 19 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 19 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 21 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 22 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 23 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 24 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 25 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 26 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 27 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 28 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 29 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (-99)	ı	entry	catalyst	solvent	time/h	2a yield/[%] ^b (conv./[%]) ^c			
3 Pd(OAc) ₂ DCE 24 N. R. 4 Pd(PPh ₃) ₂ Cl ₂ DCE 24 N. R. 5 Pd(CH ₃ CN) ₂ Cl ₂ DCE 24 trace 6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAc) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAc) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAc) ₂ , ZhBr ₂ DCE 3 91 (>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 3 91 (>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAc) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAc) ₂ , LiCl DCE 24 trace 14 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAc) ₂ , CuBr ₂ DCE 24 trace 16 Pd(OAc) ₂ , CuBr ₂ THF 24 39 (53) 17 Pd(OAc) ₂ , CuBr ₂ THF 24 39 (53) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 21 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 22 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace	ı	1	PdCl ₂	DCE	24	62 (85)			
4 Pd(PPh ₃) ₂ Cl ₂ DCE 24 trace 6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 trace 6 Pd(PhCN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAC) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAC) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAC) ₂ , ZnBr ₂ DCE 3 91 (>99) 11 Pd(OAC) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAC) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAC) ₂ , LiCl DCE 24 trace 14 Pd(OAC) ₂ , LiCl DCE 24 trace 15 Pd(OAC) ₂ , LiCl DCE 24 trace 16 Pd(OAC) ₂ , CuBr ₂ DCE 24 trace 17 Pd(OAC) ₂ , LiCl DCE 24 trace 18 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 19 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 10 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 11 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 12 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 13 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 14 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 15 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 16 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 17 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 18 Pd(OAC) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 21 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 22 Pd(OAC) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAC) ₂ , CuBr ₂ Et ₂ O 24 trace	ı		PdBr ₂		24				
5 Pd(CH ₃ CN) ₂ Cl ₂ DCE 24 trace 6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAC) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAC) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAC) ₂ , ZnBr ₂ DCE 3 91 (>99) 11 Pd(OAC) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAC) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAC) ₂ , LiCl DCE 24 trace 14 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAC) ₂ , Nal DCE 24 trace 16 Pd(OAC) ₂ , Nal DCE 24 trace 17 Pd(OAC) ₂ , Nal DCE 24 trace 18 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 19 Pd(OAC) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 18 Pd(OAC) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 21 Pd(OAC) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAC) ₂ , CuBr ₂ Et ₂ O 24 trace	ı				24	N. R.			
6 Pd(CH ₃ CN) ₂ Br ₂ DCE 24 64 (74) 7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAC) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAC) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAC) ₂ , ZnBr ₂ DCE 3 91 (>99) 11 Pd(OAC) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAC) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAC) ₂ , LiCl DCE 24 trace 14 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 16 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 17 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 18 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 19 Pd(OAC) ₂ , CuCl ₂ DCE 24 trace 10 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 11 Pd(OAC) ₂ , CuBr ₂ DCE 24 Trace 12 Pd(OAC) ₂ , CuBr ₂ THF 24 39 (53) 13 Pd(OAC) ₂ , CuBr ₂ toluene 3 70 (>99) 14 Pd(OAC) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 15 Pd(OAC) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 16 Pd(OAC) ₂ , CuBr ₂ dioxane 24 79 (95) 17 Pd(OAC) ₂ , CuBr ₂ CH ₃ CN 24 trace 18 Pd(OAC) ₂ , CuBr ₂ CH ₃ CN 24 trace	ı	4	Pd(PPh ₃) ₂ Cl ₂	DCE	24	N. R.			
