

Tetrahedron Letters 39 (1998) 5019-5022

TETRAHEDRON LETTERS

Synthesis of (-)-Erythrodiene *via* Intramolecular Pd-Catalyzed Zn-Ene Reaction

W. Oppolzer[†] and F. Flachsmann*

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Received 3 April 1998; accepted 8 May 1998

Abstract

A highly diastereoselective synthesis of (-)-Erythrodiene was achieved *via* an intramolecular Pd-catalyzed Znene reaction as the key step. It was found that $Pd(OAc)_2/Bu_3P$ was a superior catalyst for this reaction to $Pd(PPh_3)_4$. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Spiro compounds, Ene reactions, Transmetalation, Diastereoselection.

The intramolecular allylmetalation of double or triple bonds ('metallo-ene cyclization') offers an attractive stereocontrolled route to five- and six-membered carbo- and heterocyclic systems. Its application to the synthesis of many complex natural products over the past 15 years attests to the viability of this reaction type [1-5]. In addition to the existing stochiometric (Mg) and catalytic (Pd, Ni, Rh) procedures, we recently described a novel Pd-catalyzed Zn-ene reaction, that combines high diastereoselectivity and particular mildness with the possibility to trap the cyclized organozinc intermediates with a variety of electrophiles (*Scheme 1*) [6-8].

Scheme 1

Herein, we present the application of this protocol to the synthesis of (-)-erythrodiene (1), a marine sesquiterpenoid isolated from the Caribbean gorgonian octocoral *Erythropodium Caribaeorum* [9]. The rare spirobicyclo[4.5]decane skeleton of erythrodiene has attracted considerable synthetic effort over the past four years, but up to now efficient stereocontrol of

[†] Deceased March 15, 1996.

the spirocenter C2 remained an unsolved problem [10-14]. Therefore, we planned a new approach in which the spirocenter C2 would be formed *via* a Zn-ene cylization $3 \rightarrow 2$ (*Scheme 2*).

Scheme 2

Due to the well organized transition state of this reaction type, we expected that the *i*-Pr group at C4 would efficiently direct the cyclization to the opposite ring face in order to obtain the desired 2,4-*trans* diastereochemical relationship. The allylzinc intermediate **3** is formed from the Pd-allyl complex **4** *via in situ* transmetalation with excess Et_2Zn .

Acetate **5** was chosen as a suitable precursor for the formation of intermediate **4**. Its synthesis from the commercially available (-)-(S)-perillyl alcohol **6** is outlined in *Scheme 3*.¹

Scheme 3

a) 0.2% PtO₂, H₂; b) TIPSCI, imidazole; c) BH₃•DMS, NaOH, H₂O₂; d) TPAP, NMO; e) K_2CO_3 , MeOH; f) 5-Bromo-4-pentene, Mg; g) Bu₄NF; h) i. Py•SO₃, DMSO; ii. KOH, MeOH/H₂O; i) DIBAH; j) Ac₂O, Py.

After selective hydrogenation of the exocyclic double bond and hydroboration/oxidation of the endocyclic double bond, the resulting ketone 8 was isolated as a 1:1 mixture of diastereoisomers. This is of no consequence as the stereogenic center will be lost during subsequent

¹ All new compounds were characterized with $[\alpha]_p$ -values, IR, ¹H and ¹³C-NMR, MS and elemental analysis and/or HRMS.