7 Pd(PhCN) ₂ Br ₂ DCE 24 73 (87) 8 Pd(OAc) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAc) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAc) ₂ , NiBr ₂ DCE 3 91 (>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAc) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAc) ₂ , LiCl DCE 24 trace 14 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 16 Pd(OAc) ₂ , CuBr ₂ DCE 24 trace 17 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 18 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 19 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 10 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 11 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 12 Pd(OAc) ₂ , CuCl ₂ DCE 24 Trace 13 Pd(OAc) ₂ , CuCl ₂ DCE 24 Trace 14 Pd(OAc) ₂ , CuCl ₂ DCE 24 Trace 15 Pd(OAc) ₂ , CuCl ₂ TCH ₂ CUCl ₂ 3 77 (>99) 18 Pd(OAc) ₂ , CuCl ₂ CH ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuCl ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuCl ₂ CHCl ₃ 3 77 (>99) 21 Pd(OAc) ₂ , CuCl ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuCl ₂ Et ₂ O 24 trace	ı	5	Pd(CH ₃ CN) ₂ Cl ₂	DCE	24	trace			
8 Pd(OAc) ₂ , CuBr ₂ DCE 3 93 (>99) 9 Pd(OAc) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAc) ₂ , ZnBr ₂ DCE 3 91 (>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAc) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAc) ₂ , LiCl DCE 24 trace 14 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAc) ₂ , Nal DCE 24 N. R. 16 Pd(OAc) ₂ , CuBr ₂ THF 24 39 (53) 17 Pd(OAc) ₂ , CuBr ₂ toluene 3 70 (>99) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ CHGl ₃ 3 77 (>99) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , C	ı	6	Pd(CH ₃ CN) ₂ Br ₂	DCE	24	64 (74)			
9 Pd(OAc) ₂ , LiBr DCE 24 69 (83) 10 Pd(OAc) ₂ , ZnBr ₂ DCE 3 91 (>99) 11 Pd(OAc) ₂ , NiBr ₂ DCE 24 trace 12 Pd(OAc) ₂ , MgBr ₂ DCE 12 81 (>99) 13 Pd(OAc) ₂ , LiCl DCE 24 trace 14 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAc) ₂ , Nal DCE 24 trace 16 Pd(OAc) ₂ , Nal DCE 24 N. R. 16 Pd(OAc) ₂ , CuBr ₂ THF 24 39 (53) 17 Pd(OAc) ₂ , CuBr ₂ toluene 3 70 (>99) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	7	$Pd(PhCN)_2Br_2$	DCE	24	73 (87)			
10 Pd(OAc)2, ZnBr2 DCE 3 91 (>99) 11 Pd(OAc)2, NiBr2 DCE 24 trace 12 Pd(OAc)2, MgBr2 DCE 12 81 (>99) 13 Pd(OAc)2, LiCl DCE 24 trace 14 Pd(OAc)2, CuCl2 DCE 24 N. R. 15 Pd(OAc)2, Nal DCE 24 N. R. 16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 20 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	8	Pd(OAc) ₂ , CuBr ₂	DCE	3	93 (>99)			
11 Pd(OAc)2, NiBr2 DCE 24 trace 12 Pd(OAc)2, MgBr2 DCE 12 81 (>99) 13 Pd(OAc)2, LiCl DCE 24 trace 14 Pd(OAc)2, CuCl2 DCE 24 trace 15 Pd(OAc)2, Nal DCE 24 N. R. 16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>>99) 20 Pd(OAc)2, CuBr2 dioxane 24 79 (95) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	9	Pd(OAc) ₂ , LiBr	DCE	24	69 (83)			
12 Pd(OAc)2, MgBr2 DCE 12 81 (>99) 13 Pd(OAc)2, LiCl DCE 24 trace 14 Pd(OAc)2, CuCl2 DCE 24 trace 15 Pd(OAc)2, Nal DCE 24 N. R. 16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 20 Pd(OAc)2, CuBr2 dioxane 24 79 (95) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	10	Pd(OAc) ₂ , ZnBr ₂	DCE	3	91 (>99)			
13 Pd(OAc)2, LiCl DCE 24 trace 14 Pd(OAc)2, CuCl2 DCE 24 trace 15 Pd(OAc)2, Nal DCE 24 N. R. 16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 20 Pd(OAc)2, CuBr2 dioxane 24 79 (95) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	11	Pd(OAc) ₂ , NiBr ₂	DCE	24	trace			
14 Pd(OAc) ₂ , CuCl ₂ DCE 24 trace 15 Pd(OAc) ₂ , Nal DCE 24 N. R. 16 Pd(OAc) ₂ , CuBr ₂ THF 24 39 (53) 17 Pd(OAc) ₂ , CuBr ₂ toluene 3 70 (>99) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	12	Pd(OAc) ₂ , MgBr ₂	DCE	12	81 (>99)			
15 Pd(OAc)2, NaI DCE 24 N. R. 16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 20 Pd(OAc)2, CuBr2 dioxane 24 79 (95) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	13	Pd(OAc) ₂ , LiCl	DCE	24	trace			
16 Pd(OAc)2, CuBr2 THF 24 39 (53) 17 Pd(OAc)2, CuBr2 toluene 3 70 (>99) 18 Pd(OAc)2, CuBr2 CH2Cl2 3 77 (>99) 19 Pd(OAc)2, CuBr2 CHCl3 3 77 (>99) 20 Pd(OAc)2, CuBr2 dioxane 24 79 (95) 21 Pd(OAc)2, CuBr2 CH3CN 24 trace 22 Pd(OAc)2, CuBr2 Et2O 24 trace	ı	14	Pd(OAc) ₂ , CuCl ₂	DCE	24	trace			
17 Pd(OAc) ₂ , CuBr ₂ toluene 3 70 (>99) 18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	15	Pd(OAc) ₂ , Nal	DCE	24	N. R.			
18 Pd(OAc) ₂ , CuBr ₂ CH ₂ Cl ₂ 3 77 (>99) 19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	16	Pd(OAc) ₂ , CuBr ₂	THF	24	39 (53)			
19 Pd(OAc) ₂ , CuBr ₂ CHCl ₃ 3 77 (>99) 20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	17	Pd(OAc) ₂ , CuBr ₂	toluene	3	70 (>99)			
20 Pd(OAc) ₂ , CuBr ₂ dioxane 24 79 (95) 21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace	ı	18	Pd(OAc) ₂ , CuBr ₂			77 (>99)			
21 Pd(OAc) ₂ , CuBr ₂ CH ₃ CN 24 trace 22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace			Pd(OAc) ₂ , CuBr ₂	CHCl ₃	3	77 (>99)			
22 Pd(OAc) ₂ , CuBr ₂ Et ₂ O 24 trace		20	Pd(OAc) ₂ , CuBr ₂		24	79 (95)			
	1	21	. ,	CH ₃ CN	24	trace			
# Pagation conditions: 10 (0.2 mmal) polladium actalyst (2 mal 0/) brom	ı	22				trace			

^a Reaction conditions: **1a** (0.3 mmol), palladium catalyst (3 mol %), bromide (10 mol %), solvent (2.0 mL). b Isolated yields. c Starting material consumed

h at room temperature to give the corresponding cyclobutenes 2 in good yields and conversions (Table 2, entries 2-4, 7, 9, and 11-15). On the other hand, having either an electron-withdrawing group or no substituent on the aromatic ring retarded the reaction (entries 1, 5, 6, and 10). For MCP 1i, higher temperature (80 °C) and longer reaction time were required to give the corresponding cyclobutenes 2i in high yield and conversion (entry 8). It should be noted that. if R is an alkyl group, no reaction occurred even at high temperature (80 °C).

A plausible mechanism for this unusual ring enlargement of 1 to 2 is presented in Scheme 1. Regioselective bromopalladation of MCPs 1^{5a,12} with PdBr₂, which might be produced in situ from Pd- $(OAc)_2$ and MBr_n (M = Cu, Zn, Mg, Li), affords intermediate A.¹³ Intermediate A undergoes β -hydrogen elimination to form intermediate B, which subsequently generates palladium carbenoid C via hydropalladation with a reversed regioselectivity. Via an αbromo migration, ¹⁴ C is transformed to a palladium carbene \mathbf{D} , ¹⁵ which yields the product 2^8 and regenerates the palladium bromide catalyst. To test the plausibility of this proposed mechanism, we designed a deuterium labeling experiment. When deuterated substrate 1a-d was subjected to the standard reaction conditions, cyclobutene 2a-d (>99% D incorporation)¹⁶ with the deuterium at the 2-position was obtained in 83% yield (Scheme 2). This result is consistent with the mechanism proposed in Scheme 1.

In conclusion, we have found a versatile palladium-catalyzed ring enlargement reaction where methylenecyclopropanes are con-

[†] Chinese Academy of Sciences. ‡ East China Normal University.