Selected analytical data for acetate 5: $[\alpha]^{22}_{D} = -71.4^{\circ}$ (c = 0.9, CHCl₃). ¹H-NMR (CDCl₃, 400 MHz): 5.80 (*ddt*, *J*=17.3, 10.2, 6.6 Hz, 1H), 5.01 (br. *d*, *J*=17.3 Hz, 1H), 4.96 (br. *d*, *J*=10.2 Hz, 1H), 4.55 (AB, *J*=11.9 Hz, 21), 2.17-1.96 (*m*, 7H), 2.05 (*s*, 3H), 1.85-1.73 (*m*, 2H), 1.52-1.41 (*m*, 3H), 1.34-1.23 (*m*, 1H), 1.16 (*qd*, *J*=11.9, 5.8 Hz, 1H), 0.90 (*d*, *J*=6.6 Hz, 6H). ¹³C-NMR (CDCl₃, 100 MHz): 171.4, 138.6, 137.6, 125.3, 114.6, 64.4, 40.3, 33.7, 33.6, 32.8, 32.2, 28.5, 28.1, 26.1, 21.1, 19.8, 19.7.

transformations. However, in order to avoid working with mixtures, the crude ketone **8** was subjected to base-induced equilibration. From the resulting 5:1 diastereometric mixture pure 1,4-*trans*-isomer was isolated in 65% yield by chromatography. The crystalline diol **9**, obtained diastereochemically pure after *Grignard* reaction, was converted into the α , β -unsaturated aldehyde **10** in a one-pot reaction sequence. Thus, the primary hydroxyl function was first oxidized using the *Parikh-Doering* protocol [15] and then regiospecific water elimination was effected by addition of a basic H₂O/MeOH solution. Reduction of aldehyde **10** and acetylation of the resulting allylic alcohol yielded the required acetoxydiene **5**.

After exposing 5 to an excess of Et_2Zn in the presence of $Pd(PPh_3)_4$ (5%) in Et_2O at 38°C for 14 h, the organozinc intermediates were quenched with iodine to yield iodide 12 in 52% yield, along with 15% of starting material and 15% of the reduced byproduct 11, which presumably arises *via* protonation of the allylzinc intermediate 3 (*Scheme 4*).

Scheme 4

a) GC-determined; b) isolated yields; c) d.r. 95:5 (by GC- and NMR- analysis).

In order to accelerate the formation of the Pd-allyl intermediate 4, the $Pd(PPh_3)_4$ catalyst was replaced by a coordinatively unsaturated complex resulting from the reduction of $Pd(OAc)_2$ with one equivalent of Bu₃P according to *Tsuji and coworkers* [16].¹ This effected not only a

¹ In a typical experiment, a 0.02 N solution of Pd(OAc)₂/Bu₃P 1:1 in degassed Et₂O (0.5 mL, 0.03 mmol, 5%) was added to the solution of acetate **5** (54 mg, 0.2 mmol) in 3 mL of Et₂O in a Carius tube. After dropwise addition of Et₂Zn (480 mg, 3.9 mmol, 20 equiv.) the tube was closed and warmed to 38°C with magnetic stirring for 14 h. After cooling to 25°C, the solution was quenched by dropwise addition of 1 N solution of l₂ in THF (8 mL). After dilution with pentane and washing with an aqueous NaS₂O₃ solution, the organic layer was concentrated and the residue purified by chromatography to yield 60 mg (90%) of iodide **12**. Selected analytical data for **12**: $[\alpha]^{21}_{D} = +7.3^{\circ}$ (c=1.0, CHCl₃). ¹H-NMR (CDCl₃, 400 MHz): 4.78 (br. *s*, 1H), 4.63 (br. *s*, 1H), 3.15 ("*ddd*", *J*=9.4, 2.7, 1.5 Hz, 1H), 2.68 (*dd*, *J*=13.0, 3.3 Hz, 1H), 2.52-2.47 (*m*, 1H), 2.32 ("*d*", *J*=13.0, 3.3 Hz, 1H), 2.04-1.93 (*m*, 3H), 1.88-1.70(*m*, 4H), 1.48-1.37 (*m*, 3H), 1.27-1.22 (*m*, 1H), 1.04 ("*qd*", *J*=12.5, 3.8 Hz, 1H), 0.86, 0.85 (2 *d*, *J*=6.4, 2·3H), 0.80 (*t*, *J*=12.6, 1H). ¹³C-NMR (CDCl₃, 100 MHz): 152.1, 107.8, 53.7, 46.0, 41.7, 39.6, 35.2, 35.5, 32.4, 31.5, 29.4, 20.1, 19.6, 19.5, 14.0.

virtually complete conversion, but also suppressed the formation of byproducts and thus improved the isolated yield of iodide 12 to 90% (*Table 1*).