Table 2. Ring Enlargement of MCPs 1 to Cyclobutenes

Pd(OAc) ₂ (3 mol%), CuBr ₂ (10 mol%)							
			si ₂ (10 mi	<u> </u>			
	R´ 1 `H	DCE		R´ 2			
entry	R	temp./°C	time/h	yield/[%] ^b (conv./[%]) ^c			
1	C ₆ H ₅ (1b)	80	24	2b, 46 (68)			
2	p-CH ₃ C ₆ H ₄ (1c)	r.t.	3	2c , 52 (>99)			
3	p-CH ₃ OC ₆ H ₄ (1d)	r.t.	1	2d, 60 (>99)			
4	o,p-(CH ₃ O) ₂ C ₆ H ₃ (1e)	r.t.	3	2e , 74 (>99)			
5	p-CIC ₆ H ₄ (1f)	80	24	2f, 41 (60)			
6	m-CIC ₆ H ₄ (1g)	80	24	2g , 38 (62)			
7	(1h)	r.t.	3	2h , 89 (>99)			
8	CI (1i)	80	10	2i , 91 (>99)			
9	OBn OMe	r.t.	3	2j , 91 (>99)			
10	CI OBn (1k)	80	24	2k , 64 (82)			
11	OMe (11)	r.t.	3	2I , 93 (>99)			
12	(1m)	r.t.	3	2m , 91 (>99)			
13	OPh (1n)	r.t.	3	2n , 85 (>99)			
14	OC ₆ H ₁₃ -n	r.t.	3	2o , 83 (>99)			
15	OBn (1p)	r.t.	3	2p , 90 (>99)			

^a Reactions were carried out by use of MCP 1 (0.3 mmol) in 1,2-dichloroethane (DCE) (2.0 mL) with palladium acetate (2.0 mg, 3 mol %) and copper(II) bromide (7.0 mg, 10 mol %). ^b Isolated yields. ^c Starting material consumed after column chromatography.

Scheme 1. Proposed Mechanism for the Pd-Catalyzed Ring Enlargement of MCPs to Cyclobutenes

Scheme 2. Deuterium Labeling Experiment of the Ring Enlargement Reaction

verted into the corresponding cyclobutene compounds. This represents a new ring-opening isomerization reaction pathway of methylenecyclopropane and a novel approach for the synthesis of 1-aryl-substituted cyclobutenes. In this manner, a series of cyclobutenes was obtained under mild conditions in moderate to good yields.

Acknowledgment. We thank the State Key Project of Basic Research (Project 973) (No. G2000048007), Shanghai Municipal Committee of Science and Technology (04JC14083), Chinese Academy of Sciences

(KGCX2-210-01), and the National Natural Science Foundation of China for financial support (20025206, 203900502, and 20272069).