The diastereomeric ratio of 95:5 was constant in all experiments, confirming the expected sensibility of this mild cyclization reaction to the directing effect of the resident chiral center C4. The tentatively assigned *R*-configuration at C7 in iodide **12**, substantiated by NOE studies, is in accordance with the preferred *endo*-cyclization mode shown in *Scheme 2*. Finally, quantitative dehydroiodination from iodide **12** yielded a 95:5 diastereomeric mixture of dienes. After chromatography on AgNO₃-coated silica, diastereomerically pure (-)-erythrodiene (**1**) was obtained, which exhibited identical physical and spectroscopical properties to those reported for the natural product ($[\alpha]^{20}_{\text{ D}} = -112^\circ$, CHCl₃, c = 0.6) [9].

In summary, we have achieved a highly diastereoselective synthesis of (-)-erythrodiene (1) in 11 steps and 24% overall yield from a commercially available precursor. We are currently working on the extension of this methodology on the intramolecular allylzincation of carbon-oxygen double bonds.

Acknowledgments

Financial support of this work by the Swiss National Science Foundation is greatly acknowledged. We thank the *Stipendienfonds der Basler Chemischen Industrie* for a scholarship to F. F. We thank Mr. J. P. Saulnier, Mr. A. Pinto and Mrs. D. Klink for NMR and MS measurements and Dr. Jef de Brabander for helpful discussions.

References

- [1] Oppolzer W. Angew. Chem. Int. Ed. Engl. 1989;28:38-52 (review).
- [2] Oppolzer W. In: Trost BM, Fleming I, editors. Comprehensive Organic Synthesis. Oxford: Pergamon Press, 1991;5:29-61.
- [3] Oppolzer W. In: Bateson JH, Mitchell HB, editors. Organometallic Reagents in Organic Synthesis. London: Academic Press, 1994:161-183.
- [4] Oppolzer W. In: Abel EW, Stone FJA, Wilkinson J, editors. Comprehensive Organometallic Chemistry. Oxford: Pergamon Press, 1995;12:905-921.
- [5] For a recent example: Oppolzer W, Pimm A, Stammen B, Hume WE. Helv. Chim. Acta 1997;80:623-639.
- [6] Oppolzer W, Schröder F. Tetrahedron Lett. 1994;35:7939-7942.
- [7] Oppolzer W, Schröder F, Kahl S. Helv. Chim. Acta 1997;80:2047-2057.
- [8] For the reaction of RR'Zn with electrophiles see: Knochel P, Singer RD. Chem. Rev. 1993;93:2117-2188.
- [9] Pathirana C, Fenical W, Corcoran E, Clardy J. Tetrahedron Lett. 1993;34:3371-3372.
- [10] Huang H, Forsyth C. Tetrahedron Lett. 1993;34:7889-7890.
- [11] Huang H, Forsyth C. J. Org. Chem. 1995;60:2773-2779.
- [12] Tokunaga Y, Yagihashi M, Ihara M, Fukumoto K. J. Chem. Soc. Chem. Commun.;1995:955-956.
- [13] Srikirishna A, Vijaykumar D, Jagadeeswar Reddy T. Tetrahedron 1997;53:1439-1446.
- [14] Tokunaga Y, Yagihashi M, Ihara M, Fukumoto K. J. Chem. Soc. Perkin Trans. 1 1997:189-190.
- [15] Parikh JR, Doering WvE. J. Am. Chem. Soc. 1967;89:5505-5507.
- [16] Mandai T, Matsumoto T, Tsuji J. Tetrahedron Lett. 1993;34:2513-2516.