Supporting Information Available: ¹H and ¹³C NMR, MS, HRMS, and analytic data of the compounds shown in Tables 1 and 2 and Schemes 1 and 2, X-ray crystal structure of **2k**, and a detailed description of experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Synthesis of MCPs: Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589.
- (2) For recent reviews, see: (a) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (c) Nakamura, E.; Yamago, S. Acc. Chem. Res. 2002, 35, 867.
- (3) Selected recent articles about transition metal catalyzed reactions of MCPs: (a) Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298. (b) Camacho, D. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2001, 66, 270. (c) Lautens, M.; Meyer, C.; Lorenz, A. J. Am. Chem. Soc. 1996, 118, 10676. (d) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540. (e) Brase, S.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 2545. (f) Shi, M.; Wang, B.-Y.; Huang, J.-W. J. Org. Chem. 2005, 70, 5606.
- (4) Selected recent articles about Lewis acid mediated reactions of MCPs:
 (a) Huang, J.-W.; Shi, M. Synlett 2004, 2343. (b) Shi, M.; Xu, B.; Huang, J.-W. Org. Lett. 2004, 6, 1175. (c) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415. (d) Shi, M.; Shao, L.-X.; Xu, B. Org. Lett. 2003, 5, 579. (e) Patient, L.; Berry, M. B.; Kilburn, J. D. Tetrahedron Lett. 2003, 44, 1015 and references cited therein.
- (5) (a) Ma, S.; Lu, L.; Zhang, J. J. Am. Chem. Soc. 2004, 126, 9645. (b) Siriwardana, A. I.; Kamada, M.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2005, 70, 5932.
- (6) Selected recent articles about cyclobutenes: (a) Feng, J.; Szeimies, G. Eur. J. Org. Chem. 2002, 2942. (b) Kniep, C. S.; Padias, A. B.; Hall, H. K., Jr. Tetrahedron 2000, 56, 4279. (c) Mislin, G. L.; Miesch, M. J. Org. Chem. 2003, 68, 433. (d) Delas, C.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7937. (e) Tantillo, D. J.; Hoffmann, R. J. Am. Chem. Soc. 2001, 123, 9855. (f) Murakami, M.; Hasegawa, M. Angew. Chem., Int. Ed. 2004, 43, 4874. (g) Liu, Y.; Liu, M.; Song, Z. J. Am. Chem. Soc. 2005, 127, 3662.
- (7) For the synthesis of cyclobutenes, see: (a) Carbocyclic Four-member Ring Compounds, Houben-Weyl, Methods of Organic Chemistry; de Meijere, A., Ed.; Thieme: Stuttgart, 1997; Vol. 17f, E 17e-f. (b) Hall, H. K., Jr.; Padias, A. B. J. Polym. Sci, Part A: Polym. Chem. 2003, 41, 625. (c) Leigh, W. J.; Postigo, J. A. Can. J. Chem. 1995, 73, 191. (d) Barbero, A.; Cuadrado, P.; Garcia, C.; Rincon, J. A.; Pulido, F. J. J. Org. Chem. 1998, 63, 7531. (e) Juteau, H.; Gareau, Y. Synth. Commun. 1998, 28, 3795. (f) Huang, D.-J.; Rayabarapu. D. K.; Li, L.-P.; Sambaiah, T.; Cheng, C.-H. Chem.—Eur. J. 2000, 6, 3706. (g) Takahashi, T.; Shen, B.; Nakajima, K.; Xi, Z. J. Org. Chem. 1999, 64, 8706. (h) Villeneuve, K.; Tam, W. Angew. Chem., Int. Ed. 2004, 43, 610. (i) Winkler, J. D.; Melaughlin, E. C. Org. Lett. 2005, 7, 227.
- (8) For the cycloisomerization of α-cyclopropanyl metal carbene to cyclobutene, see: (a) Furstner, A.; Davies, P. D.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (b) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cardenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44, 6146. (c) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (d) Trost, B. M.; Trost, M. K. Tetrahedron Lett. 1991, 32, 3647. (e) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178.
- (9) For CuBr₂ (2.0 equiv) mediated ring-opening reaction of MCPs giving dibrominated compounds, see: Zhou, H.-W.; Huang, X.; Chen, W.-L. Synlett 2003, 2080.
- (10) The crystal data of **2k** have been deposited in CCDC with number 289394
- (11) The ¹H and ¹³C NMR spectroscopic data of compounds 2b, 2c, and 2d (see the Supporting Information) are similar to those reported in previous publications. See refs 7c, 7d, and (a) Wilt, J. W.; Kosturik, J. M.; Orlowski, R. C. J. Org. Chem. 1965, 30, 1052. (b) Hill, E. A.; Engel, M. R. J. Org. Chem. 1971, 36, 1536. (c) Kirmse, W.; Krzossa, B.; Steenken, S. J. Am. Chem. Soc. 1996, 118, 7473.
- (12) For recent articles on halopalladation to multi carbon—carbon bonds, see: (a) Ma, S.; Lu, X. Chem. Commun. 1990, 733. (b) Ma, S.; Lu, X. J. Org. Chem. 1991, 56, 5120. (c) Ma, S.; Zhu, G.; Lu, X. J. Org. Chem. 1993, 58, 3692. (d) Zhu, Z.; Zhang, Z. J. Org. Chem. 2005, 70, 3339.
- (13) Another route for the formation of intermediate A and the corresponding mechanism was presented in Supporting Information as Scheme SI-2.
 (14) For the migration of α-halo to a metal center, see: (a) McCrindle, R.;
- (14) For the migration of α-halo to a metal center, see: (a) McCrindle, R.; Arsenault, G. J.; Gupta, A.; Hampden-Smith, M. J.; Rice, R. E.; McAlees, A. J. J. Chem. Soc., Dalton Trans. 1991, 949. (b) McCrindle, R.; Ferguson, G.; McAlees, A. J.; Arsenault, G. J.; Gupta, A.; Jennings, M. C. Organometallics 1995, 14, 2741. (c) Bernardi, F.; Bottoni, A.; Miscione, G. P. Organometallics 2001, 20, 2751.
- (15) For an article on palladium carbene, see: (a) Fillion, E.; Taylor, J. J. Am. Chem. Soc. 2003, 125, 12700 and references therein. (b) Nakamura, I.; Bajracharya, G. B.; Mizushima, Y.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 4328. (c) Yamamoto, Y.; Kuwabara, S.; Ando, Y.; Nagata, H.; Nishiyama, H.; Itoh, K. J. Org. Chem. 2004, 69, 6697 and references cited therein.
- (16) Determined by $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectroscopic data (see the Supporting Information).

JA061749Y